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Josephson junction arrays made up of units with slightly different parameters are studied. When four
or more such units are coupled, the system exhibits global adiabatic Hamiltonian chaos. The case of
four units is studied in detail numerically as well as analytically.

PACS number(s): 05.45.+b

I. INTRODUCTION

Arrays of coupled Josephson junctions are an impor-
tant and interesting example of globally coupled non-
linear oscillators, and have recently received much atten-
tion. In particular, Watanabe and Strogatz have recently
proved that N identical weakly coupled Josephson-
junction oscillators when averaged over fast variables
form a completely integrable system.

Here we study the case when the individual junctions
are not completely identical. Surprisingly one finds that
if N )4 the deviation of the parameters of only one unit
from those of the others leads to the complete breakdown
of integrability and large scale chaotic behavior even for
the weakly coupled and averaged systems. For this case
one can cast the equations describing the system in a
Hamiltonian form.

Due to the Hamiltonian formulation of the problem, it
is of interest beyond the special case of weakly coupled
Josephson junctions. The best known case of the break-
down of integrability in Hamiltonian systems is related to
the Kolmogorov-Arnold-Moser (KAM) theorem [I].
This describes the motion governed by the Hamiltonian
H =Ho+ cH &, where the unperturbed Hamiltonian Ho is

integrable and nondegenerate ~t) Ho/BI, t)I ~%0. It is

well known that the trajectories of motion governed by
Ho are situated on tori with irrational as well as rational
winding numbers. As the nonintegrable small sH, term
is introduced, the rational tori create island chains and
chaotic separatrices, while most irrational tori survive.
As c is increased, chaos spreads gradually, with the de-
struction of more invariant tori and destabilization of
stable periodic orbits, the generators of island chains.

One of the first degenerate systems studied was the sto-
chastic web [2], where the two dimensional surface of a
section contains circles describing integrable motion, em-

bedded in a thin chaotic stochastic web, whose width in-

creases with increasing c,. The motion on the web is simi-
lar to Arnold diffusion in higher dimensional nondegen-
erate systems.

A more recent example comes from Quid flow in con-
vective cells [3]. Here Ho gives rise to flow along topo-
logical circles rather than tori. For small c most circles
turn into tori, and stable and unstable periodic orbits
arise. Again the loss of integrability is gradual with in-

creasing c,.

Weakly coupled Josephson junctions in the limit treat-
ed here are another case of a degenerate Hamiltonian sys-
tem, with properties very different from the previous ex-

amples. There are two integrable limits. In the first,
when all junctions are identical, the trajectories are topo-
logical circles embedded in tori. To illustrate the second
case, let us take N =4, which is the smallest N to permit
transition to nonintegrability. If two pairs are identical
(say r, =r3 and rz=r4, r, Arz) the system is integrable.
Two types of trajectories on a torus are now possible: to-
pological circles and closed curves that cannot be
transformed to circles on the torus.

Nonintegrability arises when, e.g., r I
= r z

= r 3,
r4 =r, + c., or r ] f2 p3 p4+ 8 The motion becomes
chaotic in a large volume of the phase space, no matter
how small c is, in marked contrast to the nondegenerate
case.

For N =4 some limits are amenable to analytical treat-
ment. When the integrable case contains the two types of
closed curves on the torus, a separatrix divides the re-

gions of the torus which contain these curves. In the
weakly nonintegrable case adiabatic invariants can be as-
sociated with the circles as well as the curves outside the
separatrix. As the system evolves, separatrix crossing re-
sult in chaotic changes in the adiabatic invariants, and
adiabatic chaos arises.

The paper is or'ganized as follows. Section II presents
basic equations on Josephson-junction arrays, and briefly
reviews most relevant previous results. In Sec. IIB we

consider an averaged system of nonidentical globally cou-
pled oscillators.

In Sec. III we give a description of the dynamics. Sec-
tion III A gives a qualitative picture of the dynamics in

multidimensional space based on computer simulations.
Section IIIB describes qualitatively a dynamics of four
coupled oscillators. In Sec. III C the process of trapping
into resonance is considered.

