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Controlling unstable steady states using system parameter variation and control duration
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We describe a method to control unstable steady states in high-dimensional flows that have become
unstable due to a Hopf bifurcation. The control method is model independent and is accomplished by
perturbing an available system parameter. Unlike methods designed for low-dimensional systems, suc-
cessful control of high-dimensional systems requires the use of the control duration as an additional pa-
rameter. This is due to control activated transients that force the system off a low-dimensional attractor.
We demonstrate our method using numerical simulation and compare it with the application of pure
discrete control.

PACS number(s): 05.4S.+b

I. INTRODUCTION

Recently there has been extensive interest in model-
independent control using only small perturbations of an
available system parameter. Control methods used for
complicated nonlinear systems require accurate and de-
tailed knowledge of a mathematical model, which is often
dif5cult to obtain. Furthermore, perturbations of a sys-
tem parameter designed to control the system may have
the effect of modifying the system's behavior. Control
methods that do not require a model and use only small
perturbations that do not modify the system behavior can
thus be successful where more traditional control
methods have failed. In this paper, we devise a model-
independent method to control systems that uses not only
small parameter fluctuations, but judiciously applies the
perturbations for a particular duration of time. We call
the time interval during which control is activated by pa-
rameter perturbation, control duration.

Ott, Grobogi, and Yorke (OGY) [1]designed a method
to control unstable steady states and periodic orbits em-
bedded within a chaotic attractor. Since the chaotic at-
tractor is ergodic, the system state will eventually be arbi-
trarily close to the desired unstable motion. Control then
requires only small perturbations of an available parame-
ter to keep the system in this unstable state. The control
method is a special case of "pole placement" for linear
maps, wherein the system is directed to the stable mani-
fold of the desired state [2]. The OGY method is based
upon a map describing the linearized dynamics about the
desired state. Information required to construct the map
can be obtained from experimental data and does not de-
pend upon the formulation of a mathematical model of
the system. Application of the OGY method is particu-
larly suited to low-dimensional attractors where the nurn-
ber of unstable eigenvalues is 1 [3].

One limitation of the OGY control method occurs in
high-dimensional systems where the control parameter
fluctuations induce transients that hinder the
effectiveness of the method. The asymptotic behavior of
a high-dimensional system usually lies close to a lower-

dimensional attractor, and the design of the OGY control
method is based on measurements of this lower-
dimensional system. When control is applied by chang-
ing a system parameter even a small amount, the result-
ing transients cause the system state to wander in the
high-dimensional space of the system; that is, the dynam-
ic transients leave the low-dimensional attractor. In
these situations the OGY method is inappropriate, since
the linearization fails. In [3] the authors overcome this
diSculty by modifying the original OGY method to take
into account the time history of the system as the param-
eter has been modified; previous states of the system and
the control parameter are used to improve the local linear
model and determine the proper control perturbation.
Multiple independent control parameters have also been
used to account for the behavior of the system ofF the
original attractor [4]; for instance, while the first parame-
ter may push the dynamics off the attractor, a second pa-
rameter perturbation may push the dynamics back onto
the original attractor, so that the efFect of the transients is
neutralized.

A control method related to OGY called occasional
proportional feedback (OPF) has been successful in con-
trolling a number of physical systems [5-8]. In these ex-

periments, a small change is made to a system parameter
to correct for deviations of a single system variable from
a desired reference point. This single variable is sampled
only occasionally, where the sample interva1 is usually re-
lated to the natural period of the system. For these
reasons, OPF has been called a one-dimensional version
of OGY when the contracting dynamics of the other vari-
ables is very strong [9]. However, there are many vari-
ables that must be tuned when implementing OPF in a
real experiment, and a clear understanding of the role of
each is lacking. Of particular interest is the use of OFF
to control the steady state in a multimode laser [8], which
is a high-dimensional system. In this experiment the
steady state has become unstable due to a Hopf bifurca-
tion.

Our goal in this paper is to further understand the rela-
tion between OPF and OGY in controlling the steady
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state behavior of high-dimensional systems. To this end,
we derive a one-dimensional version of OGY and success-
fully apply it to the steady state control of a two-
dimensional chemical system. However, when imple-
menting the algorithm in a higher-dimensional system,
where the additional dimensions are strongly contracting,
the OGY method fails.

