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Statistical characterization of Barkhansen noise

Kevin P. O' Brien and M. B.%eissman
Department ofPhysics, University oj' Illinois at Urbana Ch-ampaign, 1110West Green Street, Urbana, Illinois 61801 3-080

(Received 13 May 1994)

We investigate whether Barkhausen noise exhibits self-organization and precursor events in the
manner of the sandpile models used to illustrate self-organized criticality, and the extent to which
Barkhausen noise can be described by single-domain wall pictures. Although a few large time-
asymmetric events are found, no precursor efects were observed. Standard single-degree-of-freedom
models appear to describe most of the data.
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INTRODUCTION

Recently, much attention has been focused on the hy-
pothesis that nonequilibrium broadband noise in some
driven systems can reflect a type of self-organization, in
some cases producing a state with power-law correlations
closely analogous to "ritical phenomena [1]. The original
picture used to illustrate such models was of the coopera-
tive flow of sand down a sloping pile, in which the local
environment of each sand grain depends on the behavior
of the neighboring sand grains. Although this approach,
dubbed "self-organized criticality" (SOC), is quite appeal-
ing as an explanation for those temporal scaling phenom-
ena not accounted for by the customary trivial explana-
tions of I/f noise [2], SOC has found surprisingly little
direct experimental support, in part because inertial
effects cause real sand to have a first-order dynamical
transition. (See, e.g., [3].) Regardless of whether a par-
ticular driven system self-organizes to the analog of a
critical state or to the analog of a first-order transition,
even the simpler question of whether the distribution of
characteristic times comes from simple fixed inhomo-
geneity or from some genuine self-organization remains
open for most experimental systems.

Barkhausen noise, the irregular magnetization changes
of a ferromagnet in a changing field, has been described
as analogous to the noise of sand fiow [4]. Recently,
Barkhausen noise has been cited as a good experimental
illustration of SOC, lacking inertial effects [5]. On the
other hand, Barkhausen noise has been modeled as result-
ing from the motion of single-domain walls in a (one-
dimensional) spatially rough coercive field created by de-
fects [6]. Such a model is analogous to individual sand
grains rolling down preexisting tilted rough surfaces,
rather than collective motions of many sand grains gen-
erating their own random environments. The central
question addressed in this paper is whether in Bar-
khausen noise we are hearing something like "the noise of
sand grains falling over each other" [4] or like the sound
of sand grains falling over something else.

BACKGROUND

Some of the ingredients of SOC are known to be poten-
tially relevant to Barkhausen noise. In some cases, mag-

netization changes have been directly observed to occur
via avalanche processes in the domain topology [7].
These avalanches exhibit some scaling effects, at least
over a narrow range of parameters, and their behavior
has been described by a subcritical self-organization mod-
el [8]. Also, the formation of multisegment magnetic
domain walls in some cases has been described as self-
organizing with some scaling properties [9].

The direct evidence cited for an SOC description of
Barkhausen noise has consisted of a limited "scaling" re-
gime in the spectral density of fluctuations in the induced
Barkhausen voltage, S (f) [5], together with some limited
scaling of Barkhausen pulse sizes and times, and some
correlation between those two variables [5]. Also, some
very qualitative interpretations of wavelet decomposi-
tions have suggested that they have a "hierarchical" ap-
pearance, described as reminiscent of SOC [10].

For several reasons, there is no real evidence in the
form of S(f) for SOC effects. The first report of an ap-
parent nontrivial spectral exponent [5] turned out to be
based on an experimental artifact [5]. Even in
quasiequilibrium, magnetic systems can show lif noise
with beautiful spectral scaling [11],a reminder that scal-
ing per se is not evidence of SOC.