II. BASIC EQUATIONS

A. Equations for resistively loaded one-dimensional

Joseyhson-junction arrays

We will restrict ourselves to the simplest and most fre-

quently studied case, in which N point-contact Josephson
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junctions with different resistance r; are connected in
series [4—6]. We will assume that bias current Ib is con-
stant and is shunted by pure resistive load R (Fig. 1}.
From Kirchho8's current and voltage laws it follows that

(R/2er; )d y; Idt +I„sin.y;+I=Ib,

N

I,p=(1/N) g I„,
as well as the normalized deviations from the averages:

=(r' rp )Irp and g:(r I rpI p)/rpI p

RI=(fi/2e) g dIp, /dt .
(2.1)

to obtain from (2.4},after dividing by IbR p,

(4/2e)(Rp '+rp ')Ib '(1+/,. ) 'dy;/dt
Here fi=h/2m, and h is Planck's constant, e is the elec-
tron charge, y; is a phase difference across the individual
junction, I„ is the junction s critical current, and I is the
current flowing through resistor R. The Josephson rela-
tions for supercurrent I; and voltage V; are supposed to
be valid for individual junction i:

I; =I„sing;, V~ =(R/2e)dy; Idt .

From (2.1) it follows that
N

(4/2er;)dq&;Idt+I„sinIp;+(A/2eR) g dy Idt =II, .

N
+(rpI p/NOR

p�
) g ( 1 +gj' ) sing&J (2.5)

Now we introduce a rescaled time

(fil2e)(R p '+rp ')Ib 'd/dt +d/dt—

and

a = I prp(R p +7'p )/Is I=I p&p INIyR p

= 1 —(R p
' +r p

'
)Ib 'rpI, p(1+y; )(1+g, ) '

sinIp,

Multiplying (2.2) by r; leads, after summation, to

(A/2e) g dp, /dt

to obtain
2.2

dy;/dt =1+(;+a(1+g;)sinIpj.

N

+e(1+/;) g (1+y }sinyj . (2.6)

NI+ g r;I„sing; Rpl(Rp+rp), (2.3)

where

N

Rp=R/N, rp=(1/N) g r;,

It is convenient to shift the phase Ip; =rt;+n /2, to obtain
the equation

de, /dt =1+(,+a(1+g;)cosy;
N

+e(1+/;) g (1+y ) cosrtj .

Substituting (2.3) into (2.2) gives

(4/2er; )(Rp+rp)dy; Idt =IbR p I„(Rp+rp) s—inIP;

+(1/N) g r;I„sing&; . (2.4)

We want to study cases where the resistances r; as well as
the Josephson junctions characterized by I„- are nearly
identical. So one introduces the averaged critical current

If e is small (say N, or R p Irp is large), and so are devia-
tions from the average, and second order small terms are
ignored, this equation reduces to

N
d rt, Idt = 1+g, +a ( 1+y; ) cosy, +e g cosy (2.7)

Two symmetries of this system should be noted. The
equations are invariant under permutation of the N in-
dices (if g;=y;=0), and under simultaneous time and
coordinate reversal t —+ —t and g;~ —g;. The latter
means that the equation belongs to the class of reversible
systems [7] which possesses properties of both Hamiltoni-
an and dissipative systems.

B. Averaged system

FIG. 1. A resistively shunted series array of Josephson junc-
tions.

Progress in studying Eq. (2.7) for N & 2 can be achieved
by introducing some separation of time scales and averag-
ing over fast motion. As a ground state it is reasonable to
consider the limit of uncoupled identical oscillators.
Then the averaging procedure can be performed as fol-
lows [5]. Let us first change variables

(dg, Idt)/(1+a cosset;)=C(d8, Idt), .

where
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C=I I/2m) f dg/(1+a cosg)=[1—az]
0

is the normalization multiplier. By integrating (2.8), one
can connect new variables 8; with g,-:

tan8, . /2= [(1—a )/(1+a )] ' tang, /2 . (2.9)

Instead of (2.7), we obtain

0, =1+[(g, +zy, ) cosg(8;)]/[1+a cosg(8, )]

+c. g cosg(6 )/(I+acosg(8;) . (2.10)

We will seek a solution of (2.10) in the form 8, =t+8, ,
where 8,. -s, i.e., variables 8; are slow. Averaging (2.10)
over the fast period, we obtain

2m rV 2'
8, =(I/2m) f [(g;+ay;)cosg(t)]/[I+a cosg(t)]dt+E g (1/2m) f cosg(t)/[1+a cosg(t+8, —8, )]dt .

j=l 0

The integrals on the right-hand side of (2.11) can be evaluated exactly using the following relation:

1+a cosg(lt)=(1 —a )/(1 —a cosl(),

which is a direct consequence of (2.9). After integration, we obtain

8;=(g;—ay;)/(I —a )+EX[(1—a )' —1]/a(1 —a )+(E/a)[1 —(1 —a )
'~

] g cos(8; —8, ) . (2. 12)

