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Qnantal-classical mixed-mode dynamics and chaotic behavior
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Dynamical behavior of a nonlinearly coupled oscillator system is studied under classical and quanta&-

classical mixed-mode conditions. Classically, the system displays chaos above an energy threshold.
However, upon a partial quantization of the problem within a self-consistent-6eld formalism, the dynam-

ics becomes highly periodic, pointing out to the smoothing process of the quantum mechanics.

PACS number(s): 05.45.+b, 03.65.Sq, 82.20.Rp

INTRODUCTION

Intramolecular vibrational relaxation and energy redis-
tribution (IVR) have been among the most challenging
problems of chemical physics [1]. The description of the
internal motion of molecules, such that the energy in cer-
tain mode(s) is transferred to other modes, forms the sub-
ject of molecular dynamics and the mechanisms and time
scales of these processes pose interesting questions.
These phenomena are almost invariably modeled by non-
linear equations and there are different approaches of es-
tablishing dynamical equations and their solutions. The
most simple and widely used methodology is the classical
trajectory analysis in which the Newton, Lagrange, or
Hamilton equations are solved for the nuclear motion
along the Born-Oppenheimer potential energy surface.
Once the hypersurface is obtained from quantum
mechanical methods of various sophistication, or by
fitting to the experimental data, numerical integration
techniques can then be employed to follow the motion of
atoms in the 6N-dimensional phase space [2]. Despite its
general success, this approach has some serious draw-
backs. First of all, as the system gets larger, the proper
sampling of the phase space gets more and more difficult;
that is, the necessary number of trajectories for a detailed
analysis becomes too large for practical purposes. But
more importantly, classical analysis suffers from its ina-
bility to incorporate several quantum effects such as
zero-point vibration and tunneling. Exclusion of these
efFects may result in even qualitatively incorrect descrip-
tions of the system for certain cases. For example, a clas-
sical system may dissociate by the transfer of energy from
one mode to the dissociating mode, whereas in quantum
description of the system, the amount of energy
transferred would be less due to the zero-point effect, and
one may not observe any dissociation at all. On the other
hand, a full quantum calculation of the dynamics of a
reasonably large molecule is computationally very prohi-
bitive. Even though fast Fourier transforms allow us to
carry out such a task, at least for small systems [3,4], the
computational burden is too heavy to analyze anything
but small molecules. There is a third alternative to
molecular dynamics in which both highly developed tech-
niques of the classical algorithms are employed and some
quantum effects are included. In the so-called mixed-

mode molecular dynamics, classical and quantum ap-
proaches are used together [5—9]. The basis of such a
mixed-mode approach lies in the fact that in large sys-
tems there is a great variety of frequencies, which can
roughly be classified as hard and soft modes, so that the
hard modes are treated quantum mechanically whereas
the slower ones can be studied within classical mechani-
cal approaches. Once this separation is achieved, time
evolution equations can be solved in a self-consistent-field
methodology [10—12]. This is analogous to the Born-
Oppenheimer approximation, in which the fast electronic
motion is solved with quantum mechanical methodology
for the fixed nuclei since they move relatively slower
compared to electrons. Subscribing to this point of view,
an N-dimensional problem can be written as a sum of
smaller dimensional problems in which nonlinear terms
appear as time-dependent perturbations.

