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Sign of corrections to scaling amplitudes: Field-theoretic considerations and results
for self-repelling walks

Lothar Schafer
Fachbereich Physik der Universitat Essen, 45117Essen, Germany

(Received 11 April 1994)

I discuss the application of renormalized field theory to such critical systems where the renormalized

coupling approaches the fixed point from the "wrong" (strong-coupling) side. In contrast to a belief
sometimes expressed in the literature, I find that also this situation can be described within the standard

formalism, only the interpretation of the strong-couphng branch relies on the existence of a finite cutoK
I illustrate these considerations with an analysis of Monte Carlo data for self-avoiding walks, finding that
the data support the theory in all respects. However, it is stressed that the nonuniversal parameters of
the renormalized theory in general have no simple relation to the parameters of the underlying bare
model.

PACS number(s): 64.60.Ak, 11.10.6h, 36.20.Ey

I. INTRODUCTION

Universal scaling behavior found at a critical point can
be explained by the renormalization group [1],which ex-
ploits the scale covariance of a critical system. Consider,
for instance, the local magnetization of a ferromagnet,
modeled in terms of an interacting vector field $(rj}
defined on a d-dimensional hypercubic lattice tr ] of
spacing 10. The lattice version of the standard Landau-
Ginzburg Hamiltonian reads

ff d
0

P(r,.+l )—P(r;) mo

2 '=1 lo 2

+ [P'(r,. )]'—hoP(r, . )

where the lj are the primitive lattice vectors. The
"mass" mo incorporates the temperature dependence:
mo=mo(T}, and ho represents a magnetic field. uo is
known as the interaction constant. Renormalization
maps this "bare" model onto a renormalized model of
characteristic length scale lx, the mapping preserving the
macroscopic properties of the system. The renormaliza-
tion group (RG) studies the dependence of the renormal-
ized model on the scale lz, showing that this dependence
embodies the qualitative form of the observed scaling
laws. Furthermore, the renormalized theory allows for
quantitative calculations, the results generally comparing
well to experiment. This holds true in particular for
properties right at the critical point, to be described by a
renormahzed theory where the dimensionless renormal-
ized coupling constant u takes a special value u'. This
value is a fixed point under the RG, which means that it
is invariant under a change of lz. Universality of critical
properties is established, since in the infrared limit
lz~oo the renormalized coupling u(lz) tends to u', ir-
respective of its starting value u(lz -10)&0. This start-
ing value is nonuniversal, i.e., specific to the bare model
under consideration. In physical applications lz must be

taken to be of the order of the correlation length in the
system, and therefore it is the infrared limit which de-
scribes a critical system with its infinite range correla-
tions.

Concerning the approach of u(lx) towards u' it is
found that in a field-theoretic realization of the renormal-
ization scenario, working with the renormahzed counter-
part of a continuum version of the Hamiltonian (1},u(lx )
has to reach u ' from below, values u & u ' being unphys-
ical. (See, for instance, [2], Sec. 9.5 or [3], Secs. 23.1 and
32.1.} This is at variance with some results of computer
simulations. In particular, for the three-dimensional Is-
ing model [4] or for self-avoiding walks (SAW) on cubic
lattices [5], the approach to criticality (T~T, in the Is-
ing model, step number n~" for the SAW) issuch that
it would need values u & u . This has been taken as an
indication that the powerful methods of renormalized
field theory cannot be applied to these systems in stan-
dard form. We here are confronted with some puzzle,
since the renormalized expressions intrinsically do not
seem to rely on the constraint u ~ u '. Using a so-called
"massless" renormalization scheme I find expressions
which seem to be well defined also in some range u & u '.
Indeed the restriction u ~ u ' reflects the way the renor-
malized theory is derived by starting from a continuum
version of the bare model, i.e., taking as a first step the
hmit of vanishing lattice spacing in the Hamiltonian (1)
or the limit of vanishing step size of the SAW, respective-
ly. This raises the question of whether we are entitled to
use the thus derived results also in the range u & u

A detailed analysis of the problem has been presented
by Bagnuls and Bervillier [6], who carefully discuss the
de'erent limiting procedures involved. They furthermore
analyze other implementations of the renormalization
scenario which clearly allow for values u & u . Here it
must be recalled that in general the RG works in a space
of infinitely many parameters specifying the microscopic
Hamiltonian. The field-theoretic approach by construc-
tion concentrates on the flow of a few most relevant
"scaling fields" in the sense of Ref. [7], suppressing all
"nonuniversal corrections" due to "irrelevant perturba-
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As indicated in the Introduction, the field-theoretic ap-
proach to critical phenomena consists of two steps: (i)
Mapping of the bare model onto a renormalized model of
arbitrary scale la. (ii) studying the change of the renor-
malized model under a change of lii. I first consider step
(ii).

