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We study a class of two-dimensional (2D) nonequilibrium Ising models based on competing dynamics
induced by contact with heat baths at two different temperatures. We make a comparative study of the
nonequilibrium versions of Metropolis, heat bath-Glauber, and Swendsen-Wang dynamics, and focus on
their critical behavior in order to understand their universality classes. We present strong evidence that
some of these dynamics have the same critical exponents, and belong to the same universality class as the
equilibrium 2D Ising model. We show that the bond version of the Swendsen-Wang update algorithm
can be mapped into an equilibrium model at an effective temperature.
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I. INTRODUc:nON

Despite attempts at constructing a rigorous theory for
nonequilibrium statistical mechanics, there is still no for-
malism to parallel the one which exists for equilibrium
systems. As a result, there are few analytical methods
with which to deal with nonequilibrium systems. In gen-
eral, nonequilibrium systems display rich and complex
behavior such as phase separation, pattern formation,
and turbulence [1,2] and it is therefore useful to first
study simple model systems.

There exist model nonequilibriurn systems described by
stationary distributions that are comparatively easy to
study. An open system maintained in a nonequilibrium
steady state by an external temperature or density gra-
dient is one example [3]. Another class of nonequilibri-
urn steady states is obtained when the system is closed,
and the dynamics is a local competition of two dynamics
at different temperatures [14]. It is this type of system
that we address in this paper. Since these nonequilibrium
systems display behavior qualitatively similar to equilibri-
um systems, such as phase transitions, it is important to
ask if their critical properties and universality classes are
the same. Flows of renormalized probability distribu-
tions and fixed points are norma11y independent of the de-
tails of a Hamiltonian. Perhaps these flows and fixed
points are even independent of the existence of a Hamil-
tonian and a Boltzmannian distribution. If one were able
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to establish equivalences (or near equivalences) of univer-
sality classes between equilibrium and nonequilibriurn
models, then we would be able to answer many questions
about the behavior of these systems without a complete
formulation equivalent to the one for equilibrium sys-
terns.

Simple nonequilibrium spin-flip stochastic systems
have received considerable attention in the literature over
the last ten years. Reviews and general discussions about
nonequilibrium phase transitions and stationary states
can be found in Refs. [4—7]. Studies of driven diffusive
systems can be found in Wang, Binder, and Lebowitz [8],
Marro, Garrido, and Valles [9], Garrido, Marro, and
Dickman [10], and Grinstein, Jayaprakash, and Socolar
[11].

Grinstein, Jayaprakash, and He [12] studied the statist-
ical mechanics of probabilistic cellular automata using
time-dependent Ginzburg-Landau theory. They suggest-
ed that any nonequilibrium spin-flip dynamics with up-
down symmetry belongs to the same universality class as
the equilibrium Ising model. Their argument is based on
the observation that under the renormalization group in
d =4—e, the dynamical fixed point of the Ising model is
stable with respect to all additional analytic terms that
preserve the lattice geometry and the spin up-down sym-
metry.

Kanter and Fisher [13] analyzed the existence of or-
dered phases in stochastic Ising systems with short-range
interactions. They found that the existence of universali-

ty for those systems might depend on the details of the
interaction and cast doubts on the general applicability of
the argument of Grinstein, Jayaprakash, and He [12].

A two-temperature Glauber Ising model was intro-
duced by Garrido, Labarta, and Marro [14] (we will refer
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to this model as GLM) to investigate stationary none-
quilibrium states. They obtained a mean-field solution
and performed some Monte Carlo simulations on 2D lat-
tices. They found critical behavior qualitatively similar
to the equilibrium case.

The nonequilibrium behavior of competing dynamics
such as spin 6ip vs spin exchange has been studied by
Garrido, Marro, and Gonzalez-Miranda [15] using hy-
drodynamic macroscopic equations and Monte Carlo
data, and by Wang and Lebowitz [16]using a Monte Car-
lo renormalization group method. They found evidence
of equilibrium Ising behavior and Ising-like exponents.