The second term on the right-hand side of (2.12) can be
removed by a simple phase shift. After evident rescaling
of time, we finally obtain

8;=ai;+ g cos(8; —8, ) (2.13)

III. MULTIDIMENSIONAL CHAOS

A. Qualitative analysis of computer simulations

In this section we give a preliminary qualitative
analysis which demonstrates how the dynamics of the
averaged system (2.13) depends on the dimension of
phase space (or on the numbers E of nonlinear oscilla-
tors). If N ~ 3, the system is integrable. If only three os-
cillators are coupled, from Eq. (2.13) it follows that

g, =5,+cos(g, +gz) —cos(gz),

gz
=5z —cos(g, +gz ) +cos(g, ),

where

(3.1)

kz=8z —8»
~1 ~1 ~2& ~2 ~2 3

System (3.1) is one degree of the freedom Hamiltonian
system

g, =BH /Bgz, gz
= —BH /@', ,

with the Hamiltonian

(3.2)

This equation is an obvious generalization of the aver-
aged equation, derived in Ref. [5] for identical oscillators,

m;=(a/e)(g; —ag;)/[I —a —(1—a )' ] .

H{g,, g'z) =5,gz
—5zg, —sing, —singz+sin(g, +gz) .

Two phase portraits of Eq. (3.2) [contours
H(gi, gz) =const] are shown in Figs. 2(a) and 2(b). They
are both periodic in the (g„gz) plane with 2m periodicity.
Figure 2(a) for 5, =5z=0 contains only regions of finite
dynamics, while in Fig. 2(a) for 5, =0.2 and 5z=0.2 the
structural degeneracy is removed and the phase portrait
contains both regions of finite and infinite periodic
motions.

If %=4 then the system (2.13) is no longer integrable.
Figure 3(a) illustrates the projection of the typical trajec-
tory on the (8„8z) plane. The trajectory consists of
springlike pieces with different diameters and their axes
directed at three different angles in the phase space
( 8i 8z 83 ). The lengths of all springs are approximately
the same, but the diameters differ significantl. The tra-
jectory performs random walks between these springs.
Such walks are superimposed with ballistic motion aver-

aged over the phase space velocity g'=co. At the intersec-
tion between different spirals several interesting phenom-
ena take place. First of all, the trajectory may either con-
tinue its motion in the same direction or make a turn.
This choice looks random, and depends sensitively on ini-
tial conditions. Then sharp changes in the spirals diame-
ters take place at the intersections which appear random
as well. Finally the direction of rotation changes its sign
at the intersection. This motion strongly resembles the
motion of a charged particle in a magnetic field with
abrupt changes of direction. The helical motion corre-
sponds to the cyclotron rotation, and motion along the
spring axes corresponds to the drift of a guiding center.
As is well known, the most powerful tool for the study of
such dynamics is drift equations which presume the con-
servation of certain adiabatic invariants. In our model
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cos(x
& )—cos(x 3 ) —e3 J dx, /Q 1 —( C, —cosx, } =Cz .

(3.7}

and

z = e3 —(po/2) sin28 . (3.10)

Equation (3.6} defines cylinders parallel with the x3 axis
(see Fig. 4). In the vicinity of the x, =O, x2=n (or
x, =m, x2=0} axes, one may expand 5x, =x, ,
5x2 =x2 —m to obtain, from (3.6),

Equations (3.9) and (3.10) correspond to the Hamiltonian
system with one degree of freedom:

where the Hamiltonian
6x, +5x z ——po=const, (3.8)

or introducing cylindrical variables (p, 8,z), where the z
axis coincides with the axis of the spring 5x, =pcos8,
5x& =p sin8, and x 3 =z, from (3.5} it follows that

8=sin(z)

!
I

!
!

l

l

l

e,

H(z, 8)=(po/4) cos28+s38+cos(z)

is the second constant of motion. Equations p=const
and H(z, 8)=const determine the helical trajectory in

phase space p, 8,z (see Fig. 5). The phase portrait of sys-
terns (3.11) and (3.12) depends on two parameters, the ra-
dius of helix po, and the frequency mismatch c.3. Figures
6(a) and 6(b) illustrate phase portraits of (3.10) for two
different values of radius po and a fixed value of F3=0.4.
There are two different types of phase portraits; the first
type [Fig. 6(a)] po (2e3 contains only periodic trajectories
that correspond to rotation and no stagnation points are
present, while the phase portraits of the second type
po& 2c3 contain both rotating and osci11ating trajectories
[Fig. 6(b)], and a saddle point as well as a separatrix ap-
pears. Stagnation points on Figs. 6(b) with coordinates
(z„8, )

S111Z& =0, 283 =pa sm20~

exist if the radius of a helix is not too small (po~ 2e3). At
po=pb;&=(2s3)'~ there is a bifurcation in the phase por-
trait, and simultaneous birth of elliptic and hyperbolic
stagnation points.