We then derive an alternative method to control unsta-
ble steady states occurring in a high-dimensional system.
In particular, we consider steady states with a complex-
conjugate pair of unstable eigenvalues; the number and
type of additional eigenvalues is arbitrary except that
they must be stable. The control method follows the
theme of the OGY method in that we assume that the
system is close to the desired steady state, so that only
small perturbations are required to maintain control.
Furthermore, we assume that the dynamics close to the
steady state can be estimated from experimental data and
hence no model is needed. However, we consider the sys-
tem flow over time, in contrast to the OGY method
which employs a map constructed from intersections
with a Poincare' surface. In addition to considering the
system flow, the novel aspect of our algorithm is that we
determine an optimal duration of time to apply the con-
trol. Given an initial error from the desired steady state,
we determine the appropriate control parameter pertur-
bation and how long this perturbation is to be applied, so
that the system is directed back to the unstable steady
state. By following the flow we are explicitly taking into
account any transients that occur as the parameter
changes. This is diScult to do in a map approach, as the
parameter changes can be made only on iterates of the
map. We will demonstrate our method on the Lorenz
equations by controlling the nonzero steady state solution
after it has become unstable due to a Hopf bifurcation.

In deriving the control algorithm, we consider the gen-
eral system

d =F(z,P),

where z is an n-dimensional state variable, P is a sealer
parameter of the system and will be used as the control
variable, and F is a nonlinear function of the state and
control variables. We assume the existence of a steady
state solution given by (z(P),P). We wish to establish
control about a particular steady state when P=P and
z(P }=z.

To this end we approximate the dynamics about this
steady state point as

ter P. For a low-dimensional system (n =2) these will be
the only eigenvalues, while in high-dimensional systems
(n & 2) the only restriction on the additional eigenvalues
is that they have a negative real part. In the case of
mode1-independent control, we assume that all the pa-
rameters of (2), i.e., A, B, and hence all the eigenvalues
and eigenvectors, can be determined by embedding the
flow of some real system into an artificial phase space
[15].

This paper is organized as follows. In Sec. II we derive
a one-dimensional version of OGY and apply it to a sim-
ple chemical reaction. In Sec. III we derive a control
method good for high-dimensional systems that over-
comes the limitations of the method derived in Sec. II,
while in Sec. IV we apply our method to an actual sys-
tem. In Sec. V we summarize the results.

II. CONTROL
OF A LOW-DIMENSIONAL SYSTEM

We consider the case n =2 in (1) and (2), such that the
dynamics occur in the plane. Due to a Hopf bifurcation,
the steady state solution is an unstable focus, and errors
will spiral away from the steady state. By sampling the
system at a specific phase, we can consider the dynamics
to be modeled by a monotone map of the form

+n+) =axn+bp~ &n (3)

The map is then fully determined in terms of the known
parameters of (2). The goal of control is that given the
present error x„,control should eliminate subsequent er-
rors, or x„+,=0. The required control-parameter per-
turbation is obtained by solving (3) so that p is given by

where x„represents the present error or distance from
the fixed point, and p is the control variable. The growth
of errors away from the steady state between samples is
measured by the parameter a, which is given by

(4)

To calculate b we make the observation that the fixed
point of the map (3) represents the unstable steady state
of the flow (2). We thus require the change in the fixed
point with respect to the control variable p to be the same
as the change in the steady state with the control variable

p, to obtain

b= —(A ' B)(1—a) .

dx = A.x+Bp

A=D, F(z P) and B= F(z P),=d (2)

where x and p are small deviations (x=z—z«1 and
p =P P«1) from the—steady state values z and P, re-
spectively. We assume that there is a single complex-
conjugate pair of unstable eigenvalues o „(p)Rico(p),
where cr„&0and do „/dpAQ. This implies the existence
of a Hopf bifurcation for some lower value of the parame-

ap= ~n .

Using these ideas we control the steady state of a simple
chemical reaction by considering the Brusselator [11]
without diffusion. It is given by

=Q (P+1}X+XY, —
dt

=PX—X Y,
dt
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FIG. 1. Control of the Brusselator for P =2.12 is established
after an initial error, and then reestablished after the system is
perturbed. Once control is turned off, the system evolves to
periodic oscillations.

parameter was modified, the system state shifted ol' the
unstable manifold of the uncontrolled steady state. In the
case of the Brusselator, the parameter perturbations shift-
ed only the steady state's location in the unstable mani-
fold; i.e., the two-dimensional plane. Even though the
dynamics of the unstable manifold of the Lorenz equa-
tions were strongly attracting, the control method failed
due to the fact that the whole unstable manifold had
shifted. Petrov, Peng, and Showalter [4] overcome this
difFiculty by shifting the unstable manifold back using an
additional control parameter. In Sec. III we present an
alternative solution that does not require an additional
parameter but does use the control duration.

III. CONTROL ALGORITHM
FOR HIGH-DIMENSIONAL SYSTEMS

where we will fix the parameter Q =1, and P will be the
control variable. The steady state solution
(X, H = ( QP /Q) undergoes a Hopf bifurcation when
P =(Q +1).