Tome, Oliveira, and Santos [17] studied the GLM
model for the case when one of the temperatures is nega-
tive. They used a dynamical pair approximation to ana-
lyze antiferromagnetic steady states and obtained the cor-
responding phase diagram. Their mean-field renormal-
ization group calculations show evidence in favor of
equivalence with the equilibrium Ising universality class.

Blote et al. [18] studied a model similar to GLM in
which each sublattice is in equilibrium at a difFerent tem-
perature. They performed Monte Carlo simulations and
found strong evidence that the model belongs to the equi-
librium Ising universality class.

Marques [19,20] used a mean-field renormalization
group calculation to obtain a phase diagram and calculat-
ed the exponent v for the GLM model. Her results com-
pared well with the equilibrium Ising values. Later she
extended this technique to two different three state sys-
tems, which retain the up-down symmetry [21], to test
the conjecture of Grinstein, Jayaprakash, and He [12],
and found good agreement with equilibrium Ising ex-
ponents.

Recently, de Oliveira [22] analyzed the isotropic
majority-vote nonequilibrium model by Monte Carlo and
finite size scaling. He found very good agreement for the
critical exponents between this model and the equilibrium
Ising model and also for Binder's cumulant. In a
separate paper, de Oliveira, Mendes, and Santos [23]
studied a family of nonequilibrium spin models with up-
down symmetry parametrized by a Glauber-like transi-
tion rate. They also found good evidence that the critical
exponents for this family (except for the limit case of the
voter model) are the same as the equilibrium Ising model.

Considerable numerical and analytic evidence has been
accumulating in favor of universality and equilibrium Is-
ing exponents for some of these models but the results are
not definite yet. Most analytical methods used, such as
&he mean-field renormalization group method, are of an
approximate nature. Monte Carlo simulations have fo-
cused mainly on qualitative behavior, and the calcula-
tions of critical exponents have not been carried out with
high resolution. To understand better and test this
equivalence, we have undertaken a detailed, high resolu-
tion Monte Carlo study of two-temperature Ising models,
and we explore the question of universality using different
local and nonlocal update dynamics.

The paper is organized as follows. In Sec. II, we will
describe the different two-temperature nonequilibrium
models that are the subject of this study. Section III
presents detailed results for the Metropolis nonequilibri-

um dynamics including critical exponents and cumulant
behavior. Section IV focuses on the Swendsen-Wang [24]
nonequilibrium dynamics. Section V contains a com-
parative study of all the dynamics. Extension to many
temperature models is discussed in Sec. VI and the con-
clusions are presented in Sec. VII.

H. TWO-TEMPERATURE NONEQUILIBRIUM
DYNAMICS

(2)

where W(cr'+o) is th-e transition rate from configuration
o to 0 . We are interested in stationary probability dis-
tributions,

dp(o, t) =0, P(o, t)=P(o) '. (3)

In the case of equilibrium systems, P(cr ) is not only sta-
tionary but has the form of a Boltzmann distribution
parametrized by the inverse temperature p,

P(o )=Z 'exp( PH ), — (4)

where Z=g exp[ —PH(cr)]. In our case, we are in-

terested in stationary nonequilibrium distributions pro-
duced by the local competition of equilibrium dynamics
at difFerent temperatures. The usual condition to obtain
an equilibrium Monte Carlo dynamics is to make
W(cr'~cr ) obey detailed balance (note that imposing de-
tailed balance on the W is a suScient but not necessary
condition),

W(o'~cr )P(cr )= W(a ~o')P(o') .