There is also another very strong motivation of a de-
tailed description of the mixed-mode dynamics. The clas-
sical behavior of the Hamiltonian systems is generally
well understood with all the measures such as Poincare
maps, Kolmogorov or information entropy, and
Lyapunov exponents allowing one to determine the regu-
lar and chaotic regimes in the phase space [13,14]. How-
ever, the quantum dynamics sufFer from the lack of such
well-defined measures, which distinguish the regular and
"irregular" behavior [15—17]. The previously suggested
measures, such as statistical analysis of the eigenvalue
spectra [18,19], sensitivity analysis [20—22], or autocorre-
lation functions [23], do not strictly respond the way the
classical mechanical counterparts work. In fact, the field
of "quantum chaology" now no longer searches for the
quantum chaos, but rather tries to distinguish difFerent
qualitative behavior in the dynamics [24—27]. Mixed-
mode methodology offers an intermediate step in which
one can study purely classical measures of a system under
the effect of a quantum field. We would like to refer to
this mixing as "partial quantization, " rather than the
more general "semiclassical approach. " The idea is that
after partitioning the modes, classical ones can be studied
in two parallel sets of computations. The first one is the
fully classical one (FC) and the other one is the mixed-
mode (MM). In both methods, one set of modes remains
classical but they move under the effect of "similar" clas-
sical and quantum fields. Therefore, it is now possible to
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compare identical measures and observe changes upon
partial quantization of the system.

MIXED-MODE DYNAMICS

and

H "=H + ( V(x y) )

H "=H +( V(x y))

(2a)

(2b)

where ( ) denotes an appropriate average over the
remaining coordinate(s}. Now the dynamical equations
utilizing these operators can be solved iteratively, that is,
the time evolution of the system along one coordinate is
solved for a short time step under the influence of the
average field of the other mode(s). Even though we do
not have rigorous proof that the averaging process of
SCF equations does not destroy chaotic behavior, our ini-
tial calculations show that classical trajectories of such a
system do not show significantly diferent behavior than
those of the original Hamiltonian if the time step is
suSciently small, even under chaotic conditions.

Once the new time-dependent SCF Hamiltonians are
defined (since average quantities are constant only for the
duration of the small time step, H„"and H "are time
dependent}, it is now possible to combine quantum and
classical dynamical equations with proper boundary con-
ditions. If we choose the x coordinate to be the classical
and y to be the quantum coordinate, our initial system is
defined by a point in two-dimensional phase space (given
by x and p, ) and a wave packet %(y, t) (for a better
description of the classical motion, an ensemble of initial
coordinates can also be employed). In that case, dynami-
cal equations become

Without loss of generality, let us begin with a two-
dimensional oscillator system:

H(x, y)=H„(x)+H (y)+ V(x,y),
where V(x,y} is a nonlinear coupling term, and it is as-
sumed that there is no transformation to obtain a separ-
able form of the Hamiltonian. Within a self-consistent-
field (SCF) approximation we obtain two one-dimensional
Hamiltonians in the form of +0.029 $6y +0.$x y (5)

The coefBcients of the polynomial are chosen such that
there are no double minima, and inflection points along
each coordinate are at the same level. This Hamiltonian
does not have any symmetry and there is no degeneracy
in either one-dimensional or two-dimensional eigenvalue
spectra. The wave packet is written as

0'(y, t) =gb»(t)tp»(y ),
where y»(y} is the eigenfunction of H with quantum
number p.

H, q, (y) =e»tp»(y) .

Now the Schrodinger equation in atomic units can be
written as

igb y (y)=gb H tp (y), (8)

with b~ denoting the time derivative of expansion
coefBcients. By multiplying with yq from the left and in-
tegrating over the coordinate, we obtain

ib~ =gb» A~,
where the matrix A is defined through

(9)

A =5 e +A, Ix I f q& (y)y q&»(y)dy . (10)

In matrix notation, we obtain

(again, for a bundle of trajectories, this is just an arith-
metical average over all trajectories). The time evolution
of classical trajectories can be obtained by the straighfor-
ward numerical integration techniques. The quantum
equations can be solved by several methods. In order to
carry out a systematic analysis, we decide to expand the
initial wave packet as a linear combination of the eigen-
functions of the anharmonic oscillator H„,and follow the
time evolution again in terms of these basis functions.
Our mixed mode system is chosen as [28,29]

H=0. 5(p„+p +x +1.44y }—0.05x

+0.001 406 25x —0.0864y

and

ap„/at = —aH„"/ax,
ax/at =aH "/ap„,

(3a) iB=AB .