Also, Barkhausen data (e.g. , noise spectra) averaged
over entire hysteresis loops can be misleading, since the
properties at different parts of the hysteresis loop are not
identical, as carefully shown by Alessandro et al. [12].
Lumping together data from different parts of a hys-
teresis loop can give spurious distributions in, for exam-
ple, characteristic rates. Therefore, the existence of
pulses with a range of sizes and durations should not be
taken as conclusive evidence for SOC. In fact, such dis-
tributions are consistent with models with nothing resem-
bling self-organization, in which many domains, each
with its own coercive field, flip independently, although
other evidence has shown that such models are too
simplified to describe Barkhausen noise [13].

At least one key ingredient of realistic kinetic models
of Barkhausen noise in metals is well established. The
domain wall velocity is governed by eddy-current damp-
ing [14]. It is generally accepted that the resulting
domain wa11 velocity is linear in the difference between
the local magnetic field and a loca1 coercive field due to
defects in the material [6].
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One class of Barkhausen models simply describes indi-
vidual domain walls moving sequentially through spatial-
ly randoin coercive fields (K,(x) ) [6] (or, in some
schematic models, random local magnetic fields [15]).
Any scaling behavior shown by such individual-domain
models reflects not self-organization but rather the scal-
ing properties of the initial random field. For example, in
a recent random-field model of hysteresis avalanche sizes
show power-law scaling only when the random field mag-
nitude is tuned to let the slope of the hysteresis loop ap-
proach infinity, without reaching a discontinuity [15].

In the most complete individual-domain-wall model,
Alessandro et al. (ABBM) do consider interactions
among different domain walls, but conclude that for their
purposes a mean-field approximation of such effects is
adequate [6]. Thus, their model explicitly ignores the
cooperative effects which are necessary ingredients of
SOC. Nevertheless, it manages to give a good approxi-
mation to experimental event-size distributions and spec-
tra taken at a variety of difFerent driving rates [12].

In fact, models of single-domain wa11 motion are
known to be relevant to ordinary
Barkhausen noise, since experiments in which only one
domain wall was present produce noise qualitatively simi-
lar to ordinary Barkhausen noise [16,17]. Alessandro
et al. [6] have shown that, for low driving rates, power-
law scaling can be found in Barkhausen pulse sizes in
simple single-wall, single-degree-of-freedom models, if the
disordered coercive field is assumed to be described by a
randoin walk, up to some correlation distance [6].

The description of K, (x) by a random walk in x is sup-
ported by data on noise from single-domain walls driven
so as to maintain a constant rate of magnetization
[16,17). These data may be self-consistently interpreted
as giving the one-dimensional spatial spectrum of the
coercive field seen by a rigid domain wall [6]. If this in-
terpretation is correct, then of course no form of self-
organized theory is relevant. However, it may be that
small-scale raggedness of the domain wall plays an im-
portant role [17], in which case self-organization of the
many coupled degrees of freedom required to describe
one wall could be important [9). Such behavior would, of
course, have little connection with the marginally stable
domain topology observed under special circumstances
[7,8].

Thus, it is unclear from previous data whether the
spread of characteristic sizes and times in ordinary
Barkhausen noise just directly re8ects the heterogeneity
of the domains and their pinning sites or actually involves
cooperative avalanche processes of the type invoked in
theories of dynamical self-organization. We have sug-
gested that when self-organization due to external driving
is important, the nonequilibrium nature of the kinetics
should show up as violations of detailed balance, detect-
able directly in the time-dependence of the single mea-
sured variable [18]. For example, earthquake models
show systematic small precursors to large events [19]and
time records of a driven sandpile's mass in a recent exper-
iment [20] showed precursor events without correspond-
ing aftershocks.

On the other hand, many simple nonequilibrium pro-

cesses, such as Barkhausen noise from a collection of in-
dependent domains each producing a pulse as it rotates at
its own coercive field, would not show any such precur-
sors, since a small event is equally likely to precede or fol-
low a large one. The model of Alessandro et al. [6] (in
the slow-driving limit) can be mapped by a simple trans-
formation (using the square root of the domain-waH ve-
locity rather than the velocity as the variable) to an ordi-
nary one-dimensional equilibrium diffusion equation in a
somewhat peculiar potential well. The steady-state solu-
tions are therefore fully statistically time reversible and
thus are qualitatively distinguishable from SOC behavior
[18]. However, magnetic after effects can alter the equa-
tions of motion of the domain walls [21]. Such altera-
tions can lead to time-irreversible behavior of the
Barkhausen voltage.