In the two-temperature model, one considers a composite
rate W(cr'~cr ),

W(o'~cr)=pW, (cr'~cr)+(1 p)W2(a—'~o ), (6)

with competing W, and W2. At each time step the tran-
sition probability will be chosen at random to be 8', with
probability p, or W2 with probability (1—p}. W, and W2
individually correspond to equilibrium transition rates
obeying detailed balance with respect to temperatures p,
and P2, i.e.,

At each time step the dynamics obeys detailed balance lo-

We begin with the two-dimensional Ising model on the
square lattice with Hamiltonian

H= —JP g o, crj,
(ij &

where P is the inverse temperature and J the coupling. A
dynamics for the model can be described in terms of a
time-dependent probability distribution P(o, t), which
evolves according to a master equation,

dP(o, t )

dt
=g [ W(o'~o )P(o, t) W(cryo—')P(o', t)],



3476 P. TAMAYO, F. J. ALEXANDER, AND R. GUPTA 50

cally with respect to pi or p2, and the spins act as if in in-
stantaneous contact with one of two heat baths. The
overall effect is to produce a nonequilibrium dynamics
that reduces to the equilibrium model when p&=pi.
From the master equation one can prove that for a com-
bined dynamics of this sort there is indeed a stationary
regime given by the condition [4],p(oui�)+(I

—p)(o W~) =0 . (8)

tanh(2Jp, s }=p tanh(2J p, )+(1—p)tanh(2Jpi) .

Similarly, bond dynamics is defined by

(10)

W;= —,'a 1 —tanh Jo; g P o,
«j

—i«=l

where pj is p, with probability p, or p2 with probability
(1—p), and in this way the temperature is selected in-
dependently for each bond. These transition rates with
a=1 also define the heat-bath algorithm, i.e., the two al-
gorithms are equivalent and we only need to discuss one.
Henceforth, we shall refer to this as the Glauber dynam-
1CS.

Metropolis nonequilibrium dynamics are defined in a
similar way. The relevant acceptance factor for spin i is
given by

A, =exp —2Jo,PQ o
J

(12}

where, as in the Glauber case, p is either p, or pz. In the
bond version, we have

The induced global probability distribution P(o ) does
not, in general, correspond to a local known Hamiltoni-
an, and it depends on the details of the dynamics, i.e., the
particular choice of 8', and 8'2. This is in contrast to
equilibrium simulations where the Boltzmann distribu-
tion is independent of the particular choice of W. The
combination of W& and 8'2 produces a stationary state
analogous to a system being driven by an external paten-
tial. The ensemble of stationary configurations exhibits
physical properties qualitatively similar to equilibrium
(i.e., ordering, cluster formation, phase transitions, etc.).
This is therefore one of the simplest ways to generate
nonequilibrium models from equilibrium ones. In order
to investigate the properties of stationary distribution on
the dynamics, we study three different update algorithms:
Metropolis, Glauber (or equivalently heat bath) and
Swendsen-Wang. Furthermore, each of these dynamics
has a "bond" or "spin" version, as we explain below.

We start by defining the GLM dynamics [14]. The
transition rate for spin i takes the standard Glauber form,

W;= —,'a 1 —tanh Jp o, g o .

«j
—i«=&

where p; is chosen to be equal to p, with probability p,
and p2 with probability (1—p). In one dimension, this
dynamics is always equivalent to an equilibrium model at
an effective temperature p,s given by [14],

where each bond j is chosen independently with tempera-
ture p, or p2.

Finally, we define nonequilibrium Swendsen-Wang [24]
spin and bond versions. In the bond version, the percola-
tion probability for bond ij is chosen to be

(14)

where p;,. is p, with probability p, or p2 with probability
(1—p). The subsequent percolation, cluster finding, and
flipping steps are done in the same way as in the original
Swendsen-Wang dynamics. In Sec. IV, we show that this
dynamics can be mapped to an equilibrium system at an
intermediate "effective" temperature p,s. The spin ver-
sion is defined similarly, except that the four bonds con-
tributing to the update of each red (or black) site are
chosen to be at the same temperature p, or pz.

All these algorithms can be implemented very
efficiently on a parallel computer such as the CM-5. In
this paper, we present detailed results for the
Metropolis-spin and Swendsen-Wang-bond cases and
make some comparisons with the other dynamics.