The RG mapping is constructed in the form of How
equations giving the change of the renormalized parame-
ters under an infinitesimal change of la. (I should note
that often IR is replaced by a momentum-type variable
@=1/lx. ) The flow equation for the renormalized cou-
pling can be cast in the form

du (lx )—
lii =P(u (l„),e), (2)

p(u, e)= —eu+u p(u),
where

@=4—d . (4)

Other parameters, such as the renormalized number of
steps of a SAW or the renormalized mass or magnetic
field of the Landau-Ginzburg model obey equations of
the general structure

d—l„ lnQ =i)&(u (lx )),
R

tions. " In the context of an analysis of nonuniversal
corrections in polymer physics, i.e., the SA% problem,
Kruger and present author [8] recently have argued that
the results of standard field theory can be used also for
u & u *. In the present paper I rephrase the argument in
terms of general critical phenomena (Sec. II), and then I
illustrate the power of the approach with an analysis data
on self-avoiding walks (Sec. III). Both lattice walks and
walks in continuous three-dimensional space will be con-
sidered. In Sec. IV I summarize the results.

It is of interest to note that a footnote of [6] mentions
field-theoretic calculations done in the range u & u *. Re-
sults and further discussions are presented in copies of re-
cent unpublished work [24], which I received after sub-
mission of the present paper. Furthermore, in [9] the re-
lation of the field-theoretic formulation of the SAW prob-
lem to the general Wilson-type RG framework is reexam-
ined.

II. GENERAL DISCUSSION
OF THE PROBLEM g & u

Assuming that in the range of interest there is no other
zero of p(u, e) I write

1 1 +
p(u, e) eu

1 +p„(u),
to(u —u *)

where p„(u) is some regular function. Using this ansatz
in the integration of Eq. (2) I find

lR, O

u (l„)
u (lx,o)

u (lx o) —u'

u (l„)—u'

Xexp[P„(u (la o) )—P„(u (lx ) )],

(10)

and P(, (u) again is some regular function. Equations (8)
and (9) are standard results representing the general
field-theoretic RG mapping in global form. They relate
renormalized parameters on scale 1„ to those on scale

lR, O.

Inspecting these results I find that they allow for three
different branches, sketched in Fig. 1.

(i) Weak coupling b-ranch. Starting from a value
u(lx o) &u' I find u(la ) &u', reaching u' for la ~ao
from below. This branch continuously is connected to
u =0.

(ii) Strong coupling br-anch. Starting from u (lx o) & u '
I find u (lx ) & u ', reaching u ' for /a ~ 00 from above.
This branch is not connected to u =0 but runs off towards
u »u *, eventually leaving the region u ~ 1 where a per-
turbation expansion in powers of u can be considered a

where P„(u) again is some regular function. Using Eq.
(2} to eliminate la from Eq. (5) and integrating the result-
ing equation using the form (7) I furthermore find

u(li, o) "a ~' u(l„)—u' "Q "
Q(lg )=

u(l ii)

X exp[P&(u (IJt ) )—P&(u (lii, o) ) ]Q (lii, o)

where

where Q stands for the quantity considered. P(u) or
i}&(u}are smooth functions depending only on the renor-
malized coupling. within the special scheme of
"minimal subtraction" they even are independent of spa-
tial dimensionality.

Of special importance is the flow of u [Eq. (2)]. Fixed
points are zeros of p(u, e}. There always is the trivial
fixed point u =0. For the theories of interest there also is
a nontrivial fixed point u'=0(e), u'&0 for e&0. I in-
troduce the slope of p(u, e) at u *:

0.6-

0.4

0.2

10 20 30 40 50 60 70
COfl8$ X ER

Bp(u, e)
BQ

&0, e&0. (6)
FIG. 1. Running coupling constant u (lz )/u as a function

of I&. Schematic plot showing the three branches. The scale of
lz is in arbitrary units.
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These three branches are the analog in the present
scheme of the RG trajectories discussed in the context of
Fig. 1 in Ref. [6].