Of course, the same situation arises when e,+0,
c.2=@.3=0, etc. Figure 7 shows the cylinder axes. When
more than one s;%0, the motion is no longer integrable,
but for c, sufficiently small a qualitative interpretation

21t '

C, =2

FIG. 3. The projection of the typical trajectory of system
(2.13}on (81,82}plane. (a}%=4. (1}X=5. FIG. 4. The contour levels of the first integral (3.6).
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C. Trayying into resonance

In the limiting case when c;~0, one can analytically
estimate the probability of switching. Let us modify the
Hamiltonian (3.12)

h (p, z, 8)= —1+cos(z ) + (p /4 ) [cos28 —cos20, ]

+e3(0—0, ) (3.15)

in such a way that it is equal to zero (h =0) at the separa-
trix passing through the saddle point with coordinates
z =0 and 8=8, . If e,AO or sz+0, then parameter p (t )

in (3.15) slowly evolves in time according to (3.14). The
separatrix of (3.15) with fixed parameter p,

0'

z, (p, B)=arccos[ 1 —(p /4) [cos28—cos28, ]

—s,(8—8, )], (3.16) e

2
F& z= dlXq =ht —h&, (3.17)

where dl is a line element on the phase plane, and
q=(z, 8)=(Bh/t)8, —t)h/t)z) is the phase flow velocity.
In evaluating the phase Aux we neglect the integration
along the third dimension, since p changes slowly in time
in comparison with z and 8. The trapping probability is
then

discriminates two types of motion: rotation around the
cylindrical surface and oscillations near an elliptical point
(see Fig. 8). It forms a loop with a knot at the saddle
point. Let 9, be the point where the loop crosses the
z =0 axis. As p evolves, an initially oscillating trajectory
may become a rotating one. The opposite transition from
rotation to oscillation can occur as weH. In such a case
an initially rotating point will eventually be trapped when
its trajectory is overcome by the growing separatrix loop.
In Fig. 8 two actual trajectories are shown by dashed
lines. They cross line 8=8, in points b and d. The rotat-
ing trajectories that cross that line between points a and b
will cross the separatrix and become trapped. The trajec-
tory that crosses the line between points b and d wiH

remain in a rotating regime until the next passage
through resonance.

%'e calculate the probability that a trajectory becomes
trapped during one passage through resonance. The
trapping probability is calculated [8,9] by taking the ratio
of phase volume cruxes that pass between a and b to those
that pass between a and d. The flux F of the phase space
area crossing a line spanned by points 1 and 2 is

0 'K 27t

FIG. 8. The phase portrait corresponding to the Hamiltonian
{3.15}. The thickest lines are the separatrices. Dashed thick
lines represent actual trajectories of Eqs. {3.14}.

where contour X, is a separatrix loop in Fig. 8, and con-
tour Xz is the upper branch of the separatrix connecting
points c and f. Therefore it is useful to consider the
phenomenon of trapping as a random event. Such an ap-
proach was first used in Ref. [11]. The general methods
of evaluating trapping probability is given by Neishtadt
[8]. The probability &of trapping into the loop with the
saddle at point a in Fig. 8 is

&=8 /(0" —h ) . (3.20)

The value 8; approximates the change of energy along
the connected part of the perturbed trajectory, which is
near the unperturbed separatrix X, (i =1,2). We assume
that 8;)0. Since h, =h& and 8, —

0& =2m, from {3.15}

(3 21)

If c, ~0, one can evaluate hb and h&
—h, as the integrals

[10]

h„= —0,= —g dt [pah/ap+Bah/aB+zah/az],
(3.19)

h„—h, = —0,= —f dt[pah/ap+Bah/aB+zah/az), ,

Fb hb

F,q h, +{hq—h, )
{3.18) Equations (3.14), (3.15), and (3.19) lead to the integral

representations for 0, 2.