III. METROPOLIS NONEQUILIBRIUM DYNAMICS

Pea —e Pl +( 1 )e
P2 (16}

This equation has to be satisfied for all values of hE;
however, only the cases for EE&0 are temperature
dependent. (We thank R. Swendsen for bringing this to
our attention. ) In one dimension there is only one
relevant case (hE =4), and the equation is satisfied with

'+(1—p)e '], (17}P,s= —
—,'in[Pe

as was reported by Garrido, Labarta, and Marro [14]. In
two dimensions, one has to satisfy two equations (for
b,E=4 and 8),

—4p) —4p2
—4p e

pe '+(1—p)e '=e
—

&Pi
—

&P2
—&P &pe '+(1—p)e '=e

For fixed p, p„and p2, each equation has the solution

(18)

We performed a careful investigation of the spin ver-
sion of the Metropolis dynamics. Our update algorithm
is parallel, so we simultaneously update all the red (black)
sites on the (checkerboard) lattice. For each sublattice
site i, we choose temperature p, or pz independently us-

ing a uniformly distributed random number. Then we

compute the change of energy with the spin Aipped,

bE, =2o; go,
J

If hE,. 0, then the Aip is always accepted, otherwise it is
accepted with probability exp( p, hE, ). —

To address the question of the existence of an
equivalent equilibrium system, we consider the local tran-
sition rate for the combined dynamics,

A; =exp —2Jo., QP,.o .

J
(13) g,'s= —

—,'in[pe '+(1—p)e '],
P,~= —

—,'In[pe '+ (1—p }e '],
(20)

(21)
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P/v=0. 122(2),

y/v= l.73(2),

(22)

(23)

which is shown in Fig. 1 as a function of P2 for fixed

pt =0.35 and p =0.5. One can see that only for pI =p2 is

P,ir=P, ir. This shows that for the Metropolis spin algo-
rithm the two-temperature system cannot be described by
a nearest neighbor effective Hamiltonian. The same is
true for a triangular lattice with three (six) nearest neigh-
bors, as there are two (three) independent equations.

Monte Carlo simulations show that the configurations
generated over time are qualitatively similar to equilibri-
um configurations, and the system exhibits an Ising-like
phase transition. We have explored the critical behavior
of this dynamics on. 16, 32, 64, and 128 lattices. To lo-
cate the critical point, we set p =0.5 and pI =0.35, and
searched for the transition as a function of P2. Our best
estimate for the critical point is Pz=0. 6372(5 }. The scal-
ing region around this critical point appears to be rather
narrow, and the calculation of critical exponents is there-
fore quite difBcult. We choose this particular set of
values for pI and pz, as they are far from the Ising critical
point (pI =p2=0.440678), and hope that any nonequili-
brium effects will be manifest. We computed the critical
exponents using finite size scaling and Binder's cumulant
analysis. We accumulated measurements over 5 X 10 for
16, 10 steps for 32 and 64 lattices, and 9X10 for
128 .

The data for magnetization and susceptibility for the
four different lattice sizes are given in Table I and plotted
in Figs. 2 and 3. These figures show a change in the cur-
vature between P2=0.6370 and P2=0.6372. On the basis
of these data, we estimate that the critical coupling is

P& =0.6371(1}. The slopes give an estimate for the ex-
ponents P/v and y/v, assuming that the corrections to
the leading finite size scaling forms m -L ~ and
y-L ~ "are negligible. The results are

0.6372 16 9.11(5) 0.7043( 3) 0.611(1)

0.6300
0.6350
0.6370
0.6372
0.6375
0.6400
0.6475
0.6500
0.6550
0.6600

0.6300
0.6350
0.6370
0.6372
0.6375
0.6400
0.6475
0.6500
0.6550
0.6600

0.6350
0.6370
0.6372
0.6375
0.6400
0.6475
0.6500
0.6550
0.6600

32
32
32
32
32
32
32
32
32
32

64
64
64
64
64
64
64
64
64
64

128
128
128
128
128
128
128
128
128

33.5(3)
32.0(4)
30.2(8)
30.6(3)
30.6(3)
30.0(6)
27.2(4)
26.3(6)
25.1(4)
23.3(7)

114(4)
112(5)
103(2)
101(2)
101(2)
96(5)
76(5)
68(3)
64(5)
56(3)