These results are based on the assumption that the
functions p(u), rI&(u) show no singularity at u =u', an
assumption clearly underlying all field-theoretic renor-
malization group work. In the present context it is hard
to see how this could go wrong. As mentioned above, the
functions p(u ), rI& (u ) can be constructed to be indepen-
dent of e, whereas u' —e vanishes for @~0. Singular
behavior at the continuously varying value u'(e} thus
would imply that the functions p(u },g&(u) do not exist at
all. (It should be noted that this argument explicitly
refers to the minimal subtraction scheme or to formula-
tions derived from it by an analytic reparametrization of
the coupling constant flow. For other formulations, for
instance, those defining the renormalized parameters in
terms of vertex functions, the situation may be less clear. )

As derived above, the field-theoretic RG mapping by
itself does not indicate that the strong-coupling branch
(ii} or the fixed point branch (iii) must be rejected. To un-
derstand the argument leading to the belief that only the
weak-coupling branch is relevant physically I must con-
sider more closely the mapping from bare to renormal-
ized theory [step (i)]. I first recall the structure of bare
perturbation theory, based on a model with finite cutoff
A-lp like the Hamiltonian (1) or the SAW of finite step
length. In the following I use wording adequate for the
magnetic model.

Being interested in a neighborhood of the critical point
T =T, I first must carry through a mass subtraction, in-
troducing the deviation of mp from the critical mass
mo, =mp(T, ). To avoid delicate problems connected to
that step (see, for instance, Ref. [10]), which are not
relevant to the present discussion, I imagine having elim-
inated mo in favor of a correlation length g . Now con-
sidering some dimensionless observable I note that it can
depend only on the dimensionless parameters u pl p,
h p Ip+ ~, I o /g, besides the possible occurrence of
momentum variables pip. Bare perturbation theory is
found to proceed in powers of

e/2

upi p
lo

=uoP ~

with leading corrections of order (lp/g') ', k ~ 1. These
corrections are taken care of by multiplicative renormal-
ization. I write

u p
=u IR 'Z„(u, lp IIR ) (12}

with similar equations for the other parameters, and I

useful tool.
(iii) Fixed point branch. Branches (i) and (ii) are

separated by a separatrix

u(IR p}=u =u(1„),
where Eq. (5) yields pure power law behavior:

lz, oQ(IR)= '
Q(IR,o) .

I„

determine the coeScients in the perturbation expansion
of the renormalization factors Z so as to absorb all the
leading corrections. [Subleading corrections of canonical
order (Ip/g) a priori survive. They are related to the
nonuniversal corrections mentioned in the Introduction. ]
The renormalization factors must be chosen such that the
renormalized theory exists for d + 4.

The analysis is greatly simplified by first taking the
continuum limit lo —+0 for d&4, keeping uo, g, etc.
fixed. This suppresses all lp dependence at the price of
introducing singularities for d~4. The Z factors then
have to be chosen to absorb these singularities, the spe-
cial scheme of "minimal subtraction" of dimensional
poles leading to functions p(u ), g&(u) independent of e.

How is the starting value u (IR p=lo) of the renormal-
ized coupling constant related to the coupling up of the
original model (I)? Clearly u (lp) is not identical to the
dimensionless coupling uplp of the bare theory, but being
defined on the microscopic scale lp it is reasonable to as-
sume that u (lo ) is an analytic function of upi o,

u(lo)= cuplp[1+0(upi }] (13)

Thus u (lo)~0 in the continuum limit, and we necessari-

ly find ourselves on the weak-coupling branch. This re-
sult can be sharpened by noting that in the continuum
limit Eq. (8) reduces to

u(IR)
cuplR =u (IR ) 1—

Q
exp[ eP„(u (—IR ) ) ] .

(14}

For IR fixed, all the range 0&up & 00 is mapped on the
range 0&u(IR) &u', leaving no room for the strong-
coupling branch. It, however, should be clear that the ar-
gument is specific to the continuum limit. A contradicto-
ry statement may be found in [1], Sec. 9.5. A closer in-
spection, however, shows that it uses a form of the cou-
pling constant fiow equivalent to Eq. (14}, derived with
explicit use of the continuum limit [Ref. [1], Eqs.
(8.18)—(8.21}].