8& z= —f dt [(p/2)[s, cosB+szsinB](cos28 —cos28, )+(1/p)( —s, sinB+sz cosB)[(—p /2)sin20+s3]/ . (3.22)
1,2

Using (3.16) and the unperturbed equation of motion along the separatrix, one can integrate over 8 instead of integrat-
ing over time t:

dt =d BIB=18/sinz =dB/f 1 —[1—(p /4)(cos28 —cos28, )
—E,(0—8, )]'("-' (3.23)



50 ADIABATiC CHAOS IN JOSEPHSON-JUNCTION ARRAYS 3443

Let us first estimate 8I. To evaluate (3.22) and (3.23) we make several assumptions. First, we assume that

1»p»+e3, and neglect small terms proportional to e3 in (3.23). The right-hand side of (3.22) under these assump-

tions is significantly simplified:
8,

OI= —&2el f d8[cos8 —cos(8—28, )]/~cos28 —cos28, ~'~ +&2e2f d8[sin8 —sin(8 —28, )]/~cos28 —cos28, ~'

a a

(3.24)

Second, we suppose that z, =z, =0, 8, =3n /2, and
8, =n/2, i.e., we neglect small corrections proportional
to e3 in the locations of these points. Integrating (3.24)
under these assumptions leads to the following expression
for 8,:

8I =27TBi (3.25)

The integration along the lower branch of the separatrix,
connecting points c and f, leads, under the same assump-
tions, to an analogous estimating for 82=8,. This for-
mula simply indicates that if c3—+0 the lower branch of
the separatrix loop connecting points a and e coincides
with the right half of the separatrix, connecting points c
and f. The integration along the remaining upper branch
of the loop, connecting e and a, is equivalent to the in-
tegration along the left half of the separatrix connecting c
and f.

Now we are able qualitatively to explain the basis
features of the dynamics of system (3.5). Let the trajecto-
ry initially rotate around the x3 axis. Its "guiding
center" moves along this axis, passing near separatrix
loops in Fig. 9. During every passage near such a loop it
has a finite probability to be captured by the loop and
change the direction of its "guiding center" velocity.
After the capture the guiding center moves along x, or
xz axes (that correspond to 8=0 or 8=m/2, respective-
ly). From (3.20), (3.21), and (3.25) it follows that the
probability for the particle to be captured near 8=0 and
move in the x, or x3 direction is given by the formulas

probability for the trajectory to be captured and move
along the X2 direction is given by Eq. (3.26), where one
should substitute 1~2. The trajectory moves along the
x2 axis exactly in the same way as it moved along the x 3

axis before capture into resonance. While passing near
separatrix loops it can be captured again and change its
direction to x, or x3.

The web of intersecting cylinders being periodic, they
can also be represented as three mutually intersecting
tori, as shown in Fig. 10.

IV. SUMMARY

We have studied arrays of Josephson junctions with
slightly different parameters. While it is known that ar-
rays of weakly coupled identical junctions lead after
averaging to an integrable set of equations [6], we find
that integrability breaks down for the more realistic case
when the junction parameters differ for N &4, where N is
the number of connected junctions.

First, simplified averaged equations are derived, and
the N=3 case is shown to be integrable. When N=4,
while the How in phase space is incompressible, and can
be cast in Hamiltonian form, the system exhibits unusual
nonintegrable behavior. In the limit when the parame-
ters s; (a measure of differences in junction parameters)
are vanishingly small, phase space is characterized by sets
of cylinders with axes forming a web of straight lines in-
tersecting perpendicularly (see Figs. 7 and 9).

8'3 ) =s)/(e)+e3),

W, ,=s, /(e&+ e, ) .
(3.26)

The analogous transition can occur near 8=m/2. The

FIG. 9. Passing near the separatrix loops, the trajectory has a
finite probability to change its direction and to start to move
around the perpendicular cylinder.

FIG. 10. The mutually intersecting tori represent the net-
work on Fig. 7.
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The flow hops from cylinder to (perpendicular)
cylinder in an unpredictable chaotic manner. This pro-
cess is a case of adiabatic chaos, due to separatrix cross-
ings [12]. Analytic expressions for the probability of such
a transition are derived. Unlike KAM systems, where a
small deviation from integrability results in small chaotic
bands among regular trajectories, here an unusual form
of global chaos arises where regular and chaotic motions
alternate.

=V.
Flow (A4) is solenoidal, which means that

V=VX A, divV=O .