409(51)
357(22)
315(12)
328(18)
257(20)
197(19)
148(10)
133(15)
91(10)

0.629(2)
0.639(2)
0.647(3)
0.6464(7)
0.6463(8)
0.651(2)
0.666(1)
0.671(2)
0.679(1)
0.689(2)

0.566(4)
0.580(4)
0.592(2)
0.594(2)
0.594(2)
0.605(2)
0.635(4)
0.644(3)
0.655(3)
0.669(2)

0.52(1)
0.538(6)
0.550(2)
0.550(3)
0.573(5)
0.611(3)
0.626(3)
0.644(3)
0.664(2)

0.603(3)
0.608(4)
0.611(11)
0.611(2)
0.611(3)
0.613(7)
0.619(3)
0.621(5)
0.624(4)
0.628(5)

0.600(13)
0.605(12)
0.611(4)
0.612(6)
0.612(5)
0.616(3)
0.629(14)
0.633(11)
0.636(11)
0.640(4)

0.597(40)
0.607(22)
0.615(7)
0.615( 11)
0.627(21)
0.639(9)
0.645(10)
0.649(9)
0.654(7)

TABLE I. Data for susceptibility, magnetization, and

Binder's cumulant for the two-temperature Metropolis spin dy-

namics (PI =0.35, p =0.5).

fmf

I I I I I I I I I I I I I I I I I I I I

I I I I I I I

0.6 — PI = 0.35, P = 0.5

0.4

Pcff

0.7—
0.6600
0.6550
0.6500
0.6475

0.2

0.5—

Pg =
Pz =
Pg =

0.6400

0.6350

I I I I I I I I I I I I I I I I I I I I

0.2 0.4 0.6 0.8 10 20
I I I I I I I

50 100 200

FIG. l. Plot of p,'Ir and gs [see Eq. (20)] vs p2 (at pi =0.35
and p =0.5) for the nonequilibrium Metropolis spin dynamics.

FIG. 2. Scaling behavior of magnetization as a function of Pz
(with pi =0.35 and p =0.5 held fixed) on different lattice sizes

for the nonequilibrium Metropolis spin dynamics.
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0.02—

P~ = 0.6350

P~ = 0.6370
Pq = 0.6375
P~ = 0.6372

P2 = 0.6400

P2 = 0.6475

point is conjectured to be a universal number indepen-
dent of lattice size [25]. Figures 5(a) and 5(b) show the
cumulant values for the two pairs of lattice sizes, (32,
64 ) and (64, 128 ), at difFerent temperatures around the
critical point. The solid straight line is the best 5t to the
data and the dashed line in the Sgures corresponds to
UL &2= UL. The point of crossing of these two lines gives
an estimate of the critical point. The crossing takes place
at

0.01—
P~ = 0.6500
P2 = 0.6550

U'(32 vs 64) =0.610(2),

U'(64 vs 128)=0.605(10), (26)

0.005-
I I I I I I I

P2 = 0.6600

and the corresponding estimates for P2 are 0.6370(2) and
0.6360(12), respectively. These values are consistent with
the estimate from Snite size scaling given above. Our
longest runs were done at P2=0.6372, at which tempera-

10 20 50 100 200

FIG. 3. Scaling behavior of susceptibility as a function of P2
(with p1=0.35 and p =0.5 held fixed) on difFerent lattice sizes
for the nonequilibrium Metropolis spin dynamics.

0.68

0.66—

I
[

I I I I
I

I I I I

where the errors are determined as follows. %'e first
compute the statistical error in the magnetization and
susceptibility for each data point. The error in the ex-
ponents is then obtained from the mean-square St to a
straight line on a log-log plot.

The data for Binder's cumulant [25],

0.64—

0.68—

0.6—

3(M )

are also given in Table I and plotted in Fig. 4 as a func-
tion of P2. The value of this cumulant at the critical

I I I I I I I I I I I

0.56
0.58

I I I I

0.6
U(L=32)

0.62 0.64

L = 128
OeV ' I I I I

i
I I 1 I

)
I I I I

l
I I I I

0.64—
0.65—

0.62—

0.6—

0.6—

I I I I I I I I I I I 0.55 '

0.58
I I I I I I I I l I I I I I I I I I

0.6 0.62 0.64 0.66
U(L=64)

FIG. 4. Cumulant values as a function of pz (at III =0.35 and
@=0.5) and on diFerent lattice sizes for the nonequilibrium
Metropolis spin dynamics.