(3b) The above equation can then be simply solved by,

iB= ACC 'B . (12)

Hsc"=H„+X(e~y'~q )x' (4a)

iraq(y, t)/at =H„""q(y,t) . (3c)

Choosing M y as the nonlinear coupling, we now define
SCF Hamiltonians as

Then,

iC-'B =C-'ACC-'B . (13)

Defining D =C 'B, we realize now a decoupled matrix
equation,

and iD =ED, (14)

H» "=H»+A, [x Jy (4b)

Here ( ) is the quantum average of y over the wave
packet and [ I is the square of the classical coordinate

where C is the pseudo-time-dependent unitary matrix
that diagona1izes the Hermitian matrix A, E being a di-
agonal matrix with eigenvalues E . The solution is given
as
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+"(y,5t) =4"+'(y,0), (16)

k and (k+1) define here two successive time steps. The
boundary conditions can be expressed as

bk(gr) b k+1(0)

Then the final coefficients are

b "(5t)=QC d"+'(0),

and

d =X exp( —iE I;},

with X being undetermined integration constants.
Keeping in mind that the wave function must be continu-
ous in time, that is, ~ y

~ «o re
~+

-:."j4$ g
0 LO 0ti 4~

eM W+y-
~ ~~1t ~ o~

""y"'C'j ~

~ ~
'~

$
~ ~~,jan+

~)q, ~4~ ~-

d k+1(0)—~0 (19! FIG. 2. Poincare map of trajectory no. 1.

Finally, we obtain formulas for time-dependent
coeScients of the wave packet

gk —(k+1~k+1 d ~k+1 gk(( k+1)—1

RESULTS AND DISCUSSlON

In the Introduction, it is discussed that mixed-mode
dynamics offers an extremely useful tool for the analysis
of the irregular dynamics as we go along from the classi-
cal to the quantum world. By quantizing part of the
Hamiltonian, one can still concentrate on the classical
part of the system, that is, deterministic properties such
as coordinates and momenta are analyzed instead of fol-
lowing the time evolution of average quantities of the
quantum picture, which may give a completely different
description due to the smoothing processes. Since
definitions of classical measures like Poincare maps or
Lyapunov exponents of a mixed-mode system are some-
what ambiguous, we proceed to compute the usual quan-
tities such as trajectories, time autocorrelation functions,
and Fourier transforms of several observables of "simi-
lar" systems under fully classical (FC) and mixed-mode
(MM) conditions. These conditions are defined as fol-
lows: for FC conditions, classical trajectories in the
four-dimensional phase space are employed and for MM

conditions, a combination of a classical trajectory in
two-dimensions and a wave packet along the other coor-
dinate forms the total system. In the model system, the x
mode remains classical for both methodologies and the y
mode is a quantal one for MM computations.

To summarize the classical behavior of this two-
dimensional oscillator system, we present the Lyapunov
exponent spectrum from 5500 trajectories as functions of
the trajectory energy (Fig. 1). Lyapunov exponents are
computed by the tangent space method [30,31], and the
sum of all exponents remains less than 10 ' within our
integration times of 500 units (10 steps). Throughout
the discussion, generalized atomic units are employed
and Lyapunov exponents are given in units of bits/time.
Four-point constant-step Runge-Kutta integration is used

to solve both nonlinear and linear equations. Lyapunov
exponents generally converge around 250 units of time.
At very low energies (there is only a single eigenvalue
below 2.0 and 6 eigenvalues below 4.0), we start detecting
positive Lyapunov exponents. The critical energy is
around 8.0, after which there remains only a very small

number of zero Lyapunov exponents. This small number
of trajectories is attributed to initial conditions that are
stuck in the deep valleys of the potential surface and can-
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FIG. 1. Maximum Lyapunov exponents of the classical sys-

tem.