When events on one scale systematically precede
events on another scale, a time-asymmetric piece of cer-
tain fourth-order correlation functions (to be described)
appears [18]. We found such a component in simulations
of a simple 1D sand pile model [18]. In this paper, we
shall investigate several higher-order statistical charac-
terizations of Barkhausen noise for comparison with pre-
dictions of prior models. We focus on statistical charac-
terizations involving both time correlations and ampli-
tude distributions, since the simple time-correlation func-
tion and amplitude distribution function taken separately
have already been shown to fit a single-degree-of-freedom
model in soft magnetic metals [12]. We shall particularly
emphasize the time symmetry of the fourth-order correla-
tions.
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FIG. 1. The entire hysteresis loop, measured using a SQUID

magnetometer The inset shows an enlargement of the hysteresis
loop around zero field. The coercive width is about 0.4 Oe.

EXPERIMENTAL TECHNIQUES

To investigate the SOC in Barkhausen noise, we used
an amorphous iron-based metallic alloy (Metglass
2605TCA, obtained from Allied Signal), similar but not
identical to the material used by Cote and Meisel [5].
This material comes in 30 p,m thick splat-cooled sheets.
The hysteresis loop, measured using a superconducting
quantum interference device (SQUID) magnetometer, is
shown in Fig. 1. The saturation field is around 100 Oe,
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and the saturation magnetization is 1000 emu/cm . The
width of the overall hysteresis loop is about 400 mOe. A
minor loop, roughly corresponding to the field range used
to measure the Barkhausen noise, has a width of -50
mOe. There was no regime of inflnite slope on the hys-
teresis loop.

To detect the Barkhausen noise, we wrapped a toroidal
pickup coil (about 30 turns per cm} around a continuous
annulus (inner diameter 2.4 cm, width 0.7 cm) cut from
the Metglass sheet, allowing a continuous temporal mea-
surement [13]. The time-dependent external field, with
magnitude H„, was supplied by a small permanent rnag-
net at a set distance from the toroid, sitting on a platform
smoothly rotating at angular frequency Q. The resulting
field was predominantly in the plane of the Metglass an-
nular sheet, and rotated at fixed magnitude as a function
of time.

To reduce pickup noise and to ensure that the Metglass
was being driven symmetrically through the hysteresis
loop, we shielded the toroid and driving magnet inside a
large p-metal box. The background dc magnetic field
was under 100 mOe. Standard low-noise voltage preamps
were used. After antialias flltering (found to introduce
negligible group delay difFerences in the frequency range
of our measurements}, the data was read into a computer
via a 12 bit analog-to-digital convertor.

We used, in part, standard Fourier spectral analysis to
describe the data. As we have argued previously, howev-
er, distinctions between different models usually require
the use of non-Gaussian properties, measured in various
higher moinents of the fluctuations [2]. The most com-
monly used of such moments (in studying broadband
noise) are a collection of fourth moments dubbed the
second spectra, S2(f2,f) and the cross second spectra,
S2(f2,f„ft, ) [22]. Sz(f2,f) is obtained by repeatedly
measuring S (f ) in a band around f, then treating the re-
sulting time series of noise powers as the input to a low-
frequency Fourier transform at frequencies f2. (For
broadband noise the bands about f are typically chosen
to be octaves, since there is no structure in S(f) on a
finer scale. ) S2(fz, f„fb) is obtained similarly, except
that two time series of noise powers, around frequencies

f, and fb are used. Their cross spectrum is obtained by
taking the product of the Fourier transform of the time
record of S (f, ) and the complex conjugate of the Fourier
transform of the record of S(fb). The time-asymmetric
correlation functions showing systematic precursors
show up as imaginary components of the cross second
spectra [18]. All the second spectra presented are nor-
malized by the product of the means of the power in the
bands around f, and fb.