FIG. 5. Cumulant values at temperatures around the critical
point for the nonequilibrium Metropolis spin dynamics. (a) 32
vs 64 lattices; (b) 64 vs I28 lattices.
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ture our estimates,

U16 =0.611(1},
U3z =0.611(2},

U~ =0.612(6),

U12s =0.615(7 )

(27)

(28}

(29)

(30)

P—,s(1 —a,.a )
(35}

then there exists a solution satisfying this equation for the
two possible values of the bond energy,

compare very well with the value U' =0.611(1)comput-
ed by Bruce [26] for the 2D equilibrium Ising model, and
U6'4 =0.611(5) computed independently by us. Thus, we
shall henceforth call p2 =0.6372 the critical point.

From the scaHng of the cumulant one can obtain an es-
timate of v,

I I I I I I I I I I I I I I I I I I

0.008—

dU, —L 1/vG (L I /v& )
dP p,

(31}
0.006—

where e=(p, —p)/p. To do this, we first compute the
slope dUL /dp for L =32, 64, and 128 using the data
points near the critical point and then fit these values
versus L using the above expression to obtain an estimate
for v. We fin

~ 0.004—
C4

v=0. 99(5) . (32} 0.002

dUL

dUJ

L
L' (33)

Another estimate can be computed from dUL /dUL. in

the critical region because this quantity should scale as
' 1/v

0 I I

—0 0.2 0.4
fmf

0.6 0.8

Using the more precise data shown in Fig. 5(a} for L =32
and 64, we obtain v=0.95(8). The agreement between
these results and the values for the equilibrium Ising
model is quite good [v=1, p/v=0. 125, y/v=1. 75,
U =0.611(1}]and provides strong evidence for their
equivalence.

To confirm further this equivalence, we measured the
probability distribution for the magnetization and energy
at p, =0.35 and p2=0. 6372 and compared them with
those for the equilibrium model in Figs. 6(a) and 6(b).
The agreement is somewhat better for the magnetization
than for the energy, and qualitatively the distribution
functions are equilibriumlike. The data are slightly more
disordered than those for the critical equilibrium model,
suggesting that P2 may be slightly larger than 0.6372.
The bond version of the Metropolis dynamics has not
been studied as extensively, and we postpone its discus-
sion until Sec. V, where we compare the difFerent dynam-
ics [27].

(b)

D 3D equilibrium at T

Q.Q 15 —+ RD equilibrium at T

0 Xetro spin

0 ~
01—

0.005—

8
8
e
8

oy +

Sg 0',
+

0+

0+
0+

+
0+
0+
0+
0+
0+
0+
0+
0
0
0+

I I I I I I I I I I I I I

IV. SWENDSEN-WANG NONEQUILIBRIUM
DYNAMICS —0

0.5 1.51
—EWe start with the bond contribution to a global proba-

bility distribution,
FIG. 6. Probability distributions: (a) magnetization &(lrrII)

and (b) energy P( —E), for the Metropolis spin dynamics at
pI=0.35, p2=0. 6372, p =0.5, and L =32 (critical point). The
probability distributions for the 2D and 3D equilibrium Ising
model are also shown for comparison.

(34)

If we assume that P;. is always equivalent to an equilibri-
um distribution with coupling P,(r, i.e.,

p III( I rr; rr )( )
—P2(1 . rr, rr)—. .

IJ
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—2PI —2P2 —2P ~pe '+(1—p)e '=e ', [o;= —o J ],
p+(1 —p)=1, [o,=o,. ] .

The solution is
—2pea-

—'p2
e "—e

—2p —2p
e ' —e

(36)

(37)

atures accelerates the decorrelation process. We find that
the autocorrelation times are comparable to the values
for the standard equilibrium Swendsen-Wang values.
This is as expected since the two models are locally
equivalent.