FIG. 3. Trajectory no. 1 along various cross sections of the

phase space.
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Trajectory

1.943 652
—1.943 652

1.625 556
2.598 642

1.655 468
0.450488
1.976260
0.0

E

3.497499
3.497499
3.687 844
3.478 904

0.023 611
0.023 611
0.016515
0.042 206

TABLE I. Initial conditions for classical trajectories. not escape within time scales of our numerical experi-
ments. We conclude that the complete phase space is
chaotic above this critical energy, and to fully realize the
effects of quantization an energy value that lays in the
completely chaotic regime is chosen for the comparison.

For the definition of the initial conditions for MM cal-
culations, the coordinate and momentum along the x
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FIG. 4. (A) E„for FC and MM trajectories. (a) Mixed mode, (b) trajectory no. 1, (c) trajectory no. 2, (d) trajectory no. 3, (e) trajec-
tory no. 4. (B) E, for FC and MM trajectories. (a) Mixed mode, (b) trajectory no. 1, (c) trajectory no. 2, (d) trajectory no. 3, (e) trajec-
tory no. 4.
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mode are chosen as x=0.25 and p„=5.47165894, so
that the classical energy is equal to 15.0. (Mode energies
are computed only from Hamiltonians H or H„,that is,
the energy in the coupling is excluded. ) Along the y
mode, a wave packet as an equally weighed linear com-
bination of the anharmonic oscillator eigenfunctions with
quantum numbers 2 and 3 is used.

+(y, 0)=(l/&2)(yp+Ip3) . (21)

The quantum energy is then equal to 3.49749897, cou-
pling energy is 0.02361115, and the total energy is
18.521 110 12.

The selection of the classical counterpart of the initial
conditions for Fc computations poses a severe problem;
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FIG. 5. (A) x for FC and MM trajectories. (a) Mixed mode, (b) trajectory no. 1, (c) trajectory no. 2, (d) trajectory no. 3, (e) trajec-
tory no. 4. (B)p„for FC and MM trajectories. (a) Mixed mode, (b) trajectory no. 1, (c) trajectory no. 2, (d) trajectory no. 3, (e) trajec-
tory no. 4.
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that is, we do not know an accepted way of choosing clas-
sical points that should correspond to a given wave pack-
et. The Wigner transformations [32] in general can be
used for such phase space representations; however, they
suffer from the fact that they are not necessarily positive
in all domains of the phase space, which makes them
difBcult to employ as probability distributions. In many
cases, Husimi transformations [33—36] are proposed to
sample the phase space, as they are positive definite in all
regions, but they are of only intuitive nature. However,
in this study, as we do not claim to exhaust the complete
classical phase space, only a small number of trajectories
are analyzed, and there may be difFerent procedures of
selecting these trajectories. We select four different FC

trajectories whose energies are exactly the same as the
MM case. These initial conditions are chosen such that

(a) and (b) the energy along the y coordinate and the
coupling energy is the same in both the FC and MM
cases; in this case, there are two y values with opposite
signs (we choose only the positive momentum solutions).

(c) The classical y coordinate is the same as the expec-
tation value over the wave packet.

(d) p is taken to be zero and y is obtained so that total
energy is again the same.

Actual values of these coordinates and energy in modes
and the coupling are given in Table I. These points sam-

A$ I

FIG. 6. Autocorre1ation func-
tions of x, P, E„,and E, for the
classical trajectory no. 1 and
MM.
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pie the available phase space very sparsely, but as we see
later they provide su Scient information on general
trends. The maximum Lyapunov exponents for these ini-
tial conditions are 0.466, 0.449, 0.414, and 0.480 respec-
tively. In Fig. 2, we present the Poincare map, and in
Fig. 3 various cross sections of the phase space for trajec-
tory 1 are given. The other three trajectories give very
similar trends, pointing out that indeed we are in the
chaotic regime.

To compare two fundamentally different approaches
poses some interesting problems, and one of them seems
to be the partitioning of the coupling energy between two
modes. That is, how does one define the energy of each

mode? %hat are the contributions from the coupling en-
ergy? This separation is not unique and there is no stan-
dard method of determining the contributions to indivi-
dual modes. Therefore, instead of computing energies of
each mode in an arbitrary way, we proceed to define
three energy terms E„,E„,and E„which are either clas-
sical observables, quantum expectation values, or a corn-
bination of them as in the case of E,.