In the present experiment, certain limitations of this
second spectral technique became awkward. The draw-
back of the Fourier technique is that, in collecting a set of
complete first Fourier spectra, potential information
about fast temporal variations of the power in the higher
octaves of the first spectrum is discarded, in exchange for
unused detailed spectral information. When, as in the
current experiments, the entire spectral range from the
lowest characteristic frequency of the system to the
highest practical sampling rate is quite limited, it be-

comes necessary to take information with fi not too
much less than f.

To measure the second spectrum in the potentially
scaling regime, we instead used a wavelet transform for
the first spectrum and a regular Fourier second spectrum.
We used the extremely simple Haar discrete two-point
wavelet transform [23]. The Haar transform is obtained
by taking simple sums and differences of adjacent pairs of
points. The differences give the highest-frequency data.
Sums and differences of the pairwise sums are then taken.
These differences give the next highest-frequency data,
shifted down an octave in scale. The process is repeated
until, at the last stage, the sum is simply the sum of all
the data and the differenc is the difference between the
first and second half of the data. The Haar transform ob-
viously provides poor frequency resolution together with
good temporal resolution. It is very well suited to
analysis of broadband noise, including Barkhausen
pulses, for which greater frequency resolution is point-
less.

We collect 120 arrays of 256 data points each. The
Haar transform is then applied to each set of 256 points.
The second spectrum is obtained via ordinary Fourier
analysis of the squared-wavelet coefFicients, which take
the place of the octave sums of the older technique.
(Care must be taken not to have any dead time between
sequential sets of 256 points to assure proper timing of
the second spectral data when the second spectral fre-
quency extends above the lower range of the first spectral
frequency, since the second transform includes several
points from each of several sequential transforms. ) All
second spectra shown in this paper are taken by this
method.

RESULTS
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FIG. 2. Typical Barkhausen events are shown.

Barkhausen jumps with very ordinary appearance were
found, as shown in Fig. 2. The large pulses typically had
a magnitude of about 0.1 mV and a duration of about 0.2
msec. The corresponding change in magnetic moment of
the sample is about 5X10 emu. Thus, the largest
domain-wall motions sweep out about 5X10 cm of
volume, or about 2X 10 cm of area.

Figure 3 shows the Haar power spectrum compared to
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FIG. 3. The Haar and Fourier power spectra of the same 256
point data set.
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FIG. 5. Power spectra of the Barkhausen noise with Q=O.S

Hz and H„=0.25 Oe and varying Hd, .

the Fourier power spectrum of some of the Barkhausen
data, illustrating the similarity of the two results, particu-
larly in the frequency range for which S (f) can be rough-
ly approximated by a power law. S(f) resembled that
found in most other measurements of similar materials,
looking roughly Lorentzian with a corner frequency near
100 Hz. The form of S(f) depends only weakly on 0,
with the magnitude linear in 0, as shown in Fig. 4, so we
believe that the experiment is nearly in the slaw-driving
limit, suitable for comparison with simple theoretical
models.

The portion of the hysteresis loop covered can affect
S(f) even for slow sweeps [12]. To investigate the effect
of transversing other sections of the hysteresis loop, we
put a dc magnetic field (H~, ) on the sample with a small
permanent magnet. For higher Hd„ the crossover in
S(f) to the white noise regime moves to higher frequen-
cy, as seen in Fig. 5. The dc offset apparently results in a
smaller cutoff to the size of the cascades. This result
shows that it is inappropriate to describe the spectrum
averaged over the entire hysteresis loop as if it were due
to a stationary process with a set of scaling exponents.