V. OTHER DYNAMICS AND COMPARISONS

or equivalently, for a set of values p„p2, and p, there al-
ways exists a p, Ir given by

2p& 2p2 —2'peIr= —
2' ln[p (e ' —e ')+ e '] (39)

that corresponds to an Ising equilibrium system. This
implies that this dynamics is nothing more than equilibri-
um dynamics in disguise. If we set p,It=p„we find lines
of critical points in the p, —

p2 plane given by
T

—2p —2p
P, = —

—,'ln —[e ' —(1—p)e ']

I I I I I I I I I I

p=0. 1

0.5

p =0.9

A set of these critical lines is shown in Fig. 7 for diS'erent
values of p. Our simulations confirm this equivalence.
Notice that for some extreme values of pI (pz) there is no
positive value of p2 (p, ) that yields critical behavior.

The reason for the equivalence is that for the
Swendsen-Wang bond dynamics there are, independent of
the number of spatial dimensions, only two equations of
constraint, as each bond is independently in contact with
the heat bath. One is the trivial condition p+(1—p) = 1

and the second is the desired result given in Eq. (39). In a
diferent context, a similar analysis of di8'erent ways to
satisfy local equations for block percolation in equilibri-
um systems has been made in Ref. [28].

Lastly, we have measured autocorrelation times at cri-
ticality with PI =0.1, Pz=2. 318, and p =0.5

(P ff 0.440 687 ) to see if the stochastic choice of temper-

We have investigated the spin and bond version of
Glauber dynamics for only three combinations of P, and

p2 using 32 lattices. The ensemble size in these runs is
-50000 update sweeps, significantly smaller than for
Metropolis or Swendsen-Wang dynamics. In Figs. 8(a),
8(b), and 8(c), we compare the equation of state ((E ) vs
(m ) ) for the various dynamics for the three different
combinations of p, and p2. Figure 8(a} shows the results
for p, =0.4, pz=0. 6, Fig. 8(b) corresponds to pI=0. 1,
Pz =2. 318, and Fig. 8(c) to PI =0.2, Pz =0.738 464.
These three sets of temperatures were chosen so that the
corresponding P,Ir for Swendsen-Wang bond dynamics
corresponds to a cold (p,Ir =0.49 ), critical
(p,It=0.4406868), and hot (p,It=0.40) system, respec-
tively. All the simulations were done with p =0.5. The
dashed line corresponds to the result for the equilibrium
Ising model obtained on I.=32 lattices. The errors in
the data are roughly equal to the size of the symbols.

From Fig. 8, it is clear that the equation of state de-
pends very sensitively on the dynamics, and there is a
large spread in the results for all three choices of temper-
atures. In a11 cases, except for the Swendsen-Wang spin
version, the results 1ie very close to the line characteriz-
ing the equilibrium Ising model. The deviations from the
equilibrium results in all three versions of the two-
temperature spin dynamics are in the direction of a more
ordered system. The situation is reversed for the bond
dynamics; compared to the equilibrium values the two-
temperature results are less ordered. Qualitatively, the
data with the various dynamics show the following order-
ing: Metropolis spin, Glauber spin, Metropolis bond,
Glauber bond, and Swendsen-Wang bond. This pattern
is also shown in Figs. 9(a) and 9(b}, where we give the
magnetization and energy probability distributions for

p, =0.35 and p2=0. 6372 (a critical point for the Metrop-
olis spin dynamics). All cases appear to have the same
functional form, but their position and amplitudes are
rescaled. The magnetization probability distributions are
Gaussian near the peak but have long tails toward rn =0.
Further work is needed to explore the possibility that all
of these probability distributions are just rescaled forms
of the equilibrium distribution and correspond to
different P,s's.

VI. THREE-TEMPERATURE MODEL

p
—0 0.2 0.4

Pp

0.6 0.8

To study the general case of the competition of many
temperatures, we extended the analysis to the three-
temperature Metropolis spin dynamics. The three tem-
peratures are chosen with probabilities p &, pz, and p3.