There exists a second line of argument [11] leading to
the constraint u (u . Using a massive renormalization
scheme one finds that the renormalized correlation func-
tions show a cut starting at the fixed point coupling. In
that scheme the renormalized functions depend on a cou-
pling u and the mass m =g ', besides momentum vari-
ables [q]. They obey inhomogeneous Callan-Symanzik
equations which do not allow for solutions regular at
u =u for fixed m, Iq]. Rather the critical power-type
singularities induce a cut for u & u . In contrast, in the
present paper I have in mind a massless renormalization
scheme, the correlation functions depending on the cou-
pling u, temperature t, and a scale IR '=p, besides {q].
These functions obey homogeneous renormalization
group equations, which are consistent with analyticity at
u =u ' for t,y„[q ] fixed. In fact this analyticity under-
lies the standard discussion of corrections to scaling. The
apparent contradiction is resolved by noting that the
mass rn =rn (t, u, p) itself is singular at u =u'. Being the
inverse correlation length it indeed lives on one of the
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three branches u &u', u =u, u &u' which are not
analytically connected at u =u '. The cut therefore
reflects the choice of variables in the massive scheme.

There remains the question whether a renormalized
theory, constructed by starting from the continuum limit,
can be used to describe the strong-coupling or fixed point
branches, even though those branches, properly speaking,
are unphysical in the continuum limit. The answer is
positive, since the same RG flow equations can be derived
from both the continuum limit or cutoff theories. To for-
rnulate it in somewhat more detail, in the cutoff theory
the leading microstructure dependence comes in the form
of powers of A '=lo, as has been mentioned above.
Such terms have to be absorbed into renorrnalization fac-
tors [see Eq. (12)], taking the general form

r

lo
Zx (15)

R

oo j'

=1+ g uJPJ

where P is a finite polynomial in (lo/la ) . Choosing the
zero-order term of that polynomial to coincide with the
equivalent term in the minimal subtraction scheme we
are guaranteed to find renormalization group equations
identical to those of the minimal subtraction scheme,
even without taking the continuum limit lo~O. With
this latter derivation there is no reason to discard the
fixed point or strong-coupling branches.

The renormalized correlation functions, calculated by
renormalizing the cutoff model as outlined above, differ
from the correlation functions calculated in the continu-
um limit only by terms of canonical order 1 o /g . Correc-
tions of the same order of magnitude would be created by
irrelevant perturbations not included in the original mod-
el. Close to the fixed point u these terms are dominated
by the so-called corrections to scaling proportional to
u —u '. An extensive discussion of that "preasymptotic"
regime may be found in [12]. Going further away from
the fixed point the irrelevant terms numerically may be-
come important, however. It is here that an important
difference among the strong- or weak-coupling branches
emerges. For some systems we may have a handle on the
starting value u (lo ), allowing us to reduce it to zero con-
tinuously. A noteworthy example is the physics of poly-
mer solutions, where the role of temperature in critical
phenomena is played by the inverse of the chain length
(i.e., step number of the SAW), the physical temperature
in6uencing u(lo). A so-called e temperature might be
reached, where u (lo) vanishes. We then may work with
very long chains: lo/g « 1 (the role of g is played by the
radius of the polymer coil in solutions), staying so close
to the e temperature that still u (lz -g) is much smaller
than u'. Then clearly corrections -(l/g) are negligible
and we in principle can map out all of the weak-coupling
branch. For the strong-coupling branch no such tool is
available. It would amount to making u (lo) very large,
so that the perturbative construction of the RG mapping
breaks down. For the strong-coupling branch only re-
sults in some region close to u ' should be trusted.

In summary I have found (see also [24]) that the results
of standard renormalized field theory can be used also in
some range above u'. The interpretation of the strong-

III. THE END-TO-END DISTANCE
OF A SELF-AVOIDING WALK

I here discuss Monte Carlo results on three-
dimensional self-avoiding walks both on a lattice and in
continuous space. Computer experiments have the ad-
vantage of a well defined step number, whereas physical
experiments on long macromolecules necessarily deal
with samples showing some distribution of chain lengths.
This gives rise to additional complications of data
analysis, and a discussion of physical data will be pub-
lished elsewhere. The most extensive set of numerical
data is available for the mean squared end-to-end dis-
tance RE, and I therefore restrict my discussion to this
quantity.