Some distribution of characteristic times would result
simply from lumping together data taken at difFerent
fields. We see in Fig. 6 that changing H„at fixed Hd,
has only a small efFect on the form of S(f) for H„(4
Oe, including the range used for our data. In the regime
for which S(f)~f the ABBM picture would predict
S(f) ~H„, which is close to true of these data, although
a slight deviation is noticeable for smallest value of H„.

Since the individual Barkhausen events are not the
simple pulses of idealized SOC pictures, it is not obvious
a priori how the Fourier content of a typical pulse falls ofF
at high frequency. Therefore it is not obvious whether
the high-frequency spectral shape is determined by the
properties of individual pulses or by the overall distribu-
tion of pulse parameters [24]. The latter possibility has
sometimes been assumed [5]. The covariance between the
fluctuations in noise power in different frequency regimes
provides a convenient tool to determine if those powers
come from the same pulses or different ones.

As seen in Fig. 7, the fractional noise power variance
does not begin to fall off substantially until f reaches
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FIG. 4. The power spectrum of the Barkhausen noise for
different 0, driving magnet rotation rate. For all of the spectra
H =0.5 Oe and Hd, =0 Oe. As expected the noise power
scales linearly with Q.

FIG. 6. Power spectra of the Barkhausen noise with 0=0.5
Hz and Hd, =0 and a varying H„. A11 of the spectra are divid-

ed by their respective H„.
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imaginary cross section spectra were small and of dubi-

ous statistica1 significance, although tending to be of the
same sign as those found in sandpile simulations [18].
The largest effects were found when H„and 0 were

small (0.25 Oe and 0.4 Hz in this case) and Hd, =0.
In Fig. 8, we show the real and imaginary parts of the

second spectrum taken from the Haar first spectrum.
The real part shows a white spectrum for f2 within the

range reached by our standard Fourier method, but with

a rollover at higher f2. The imaginary piece shows a
clear deviation from zero for these high fz. The imagi-

nary piece reduces to zero at around 100 Hz, where the
form of S(f) crosses over to f . The sign of the imagi-

nary part indicates that the fast events systematically pre-
cede the slow events, on average, as in the sandpile simu-

lations [18].
These imaginary components of the cross second spec-

tra are largest for the smallest Q which we tried. They
decreased rather rapidly at higher Q, as illustrated in Fig.
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2 3
logz(f, / fb)

FIG. 7. (a) The fractional variance in the noise in different

octaves is shown for several rotation rates. (b) The correlation

coefBcient for the noise power fluctuations is shown as a func-

tion of the ratio of the frequencies of the two bands.
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—10 kHz, which is well into the regime in which the
scaling has been attributed to the range of event sizes and
durations. These fluctuations remain highly correlated
for large octave separations, which means that the same
set of pulses is giving most of the variance in the noise
power over the entire observed frequency range. In itself,
that fact does not demonstrate whether the high-
frequency noise power itself (as opposed to its variance}
comes mainly from big pulses. However, since the frac-
tional variance only falls off about a factor of three over
this range, the fraction of the noise power at 30 kHz
which comes from pulses long enough to give most of the
noise at 1 kHz cannot be much less than half. Thus, the
spectral form is very far from being determined by the
pulse size distribution in the regime of typical experi-
ments.

The second spectra show large non-Gaussian effects.
Each S2(f2,f) is more than ten times larger than the
Gaussian value. Sz(fz,f}~fz, similar to the sandpile
simulations [18]. We sampled the voltage for the first
spectrum at 200 kHz and for every set of parameters
(H„, 0 and Hd, ) we averaged at least 300 data runs.

We looked at a range of H„, 0 and Hd, parameters to
find any imaginary piece in the second spectrum. The
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FIG. 8. Complex Fourier second spectra taken from a Haar
first spectrum are shown. (a) is the real component, (b) imagi-

nary. Both real and imaginary parts are normalized by the

Gaussian expectation value for the real component. The sign

convention for the imaginary component is that a negative value

indicates that high-frequency noise precedes the low-frequency

noise on that time scale. The imaginary cross second spectrum
tends to zero at the same frequency the Srst spectrum flattens

out to white noise. The straight line has slope of 1; it serves as a

guide to the eye.
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FIG. 10. The voltage trace of a large Barkhausen pulse that
gives a large imaginary cross second spectrum.

