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Controlling hyyerchaos in a multimode laser model
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We show that it is possible to stabilize remnants of periodic orbits in a hyperchaotic system (with

more than one positive Lyapunov exponent) using a single feedback parameter. Numerical simulations
of a multimode laser with an intracavity frequency doubling crystal using occasional proportional feed-

back indicate that the controlled periodic orbits are locally unstable in only one coordinate, even though
the system has three positive Lyapunov exponents in this parameter regime. This situation should be
common in dynamical systems of the coupled oscillator type with many degrees of freedom.

PACS number(s): 05.45.+b, 42.50.Ne

Globally coupled oscillator arrays have been the focus
of much recent attention. Aside from their use in mean
field approximations [1], globally coupled arrays arise
naturally in a variety of physical contexts, including
mechanical examples such as the loaded string [2], elec-
trical circuits such as Josephson junction arrays in series
[3] and parallel [4] configurations, and optical systems
such as laser arrays [5] and multimode lasers [6]. Work
on these systems has tended to focus on the possibility of
achieving simple (periodic or steady state) dynamics, ei-
ther through mutual (spontaneous) synchronization or
through the application of an externally imposed master
drive. An alternative approach is to borrow a page from
the recent work on control of chaos and introduce a
small feedback to achieve nearly periodic dynamics [7].

In this article, we investigate the control of chaos in a
particular globally coupled oscillator system, namely, the
multimode Nd: YAG laser (where Nd: YAG denotes
neodymium-doped yttrium aluminum garnet} with an in-
tracavity frequency doubling crystal [8]. Recent experi-
ments showed that both the steady state and periodic or-
bits could be stabilized in this laser using the method of
occasional proportional feedback (OPF} [9] in the chaotic
regime [10]. Interestingly, the chaos in this laser is not
low dimensional —the "hyperchaotic" attractor [11]has
three positive Lyapunov exponents in the parameter re-
gime explored here —yet control is achieved using just a
single parameter for feedback. While single parameter
control might be expected to work if the chaos has a
suSciently high symmetry, in our problem the chaotic at-
tractor has no symmetry. In view of the practical desira-
bility of single parameter control, it is important to inves-
tigate why OPF is successful in this case. Our numerics
suggest that it is because the target orbit has only one un-
stable direction. That is, we can control this hyperchaot-
ic system provided there are embedded orbits of "low di-
mensional instability": we expect this result to hold in
general. This is of practical importance because, while
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high dimensional chaos is common, in many cases the
most desirable orbits have a single unstable direction.
We return to this point at the end of the article.

In the schemes developed to date, control has been ap-
plied usually to stabilize unstable steady states or periodic
orbits either isolated or embedded in a chaotic attractor.
The idea is to compensate, typically by making small
corrections on a control parameter, for the deviation of
the trajectory followed by the system from the selected
fixed point or periodic orbit. Here we present a case
where what is stabilized is not an unstable periodic orbit
but the remnant of a periodic orbit in which a slow dy-
namics is responsible for a departure from the orbit. An
appropriate control scheme can compensate for this slow
dynamics and stabilize this orbit. We show that this type
of control can be achieved in a model for a multimode
Nd:YAG laser with an intracavity nonlinear crystal by
using the OPF scheme.

The dynamics of a multimode Nd: YAG laser with an
intracavity potassium titanyl phosphate (KTP) frequency
doubling crystal can be described in terms of the rate
equations for the intensity Ik and gain Gk associated with
each mode [12],

Ik
' dt
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where k =1, . . . , N. Here, ~, is the cavity round trip
time (0.2 ns}, rf is the fluorescence lifetime of the Nd +

ion (240 ps), a„is the cavity loss parameter for the kth
mode, y is the small signal gain, which is related to the
pump rate, and g is a geometrical factor dependent on the
phase delays due to the YAG and the KTP crystals as
well as on the angle between the YAG and KTP fast
axes. Here we take g =0.1. Each cavity mode can be po-
larized only in one of two orthogonal directions (X, Y).
For modes j having the same polarization as the kth
mode, pjk =g, while pjk=(1 —g) for modes having or-
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thogonal polarization. The nonlinear coe%cient c is asso-
ciated with the conversion eSciency of the fundamental
intensity into doubled intensity by the KTP crystal
(e =5 X 10 ). P is the cross-saturation parameter related
to the competition among the different longitudinal
modes. In genera1 its value will be different for each pair
of cavity modes, but for simplicity we assume the same
value of P for all the mode pairs (P=0.7).

We have numerically integrated Eq. (1) in the case of
five coexisting modes in the cavity, four polarized in the
X direction and one in the orthogonal Y direction. This
situation has been experimentally observed [12,13]. The
values of the losses were assumed to be equal for all the
modes with ak =0.01. There is a natural relaxation oscil-
lation frequency in the system related to the rate of inter-
change of energy between the Geld and the atoms. %ith
an increase of pump power above threshold, the system
shows a stable steady state, periodic behavior, and, final-
ly, chaos. Chaotic behavior arises as a consequence of
the global coupling between the longitudinal modes
through the nonlinear process of sum frequency genera-
tion.