For the SAW the important parameters are the renor-
malized coupling u and the renormalized chain length
nz. In three dimensions the RG mapping, written in the
form of Eqs. (8) and (9), is found as

4 1+0.824f
l 1+0.824fo

f 1 f-
&o 1 —fo

f 1 f —1+0.824f
fo 1 —fo 1+0.824fo

XZ„'(fo, 1 )n,
co=0.80,
v=0. 59 .

(18)

Here

fo=

u

u (Io)
(19)

and n denotes the unrenormalized chain length. This
form of the mapping is based on a most precise calcula-
tion of Schloms and Dohm [10], using the minimal sub-
traction scheme of field theory. It is an analytical fit
reproducing the results numerically within 1% deviation.

For a discussion of the weak- or strong-coupling
branches a more lucid form of the mapping introduces

2two parameters z, R Q.

z =Un 'i

U=f ~1 f ~

'~" (1+0.82—4f )
. 'z '~2(f, l),

=I n

(20)

(21)

(22)

Then fixing the renormalized length scale l& by the con-
dition nz =1, which amounts to lz -Rz/6, I find Eqs.
(4.26) and (4.27) of [8]:

coupling or fixed point branches implicitly makes use of
the existence of a finite cutoff. In the next section I apply
these results to an example taken from the topic of self-
avoiding walks.
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fl 1 f—
l

' ""(1+0.824f)
I' =

l l —fli".x
R 0

(24) pressions

a E (X)=(1+10.66z+0 2.26z } '

(2 B2+2v
R

8240.25(1 2v) fP
—2v —

1lf0~)

=Z„"(1,1)lo .

(26)

(27)

The two parameters have merged into a single one.
The mean squared end-to-end distance of a SAW in [8]

has been calculated to first nontrivial order of renormal-
ized perturbation theory, evaluated directly in three di-
mensions. Ignoring the irrelevant perturbations I find
from [8],Eq. (4.29),

—,'RE=la(1 —0.192f) .

Evaluated for the fixed point branch this yields

E—'R 2 0.808B2+ 2v

(28}

(29)

For the weak- or strong-coupling branches I can define a
generalized "swelling factor, " which is a function of Z

only:

R
a = =

l
1 fl '(1 ——0 192f)

6R 0
(30)

f =f (Z) has to be taken from Eq. (24). In Fig. 2 I have
plotted the two branches of a E(z) together with their
common asymptote.

Thus the mapping from bare to renormalized theory in
general involves two nonuniversal microscopic parame-
ters O', T, such theories in polymer physics traditionally
being addressed as "two-parameter theories. "The theory
makes no precise quantitative prediction on the size of
these parameters.

To reach the fixed point branch I take the limit f—+1,
fo al in Eqs. (23) and (24) to find

(weak coupling ) (32a)

or

a E,(z)=(1.704 —1.096z+0.226z )
'

(strong coupling ) (32b)

numerically reproduce my results to an accuracy better
than 0.5%%uo.

Using Borel resummation methods based on sixth-
order bare perturbation theory for a three-dimensional
continuous chain model, Muthukumar and Nickel [13]
have constructed a very accurate expression for the
weak-coupling branch. Their result is parametrized as

ting MN=(1+7. 524z+11.06z )
' (33)

employing a value v=0.5886 instead of my value
v=0.59. In the experimentally relevant range Z & 100 the
rescaling z =0.150z yields agreement among Eqs. (32a)
and (33) up to deviations less than 0.5%. This shows that
my result for the weak-coupling branch is quite accurate.

Turning now to the Monte Carlo data I note that for
SAW's on the three cubic lattices the corrections to the
asymptotic power law behavior are known to be negative.
According to Fig. 2 I clearly am on the strong-coupling
branch. I have analyzed the recent accurate data collect-
ed by Barrett, Mansfield, and Benesch [14], covering
chain lengths 26 ~ n ~ 3328. The values of V [Eq. (20)] or
6T [Eq. (22)] used in the fit are collected in Table I. (In
my notation the step size of a random walk of fixed
length steps is v 6T.) All lengths are measured in units of
the lattice spacing: l0=1. Figure 3 shows the data for

n„(r)=0 765Fa., z~ec (31}

which in such a plot replaces the fixed point branch.
For a comparison to data it is useful to construct a

more explicit form of a E(Z). The surprisingly simple ex-

2.5

1 ~ 5

10 20 30 40

50 100 150 200 250 300

FIG. 2. Swelling factor tt ~z [Eq. (30)] as a function of K The
broken line represents the asymptotic power law (31). The
upper branch is the weak-coupling branch.