Since the x mode is always analyzed classically, it is
more appropriate to compare properties of the FC and
MM methodologies along the x coordinate. In Fig. 4,
variations of E, and E, in time are given for the duration
of 200 time units for the MM and four FC trajectories.

X

FIG. 7. Fourier transforms of
autocorrelation functions of x,
I„,F.„,E, .

X

C

0.25 0.50 0.7 5 4.00 0.25 0.75 1.00
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We observe two types of distinct behavior. In all FC tra-
jectories, both amplitudes and frequencies of the oscilla-
tions display a large variety (longer time series for these
classical calculations are also carried out, but here only
the relatively short ones are presented in order to be able
to display details). However, in the MM methodology, it
is clear that a great deal of periodicity appears in the cor-
responding time series. The variations of amplitudes are
subdued and the very periodic looking structures are not-
ed. In fact, they all seem to be composed of superposi-
tions of a few similar frequencies. This qualitative
change in the chaotic behavior is more pronounced for
the coordinate and momentum along the x coordinate
(Fig. 5) where the motion in the classical phase space
seems to be only a single frequency one. In classical
mechanics, chaos is recognized by the sensitivity of the
initial conditions; that is, one asks the question of how
fast the system forgets its past. One then can analyze the
time autocorrelation functions, since they are thought to
be memory functions.

N

C(r) =(1/N) g f (t)f (t +r), (22)
i=1

where f is the time-dependent function, r is the correla-
tion length, and X is the number of observations for the
given r. After normalization, C(r) changes between —I
and 1, and any periodicity in it implies that the system
still remembers its past history, which is a fingerprint of
regular behavior. In Fig. 6, we display autocorrelation
functions of x, p„,E„,and E, for FC and MM cases. In
classical calculations, autocorrelation functions go to
zero quickly (sign of chaos) and then oscillate mildly
around zero; however, those for the MM computations
show strongly periodic structures. To determine the
magnitudes of periodicity, we have obtained fast Fourier
transformed (FFT) decompositions of autocorrelation
functions (Fig. 7). As is expected, FFT transforms of FC
trajectories show a variety of frequencies, whereas those
of the MM trajectory display usually single sharp peaks.
This final piece of evidence clearly points to a highly
periodic and regular motion for MM dynamics.

We would like to summarize our findings in the follow-
ing manner. In order to provide an opportunity to com-
pare classical and quantum mechanical dynamics, we ap-
ply a mixed-mode formalism. Within this formalism,
part of the system remains classical; therefore, exactly the
same measures can be employed whether the system is
fully classical or is under a partial quantization. For a
reasonable comparison, we attempt to generate similar
initial conditions for both approaches. Classical calcula-
tions under these conditions display highly chaotic
behavior, as evidenced in the visual inspection of trajec-
tories along a certain surface of sections and Lyapunov
exponents. When we analyze several time-dependent
properties, i.e., their autocor relation functions and
Fourier decompositions, we again note fingerprints of
chaos. However, upon partial quantization, that is, by
switching from the internal "classical" to "quantum"
fields, radical changes in the qualitative behavior are ob-
served. The time variations of classical energies and
fields, radical changes in the qualitative behavior are ob-
served. The time variations of classical energies and
coordinates are no longer rich in frequencies, and they al-
most look "periodic. " In fact, autocorrelation functions
being highly periodic, we supply additional evidence to
the disappearance of chaos, and FFl's fail to produce
anything but single frequencies. It is reasonable to
deduce from these facts that even a partial quantization
smoothes out the chaotic details of a classical system.
This is in accordance with our previous findings that a
fully quantum description of a classically chaotic system
displays a much more regular behavior than expected
[28,29,37]. These results also provide additional evidence
to the belief that bound systems of quantum systems can-
not be chaotic [24,38].
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