9. Thus they do not result from departures from the
slow-driving limit, and do not fit the ABBM model [6].

Inspection of segments of the data giving rise to imagi-
nary cross second spectra shows that essentially the en-
tire time asymmetry arises at rare events, as seen in Fig.
10, reminiscent of the large clusters of pulses which have
been reported for some time [13]. About one second-
spectral data set out of 100 shows these large asymmetri-
cal events. Figure 11 illustrates the efFect on the imagi-
nary second spectrum of excising the event shown in Fig.
10. That single large event is the main contributor to the
imaginary second spectrum. (The data used for Fig. 11 is
separate run than that used for Fig. 9. The difference in
size of the imaginary Sz in these runs is consistent with
statistical variation for a very small number of events. )
There is no sign that the majority of small Barkhausen
pulses are anything more complicated than individual
domain walls moving in random environments.

The asymmetrical large pulses giving the imaginary S2
all share a common appearance. They begin with a sharp
voltage change, followed by a gradual return to zero.
The return is often marked by smaller pulses. Although
the asymmetrical pulses are mostly among the largest
events observed, the largest symmetrical pulses are about
as large.
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PIG. 11. {a) The imaginary second spectrum of the data set
containing the pulse shown in Fig. 10. (1) The imaginary
second spectrum of the data set after the pulse in Fig. 10 is re-
moved. The imaginary component of the second spectrum is
mainly caused by these rare large pulses.

CONCLUSION

The nontrivial scaling regime reported previously [5] as
evidence for SOC in Barkhausen noise was not present in
our data. Since the spectral form is consistent with sim-
ple single-degree-of-freedom models, there is no reason to
describe the noise as critical. Most statistical characteri-
zation of the Barkhausen noise is consistent with the
ABBM model.

However, using a wavelet transform to extend the fre-
quency range of measurements of fourth-order correla-
tion functions, we found clear time asymmetry
in Barkhausen noise. In this respect Barkhausen noise
differs sharply from most typical 1/f noise sources,
which are usually found to be in quasiequilibrium [2,11].
More interestingly, it also differs from the simple versions
of models of independently moving domain walls [6].
However, the time asymmetry was not due to precursor
efFects but rather to marked asymmetry of large, rare in-
dividual pulses.

Such pulses can be obtained in a very simple, physical-
ly plausible modification of the ABBM picture. If the
coercive field contains a few strong-pinning spikes on top
of a gaussian random-walk background, then the domain
wall will occasionally be abruptly stopped as it reaches
such a site. However, the prior velocity will come from
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the standard ABBM distribution and thus will usually be
very small, so long as the driving rate is low. Each time
the wall breaks loose from such a strong pinner, however,
its velocity will suddenly jump to a large value, gradually
decaying as the random-walk component of 0, catches
up with H. (In fact, even a purely linear system will show
similar-looking time asymmetries if driven with non-
Gaussian spikes. )

'lhe strong reduction in the strength of these asymme-
trical events as the field sweep rate is increased indicates,
however, that they cannot be modeled just as fixed spikes
in the coercive field. Some time much longer than the
largest correlation time of the Barkhausen spectrum is re-
quired to find these strong pinners. Two general possibil-
ities arise. The time may be associated with magnetic
after effects, i.e., structural relaxations in response to
domain motion. Alternatively, the time may be associat-

ed with slow rearrangements of domain-wall segments (or
even domain-wall topology) to settle into an optimally
pinned pattern. Some such effect may have been antici-
pated in a remark by ABBM that the statistics of interac-
tions among domain walls are expected to be important
only for the low-frequency events [6]. Our future work
will be directed toward sorting out these possibilities.
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