FIG. 3. 5 E as a function of Z. Strong-coupling branch. Data
for SAW s on the simple cubic lattice, as collected in [14]. Cir-
cles: data of Nickel; ellipsoids: data of Barrett et al.; points:
exact enumeration data.
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TABLE I. Parameter values for SAW's on cubic lattices [14]. Also included is the four-way SAW on
the simple cubic lattice [23].

Lattice

6T
0

6l 2@0.360

sc

0.825
5.611
1.535

bcc

0.636
8.462
1.372

fcc

0.645
7.341
1.322

sc four way

1.190
1.464
1.365

SAW's on the simple cubic (SC) lattice as compared to
my calculation of the strong-coupling branch. I included
also exact enumeration data [14],starting at n=2. Clear-
ly the fit is excellent over all the range of z. In particular,
no sign of irrelevant perturbations can be detected. In
view of the short chains included this is quite a surprising
feature. (I should note that the exact enumeration data
cover even values of n only, so that odd-even efFects are
not seen. ) A fit of the same quality is found for all the
other lattice or off-lattice data analyzed here, supporting
the view that my calculation indeed yields an excellent
representation also of the strong-coupling branch.

In Fig. 4 I show the Monte Carlo data for the three cu-
bic lattices, where I divided out the leading asymptotic
variation -5„. This plot magnifies the scatter of the
data, but allows for a clear distinction among the three
branches. Clearly theory and data agree within at most
0.5&o deviation. It should be noted that in all this and
the subsequent analysis I encountered values f ( l„)& 1.15
only, so that I stay well within the domain of renormal-
ized perturbation theory.

Yuan and Masters [15] recently published very accu-
rate data on SAW's on a diamond lattice, 42~ n ~210.

They included and varied an attractive nearest neighbor
interaction GYM. Analyzing these data I find the results
of Fig. 5. The parameter values are collected in Table II.
For pure self-avoiding walks (GYM=0), I again am on the
strong-coupling branch. For e= —0.1 within the accura-
cy of the data I seem to have hit the fixed point branch.
Only the combination 5T ff ' -8 can be determined,
but for including the data into the figure I arbitrarily as-
signed a value 0'=3. For GYM

~ —0.2 I am on the weak-
coupling branch. According to Yuan and Masters the
Gaussian coil behavior (corresponding to the e tempera-
ture) is reached for EvM= —0.51, and in Fig. 4 I omitted
the data for e~M= —0.5 reaching values 2~0.2 only,
where that plot is not adequate. Clearly theory and data
match very well.

I finally consider data on off-lattice chains, constructed
from segments of length lo connecting the centers of hard
beads of diameter ao. In that model the parameter

1.4 „

1.3

1.04

1.2

1.02

0.98

0.9 20 30 50

0.96 100 200 300 400
z

FIG. 4. 5s/it~ as a function of K Data [14] for cubic lat-
tices. Circles: sc; ellipsoids: bcc; points: fcc.

FICy. 5. aE/cz' as a function of K Data [15] for interacting
SAVE's on the diamond lattice. Lower branch {strong couphng)
e&M=O. Horizontal branch (fixed point) e&M= —0.1. The hor-
izontal position of the points has been Sxed arbitrarily by taking
S=3n . Upper branch (weak couphng), ellipsoids: e~M
= —0.2; circles: GYM

= —0.3; points: E'gM = 0.4.
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TABLE II. Parameter values for interacting SAW s on the diamond lattice [15]. Nearest neighbor
interaction GISM.

VM

6T 2

6T2p 0.360

0
1.170
3.668
1.868

—0.1

1.727

—0.2
1.149
2.342
1.561

—0.3
1.523
0.701
1.340

—0.4
1.804
0.211
1.030

—0.5
1.988
0.011
0.388

ao

Ic

can be varied, 0~5~1, thus changing the excluded
volume. Using an ingenious combination of Monte Carlo
results and RG ideas Baumgartner and co-workers [16]
concluded that the fixed point branch is found for
5' =0.52+0.02. Figure 6 shows the results of my
analysis of the accurate data of Barrett, Mansfield, and
Benesch [14], covering chain lengths 50 & n & 1000.
Again the data nicely confirm the theory. The parameter
values are collected in Table III, where I included param-
eters extracted from the (few and not very precise} data of
Refs. [16,17].