Figure 1 shows the total and individual mode intensi-
ties for a chaotic time trace for y/a=5. For these pa-
rameter values, three of the ten Lyapunov exponents for
the system were computed to be positive for a time trajec-
tory of length 20 ms. Their values were A, , =14.1 ms
A,&=5.4 ms ', and A,3=1.9 ms '. An estimate of the
Lyapunov dimension using the Kaplan-Yorke conjecture

[14] gave a value of DL -5.4. On the face of it, one may
expect that controlling chaos in this system would re-
quire active feedback on three different parameters, or a
more complex scheme of feedback that retains informa-
tion about parameter perturbations in prior steps [15].
However, our simulations demonstrate stabilization with
feedback on a single parameter; the mechanism revealed
here may be responsible for stabilization of some periodic
orbits observed in the laboratory [10]. As mentioned ear-
lier, an alternative explanation for this unexpected good
fortune may be that owing to an underlying symmetry,
control of a single parameter effectively influences several
degrees of freedom simultaneously. This explanation is
ruled out, however: Fig. 1(b) shows that despite the sym-

metry of the underlying differential equations, no symme-

try is present in the attracting solution (i.e., the individu-

al modes evolve quite difFerently). Occasionally, the sys-
tem lands very close to an unstable periodic orbit, at
which time it is possible to control the chaos. In this ex-
ample, the orbit we stabilize has a period five times that
of the relaxation oscillations of the total intensity.

We apply the OPF technique in the same way as done
in the experiment [10]. The total laser output intensity I
is sampled with a given periodicity T and its value is
compared with a fixed reference value I„f.Then, during
a short time bt &&T, the pump rate is modified to

7 p+a (I I„f) whe—re yo is the ambient pump level
and a is a small proportionality constant. After the inter-
val At and until the next sampling time, the pump takes

1. 0 '„
I

0
5.05:—

~ 5.00
4.95 =

F

0.00 0.05 0, 10

T

II

I I

I

0.15
time (ms)

j
I I I J

0.20 0.25 0.30

0' +—~+ ', -+-—~-+—+t—-+~—~-~~—+—~
05r
QQ

95 j-

t--++—+~—0—I

(b)

w w w w w

0.00 0.05 0.10 0, 15 0.20 0.25 0.30
time (ms)

0.05 Q. 10
l

0.15 0.20
time (ms)

0.25 0.30

0.00 0.05 0.10 0.15 0.20
time (ms)

0.30

FIG. 1. Chaotic time series for pump parameter y/a=5. 0.
(a) Total intensity and applied pump level; (b) each of the five

mode intensities.

FIG. 2. Time series in the presence of occasional proportion-
al feedback apphed to the pump parameter y/a, showing the
stabilization of the remnant of a period-five orbit. (a) Total in-

tensity and applied pump level; (b) intensity output of each
mode.
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FIG. 3. Complex value of the ten Floquet multipliers for
4.9My/a (4.953. (b) corresponds to a zoom of the main Sgure
showing the behavior of the relevant exponents in detail.

its ambient level y=yo. Thus there are four parameters

(I«r, b t, o, T), which allows considerable flexibility in

achieving control. (These four parameters are constants;
dynamical control is implemented only through y.} As a
practical matter, one finds that T has to be close to some
multiple or submultiple of the underlying relaxation os-
cillation period.

Figure 2(a) shows the time series for the total intensity
when the control is applied, with T=9.0 ps, b, t =T/10,
and a =0.008. Also shown is the time series of the ap-
plied feedback on y. The amplitude of applied pulses is
at most 1% of' yo. We have set I„rclose to the mean
value of the total intensity (that is, I«r =5), so that there
are approximately an equal number of positive and nega-
tive kicks.

Figure 2(b) shows the time series of the intensity for
each mode. Of the four modes polarized in the X direc-
tion, three of them (1, 2, and 4} oscillate in phase. The
symmetry is not complete; the other X-polarized mode
behaves quite difFerently. Physically, due to the competi-
tion between different modes for the available gain, one
sees that I3 has maxima when I„I2,I4 are near minima,

and that the Y'-polarized mode has largest intensity when
all of the modes 1-4 have low intensities.

In our simulations, this periodic orbit can be stabilized
indefinitely, unless the control is turned off, in which case
the system spirals away from the periodic orbit and re-
turns to the original chaotic attractor. Just as in the ex-
periments [10], it has proved impossible to stabilize the
dynamics by applying a simple periodic perturbation [16]
rather than one dependent in some way on the output.