(A4)

Equations (A4) can be rewritten in more convenient form

Equations (A3) can be viewed as equations for stream-
lines in stationary incompressible three-dimensional (3D)
flow:

APPENDIX: HAMILTONIAN UARIABLKS
IN THE GENERAL CASE

Let us introduce new notations

4]=~]—~2 42= ~2 —~3

4=(}3—(}4 4= ~4 —~]

5
~
—co

~ c02, 52 —c02 F03,

53 co3 Q)4, 54 N4 6) ]

and rewrite Eqs. (3.4) as

gl
=51+COS( (]+(2 ) +COS( pl +f2+ (3 )

—cos($2) —cos((2+ (3),
52+ COS( f2+ g3 ) +COS( f2+ f3 +g4 )

—cos( g3 ) —cos( f3+g4),

g3 53+Cos((3+$4)+COS($3+$4+(] )

—cos((4) —cos((4+ g] ),
(4=54+cos($4+(])+cos((4+(]+$2)

—cos(g]) —cos(g]+(2) .

Taking into account that

k]+4+4+44=0

one can obtain

$]=5,+cos( g] +(2)+cos( g]+f2+ (3 )

—cos( $2) —cos($2+ g3 ),

52 +cos( g2 +g3 ) +cos( g] )

—cos($3)—cos(g]+ $2),

f3 =53+cos($2}+cos(g]+ g'2)

cos( g] +f2 +g3 }—cos( f2 + g'3 )

(A 1)

(A2)

j,=a~, /ag, ,

j,=a~, Iag, —a~, /ag, ,

g3
= —a A ] /a/2,

where A, 's are the components of the vector potential

A
1
= —sin((2) —sin( g3) —sin(g]+ (2)+sin((2+ g3 }

+sin(g]+ $2+ $3)+52('3/2 —53/2,

The explicit form of the functional on the right-hand side
of (A7) is

S= J(A]d(]+A3d/3), (A9)

which leads to correspondence between systems (A5) and
(A6) and a nonstationary Hamiltonian system with one
degree of freedom, written in canonical variables (p, q ):

g]=q, A'] =P, (3=t, 23= 8, —

where

p = —sin(t)+4sin(t/2)cos(q/2}

x cos( q /2+ t /2+ $2 ) +52t /2 —53/2,
(A 1 1 }

H =sin(q )
—4 sin(q /2)cos(t /2)

X cos(q /2+ t /2+ $2) + 52q /2 —6,(2 .

The Hamiltonian H in standard notations has the follow-
ing form:

A 3
= —sin(g] }—sin((2)+sin(g]+$2) —sin($2+$3)

+ (kl +f2+ k3 } 52(1/2+ 5142

Equations (A5) are Hamiltonian equations in noncanoni-
cal variables, and can be deduced from the variation of
the functional (action):

5S =5 JXdt =0,
where the Lagrangian

L=Ag.

H(p, q, r )=Ho(p, q, t )+52[q+r tan(q I )/2t (atn/2)]/2 [51+53tan(q/2)/tan(t /2)]$2(p, q, & ),

where the unperturbed part of the Hamiltonian
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Ho(p, x, t )= —p tan(q /2) /tan(t /2)+ sin(q )—sin(t )tan(q/2) /tan(t /2)

is a linear function of momentum p, and function $2(p, q, t ) is defined as the solution of the Bessel equation:

5+2+p+ sin(t )—52t /2=4 sin(t /2)cos(q /2)cos(q /2+ t /2+ (2) .

(A13)

(A14)

The unperturbed system with 5=0 is degenerate because 8 Ho/Bp =0. This degeneracy can be removed by simple
canonical transformation with the generating function:

W(P, q, t }=Psin(q/2)sin(t/2)+sin(q)sin(t) .

The connection between new (P,Q ) and old (p, q ) canonical pairs is given by the following equations:

Q =c}W/dP =sin(q/2)sin(t/2),

p =BW/Bq =(P/2)cos(q/2)sin(t/2)+cos(q)sin(t ) .

(A15}

(A16)

One can call these new variables (P, Q ) "slow variables, "because their time rate is proportional to small parameters 5;.
Hamiltonian (A12) in slow variables is also proportional to 5;,

H'(P, Q, t)=H+BWIBt=52[q+t tan(q/2)/tan(t/2)]/2 —[5&+53tan(q/2)/tan(t/2)]gz(p, q, t)

where q, p, and gz should be expressed as functions of Q, P, and t

(A17)
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