There remains the question of to what extent we can
understand the variation of the parameters T,V as exhibit-
ed, for instance, in Table III. This question directly re-
lates to the traditional analysis of such data, where 6R 0
typically is identified [18] with the mean squared end-to-
end distance of a random walk chain, i.e., ~6T is
identified with the elementary step length l~, modified by

including the bond angle constraints imposed. 8' is deter-
mined by estimating the elementary excluded volume, the
precise expression being a matter of some debate. (For a
discussion of this approach I refer to [19],and references
given therein. ) Now the results of Tables II and III show
a strong variation of the parameters T, V, not compatible
with the philosophy outlined above. Outside a e region
of very small excluded volume the parameters of two-
parameter theory cannot naively be identified with pa-
rameters of the bare model. This also is obvious from
Eqs. (21} and (23), showing that T, V nontrivially depend
on the starting value of the renormalized coupling, which
in turn is an unknown function of the bare parameters.
Also lo is an unknown function of the bare parameters,
implicitly being fixed by taking n as the physical chain
length. Furthermore, the function Z„(fc,1) is micros-
tructure dependent and cannot be calculated reliably.
Still, Eqs. (21) and (23) involve some useful information,
showing that T vanishes for f0~1, whereas 11 diverges in
that limit. The combination 8' " 6T /le shows no singu-
larity, however. This qualitatively explains the variation
of the parameters. In Fig. 7 I have plotted the numerical
values of Table III together with the functions

«2 «2
jets/a„

1.5

1.4
TABLE III. Parameter values for three-dimensional continu-

um walks. 5= ap/Ip' . ratio of bead diameter to segment length.

1'3

1.2

0.9

0 a

0

0 a v

p pe ~ ~

10 20 30 40 50 60 70 z

1a

099
0 93'
0 79'
0.75
0.71'
0.63'
0.60'
0.55'
0.55'
0.50b

0.45'
0.45'
0.40'
0.30a

0.25
0.10

6T

1.8
1.804
1.6
1.3
1.330
1.4
1.0
0.80
0.70
0.7

0.64
0.7
0.70
0.9
0.956
0.999

1.8
1.733
1.9
2.1

2.029
1.8
3.1
4.38
5.25
6.3

3.38
2.3
1.97
0.4
0.178
0.010

6T2s 0.360

2.2
2.199
2.0
1.8
1.716
1.7
1.5
1.37
1.27
1.3
1.143
1.00
1.0
0.98
0.6
0.514
0.190

FIG. 6. Same as Fig. 5, but for continuum chains. Data from
[14]. Strong-coupling branch, circles: 5=0.99; points: 5=0.75.
Fixed point branch: 5=0.5. I arbitrarily took S=2n '

Weak-coupling branch: 5=0.25.

'Reference [17].
6Reference [14].
'Reference [16].
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0=1.45foi 1 —foi

6l

Eo

1/{4v —2)
6E

E2

i( /co)( —1/2v)J Q

V=1.45fo,

(35)

(36)

(37}

using the simple ansatz
3

5fo= (38)

si'(u'.

1.75

1.5
1.25

0 ' 75

0.5

0.25

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8

5' =0.52. The factor 1.45 has been chosen such that Eq.
(37}fits the data for small values of 5. It clearly is illus-
trated that the main trend of the parameters just maps
out the singularity structure of Eqs. (21) and (23). It also
is clear that neither t}'nor Tnaively can be identified with
parameters of the bare model.

In closing this section I want to comment on some pre-

vious theoretical analysis of such data. Notably over the
years Domb and co-workers have published a series of
papers (see [19]for details and further references), aiming
at a construction of two-parameter results such as the
equation for aE(z}. Typically they combine results of
bare perturbation theory valid for small excluded volume
(z(1) in the continuous chain model with numerical re-
sults on lattice SA%'s, thus constructing semiempirical
formulas. According to the present analysis I feel this at-
tempt is likely to fail, trying to interpolate smoothly
among the weak- and strong-coupling branches. Still the
method has met with considerable success (see [20], for
instance), as can be understood from Fig. 2. Clearly for
larger Z the shapes of the strong- or weak-coupling
branches are not too dilerent, and in some restricted
range of Z a rescaling of that parameter might bring the
two branches in close agreement. It is only with the re-
cent very accurate data, covering a large range of chain
lengths, that I clearly can resolve the difference.