FIG. 7. Critical lines [see Eq. (40)] for the Swendsen-Wang
bond dynamics.

W( o '~o ) =p, W, (o '~o. }+p 2 Wz (cr '~ o)—
+p3 W3(cr'~o ) .
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We fixed P& =0.35, $3=0.6372, and p& =pz =ps =—, and
varied Pz about the equilibrium critical value
P2=0.@06868. We expected the system to display criti-
cal behavior for Pz=0.440 686 8.

The system effectively displays critical behavior in that
region as can be seen in Fig. 10, where results for
Binder's cumulant are shown for P2 in the range [0.424,
0.456]. Furthermore, the probability distribution func-
tions for P2=0.4406868 match the ones for the two-
temperature model discussed in Sec. IV and the equilibri-
um model at criticality, as can be seen in Figs. 11(a) and
11(b). We do find an apparent narrowing of the critical
region compared with the two-temperature models, and
the statistical quality of the data are not accurate enough
to measure the exponents.

Based on the study of the three-temperature model, we
make the following conjecture for the Metropolis spin dy-
namics. A model in contact with an arbitrary number of
heat baths will display Ising critical behavior, provided
each temperature or a pair of them is tuned to the critical
value. As the number of pairs of temperatures increase,
the critical region becomes narrower, making the mea-
surement of critical exponents and the study of critical
behavior more difBcult.

0.008— 0 2-temp Metro spin

o 3—temp Metro spin

0.006—

& 0004

at an intermediate effective temperature. Thus, for these
cases our results agree with the conjecture of Grinstein,
Jayaprakash, and He that any nonequilibrium spin-flip
dynamics that preserves up-down symmetry belongs to
the same universality class as the equilibrium Ising mod-
el. Assuming that the system evolves into an equilibrium
distribution after some thermalization steps, one can
measure the critical exponents and flow of renormalized

VII. CONCLUSIONS

We present high statistics results showing that for the
Metropolis spin dynamics the stationary states produced
by the two-temperature model are very similar to equilib-
rium states. Based on the agreement of the critical ex-
ponents and Binder's cumulant, we conclude that the
two-temperature Metropolis spin dynamics is in the same
universality class as the Ising model. We also show that
the bond version of the two-temperature Swendsen-Wang
dynamics can be mapped into an equilibrium Ising model

0.002

II—0
—0

!

0.5
ImI

I I I I I 1 I I I I I I I I

0.02

0.65— L=64
L=32 0.015—

0 2-temp Metro spin

0 3-temp Metro spin

0.6—

0.55—

0.01—
C4

0.005—

0
0

0

0.5—
0 I I I I I I

I I I I I I I I I I I I I I

0.42 0.44
Pp

0.46 0.48

FIG. 10. Cumulant values as a function of Pz (at P~=0.35
and p3=0.6372) and L =32, and 64 lattice sizes for the three-
temperature Metropolis spin dynamics.

1.2 1.4
—E

1.6 1.8

FIG. 11. Probability distributions: (a) magnetization P( Im I)
and (b) energy P( —E) for the two-temperature and three-
temperature Metropolis spin dynamics at the critical point
(L =32).
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couplings using the Monte Carlo renormalization group
method. We hope to investigate this possibility in the fu-
ture.

Our results for the Metropolis bond, Glauber spin and
bond, and Swendsen-Wang spin dynamics are qualitative.
Further work is required to confirm that they too belong
to the same universality class as the equilibrium Ising
model.

We have extended the two-temperature critical
Metropolis spin dynamics to the three-temperature case.
We find that the system shows critical behavior when the
third temperature is tuned to P=0.4406868. Based on
this, we conjecture that the Ising critical behavior is
preserved as long as one adds pairs of temperatures that
are, by themselves, critical. The critical region appears

to become narrower as the number of pairs of tempera-
ture values are increased and the statistical quality of the
data deteriorates. This makes the calculation of critical
exponents and the study of the models more diScult.
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