It turns out that for these parameter values, the period-
ic orbit is stable when y/a &4.953. We have calculated
all ten of the Floquet multipliers for this periodic orbit
for difFerent values of the gain in the stable region. The
results are shown in Fig. 3, for the range
4.9 & y/a & 4.953, which shows that the orbit undergoes
a bifurcation. Because of the symmetry of the orbit there
are two equal pairs of complex conjugate Floquet multi-
pliers (in the left-hand plane}. The interesting behavior
comes from the complex conjugate pair closest to the unit
circle, shown in detail in Fig. 3(b). The pair collide at
y/a=4. 951, and then split up along the positive real
axis, one towards the origin and the other away. The
latter multiplier crosses the unit circle, signaling a bifur-
cation. Generically this wi11 be a saddle-node bifurcation,
where a stable and an unstable orbit coalesce and disap-
pear; we can rule out a symmetry breaking bifurcation
because the degenerate multipliers (7,9 and 8, 10, in Fig.
3) remain inside the unit circle. Consequently, for
y/a) 4.953 there is no unstable periodic orbit, but rath-
er the remnant of one. However, for values of the gain
that are not too far above the critical value the orbit
drifts only a small amount each iteration of the local
Poincare map.

It is precisely in this situation that one can think of sta-
bilizing the orbit by applying small perturbations on a
control parameter that close this nonperiodic orbit, mak-
ing it periodic. This is what the OPF control perturba-
tions do in our system. Despite the fact that the chaotic
attractor has three positive Lyapunov exponents, locally
the orbit is unstable only in one direction. This is why a
simple control method works for this hyperchaotic sys-
tem.

We have also looked at the choice of values for the
control parameters to stabilize the orbit. To characterize
the periodicity of the stabilized orbit we measure the
value of the five maxima in each period and compute the
variances o; of these maxima over many periods. The
lower values of o; correspond to better stabilization, i.e.,
the periodic orbit has less fluctuations. Figure 4 shows
the mean of these 6ve variances (o ) for difFerent values
of the control period T. The lower values of (cr) are
achieved at values of T which are rational fractions of the
relaxation oscillation period. The places where the value
of (o ) is found to be very large correspond to regions
where stabilization cannot be achieved. It can also be
seen from Fig. 4 that, in general, the stabilization
achieved when the reference value I„fis placed close to
the mean of the total intensity is better than when it is
placed far away from it. Figure 5 shows the dependence
of (o ) on b, r for two diferent values of a and fixed
values of T =9 ps and I„f=5.It can be seen that the
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stabilization improves for smaller values of b, t until a lim-
iting value is reached, after which stabilization is not pos-
sible. The larger the size of the proportionality constant
a, the smaller the threshold value of At to achieve stabili-
zation. Figure 5 indicates that stabilization can be
achieved for a large interval of values of ht and a, but the
best stabilization is achieved for a certain minimum
correction. As the size of the correction increases the
quality of the stabilization degrades.

As an indication of the quality of control achieved,
Figs. 6(a) and 6(b) show the power spectrum of the total
intensity for the chaotic orbit and the stabilized orbit.
Although the chaotic spectra show some peaks, these are
embedded in a large noisy background. After application
of the stabilization method the energy emitted has been
dramatically concentrated in a few frequencies, as one
can expect from stable periodic operation.

Summarizing, we are led to the following picture. It is
possible to control a hyperchaotic system with OPF feed-

FIG. 4. Dependence of (e) on the control period T for
f 5 (solid line connecting 61led circles) and for I„&= 10

(dashed line connecting empty circles). For each value of T, ht
was taken to be ht =0.1T.
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back on a single parameter. This is because embedded
within the chaos there are remnants of periodic orbits
with just one unstable direction. This situation could be
a rather general one for higher dimensional chaotic sys-
tems. Unstable orbits with unstable manifolds of dimen-
sion greater than one will presumably require a corre-
spondingly greater number of parameters, or a more
complex algorithm to be dynamically controlled.

In general, the control mechanism described here does
not require the existence of symmetry. However, in
problems of the coupled-oscillator type the presence of
symmetry should make this scenario rather common. In
these problems, the interacting elements are nominally
identical, so that synchronized (or partially synchronized)
solutions are highly symmetric. Such orbits are often the
most desirable since they reQect a high degree of coher-
ence among the oscillators. A symmetric attractor may
lose stability in one of two ways, either tangent to the
symmetric subspace (with multiple positive Lyapunov ex-
ponents) or tangent to the unsymmetric subspace. In the
latter case, the orbit is unstable but nevertheless "in-
phase attracting, " that is, desynchronizing perturbations
are locally damped out. In our multimode laser example,
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FIG. 5. Dependence of (o ) on b, t for T =9 ps, I„&=5,and
two values of a: a =0.006 (solid line connecting filled circles)
and a =0.010 (dashed hne connecting empty circles).

FIG. 6. (a) Power spectrum of the total intensity for a 59 ms

chaotic time trace corresponding to y/a=5; (b) power spec-
trum of the total intensity when the remnant of the period-Sve
orbit is stabilized, calculated over the same amount of time.
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the chaotic attractor is entirely desynchronized, but the
local periodic orbit (remnant) has three modes synchron-
ized. A similar case of an unstable periodic state with
in-phase attracting dynamics was reported recently in a
study of Josephson junction arrays [17].
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