The existence within the two-parameter model of a
weak- and a strong-coupling branch recently has been
clearly noted and stressed by Nickel [5]. He uses results
of bare perturbation theory for the continuous chain
model to construct recursion relations corresponding to
successive decimations of the chain length by a factor of
2. He furthermore reformulates these relations in the
style of a "direct renormalization" scheme, which in
field-theoretic terms amounts to using a not minimally
subtracted renormalization scheme, identifying the cou-
pling u (la ) with some observable quantity. From both
versions of his flow equations he derives the different
branches. The present analysis is in complete accord
with his findings.

Finally, Chen and Noolandi [21] presented an ap-
proach similar to the present one in that it is based on re-
normalized field theory. They use a form of u (la ) which
essentially is based on a two loop calculation of the RG
fiow, and which first has been presented in [22]. They
combine this with a kind of improved zero loop approxi-
mation for the scaling functions, fitting some numerical
constants to asymptotic results of higher-order bare per-
turbation theory. In this way they reach a fit of similar
quality to that shown here, except that they do not ob-
serve the structure of three universal branches but be-
sides a quantity u corresponding to f (la ) keep an addi-
tional variable z corresponding to the interaction parame-
ter introduced in traditional unrenormalized theories.

IV. CONCLUSIONS

0.2 0.4 0.6 0.8

FIG. 7. Parameter values for continuum walks, plotted as a
function of 5 . Points: Ref. [14]. E11ipsoids: less precise data
of Refs. [16,17]. (a} 6l /10, curve given by Eq. {36}.(b} 8; curve
given by Eq. (35}. (c}(6T'/10 }' ' " "8",curve given by Eq. (37}.

I have argued that the standard methods of renormal-
ized field theory can be applied also in some region where
the renormalized coupling is larger than the nontrivial
fixed point value. Basically I exploit the fact that the re-
normalized theory is independent of the details of the un-
derlying bare theory. Arguments in favor of u &u'
based on the infinite cutofF limit are relevant in quantum
field theory, but do not apply to statistical mechanics
with its finite cutofF. Also arguments based on massive
renormalization do not apply to the present scheme. In
agreement with the general RG framework I find three
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universal branches u (u', u =u', u & u', all described
by the same RG fiow equations. There is no need to in-
voke irrelevant perturbations to give a meaning to the
strong-coupling branch u & u '. However, such perturba-
tions inevitably in5uence the observables in the strong-
coupling regime, if I am driven away from u too far, go-
ing outside the preasymptotic regime [12]. Still it must
be noted that in my analysis of results on self-avoiding
walks I have found no sign of such corrections.

I have illustrated the usefulness of the approach with
an analysis of Monte Carlo data on self-avoiding walks.
The data nicely conform to the theory. I, however,
should note that for each set of data I have two
nonuniversal parameters available, so that the quantita-
tive success should not be overestimated. In fact, it is
well known that a one loop calculation of scaling func-
tions, as exploited here, in general is accurate only up to
a few percent. For instance, the ratio of the radius of
gyration to the end-to-end distance difFers from the re-
sults of Monte Carlo experiments or of a two loop calcu-
lation by about 3%. More important than the quantita-
tive success is the basic qualitative agreement, convinc-
ingly exhibited in Figs. 5 and 6.

The analysis has stressed that the nonuniversal param-
eters of renormalized theory should not be mixed up with
parameters of the bare model. In general there is no sim-
ple matching point, where these parameters could be
identified naively. This point of view also has been
stressed in Ref. [12]. Indeed, I work entirely in the renor-
malized framework, not invoking matching to bare
theory. The resulting efFective parameters show a
behavior quite dilerent from the parameters of the bare
model. In particular, the parameter u which relates the
scaling variable 2'to the chain length and which tradition-
ally is considered to be a measure of the bare interaction
strength, in the strong-coupling regime even decreases
with increasing excluded volume. Renormalization thus
induces some type of screening of strong interactions. In
the strong-coupling regime the decrease of u is accom-
panied by an increase of the efFective segment size T,

which may indicate that the interaction induces a local
stretching of the chain.

A11 the qualitative results found here should hold gen-
erally for critical systems. Clearly a similar analysis of
numerical data for three-dimensional Ising models should
be feasible and seems highly appropriate.
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