We will maintain the system at the steady state ob-
tained when P =2.12. The deviation of X away from the
steady state value, measured when Y =0, determines x„.
The control variable P is then modified iteratively accord-
ing to (6). Figure 1 shows control being established after
an initial error, reestablished after we artificially perturb
the system, and the evolution to periodic oscillations
when control is turned off. Figure 2 shows a detailed
view of the control perturbations and the effect on X after
the system has been perturbed. Note that the system is
constantly being controlled, although the magnitude of
the perturbations in P become imperceptibly small.

Because the dynamics is restricted to a plane, this
method works successfully as a one-dimensional controll-
er, as predicted in [9]. However, we were unable to apply
this method to higher-dimensional systems, such as the
Lorenz equations [see (14)]. The three-dimensional
Lorenz system is similar in that the nonzero steady state
undergoes a Hopf bifurcation, while the stable direction
remains strongly attracting. However, when the control

2. 2

2

L '

For high-dimensional systems we again assume a sys-
tem modeled by (1) and (2). Provided that A is nonsingu-
lar, i.e., P =P is not a bifurcation point, then the general
solution to (2) is

x(t)=e ' [x(0)+ A ' Bp]—A ' Bp .

The n X n matrix A can be block diagonalized as
A= S A S ', where S is composed of the right eigenvec-
tors e;, i =1, . . . , n, and S ' is composed of the left
eigenvectors f, , i = 1, . . . , n. We write the matrix of ei-

genvalues A in the form

O„co 0 ' 0
—co o 0 0

A= 0 0 cr 0 (9)

0 0 0,
„

lim x(t)=0 .

where o.„&0 is the growth rate and co is the frequency of
the unstable modes designated as e, and e2 (similarly, f,
and f2 are the corresponding left eigenvectors). In (9) we

have shown the case where all other eigenvalues are real
such that 0„(0,i =3, . . . , n. In general, the stable
modes may be complex with negative real parts. The
control method that we derive is not effected by this
modification.

The goal of the control method is that given some ini-
tial error x(0), we determine the parameter variation p
and the control duration T, =(2nq)/co (q is the un-

known), such that

I

360 380
I

I
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I
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2. 04

This is accomplished by forcing the system state to lie en-

tirely within the stable manifold at the end of the control
period, i.e.,

x(T, )=S.k where k=(0, 0, k3, . . . , k„),
FIG. 2. Detailed view of Fig. 1 when control is being reesta-

blished, where the dotted line is the control variable. Note that
the system is allowed to grow freely for approximately two cy-
cles before control is reactivated, after which the fluctuations in

Xand P become imperceptible.

where k; are to be determined Substitutin. g t =(2nq)/co.
into (8), we obtain n equations for the n unknowns

p g k 3 . , k„.We are concerned only with the first

two equations that determine p and q. Once these are
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determined the remaining equations determine only k;.
We allow these to be arbitrary because they specify only
the location of the system in the stable manifold. Once
the dynamics is on the stable manifold, the system will
then evolve toward the steady state, as stated in (10}.

Solving the first two equations of (8) for p, we obtain
—

A,(q) f, .x(0)p=
d

& [A(q) —cos(2mq ) ]+d2 sin(2m q )

—
A, (q)f x(0)p=

d2[A(q) co—s(2nq)] —d, sin(2mq)
'

A,(q}=e
(o f,—cof2) B

CT +COQ

{cof&+o„f2)B
0' +COQ

(12)

IV. APPLICATION
TO THE LORENZ EQUATIONS

Equating the two equations for p in (12) yields the follow-
ing transcendental equation for q:

[(A(q) —cos(2nq)](d, f2 —d2f, )

+sin(2nq)(d&f&+dzfz) x(0)=0. (13)

Note that (13) depends upon the relative angle between
x(0) and f, and x(0) and f2, but not on the magnitude of
x(0). The solution to (13) is multivalued and we take
q E(0, 1), so that control is applied for less than one natu-
ral period of the system.

To control the system we have the following algorithm:
For any given x(0}, (13) is solved numerically to deter-
mine q. Next, p is determined using either of the rela-
tions in (12). Using these values, x(T, ) will lie in the
stable manifold and eventually decay to 0. In a real sys-
tem, noise and small errors will require the system to be
monitored and control reapplied.

represent deviations of r from r =28, and the control
duration is (2mq )/co.

The Lorenz equations have been a popular system to
demonstrate the control of chaos. Abed and Wang [12]
use the combination of a washout filter and nonlinear
control; the former is used to postpone the Hopf bifurca-
tion point, while the nonlinear control is used to stabilize
the chaotic transients. Singer, Wang, and Bau [13,14] use
negative feedback for steady state control of a thermal
convection loop based on the Lorenz equations. In both
cases, they use continuous control.

The control algorithm described in Sec. III was imple-
mented by first specifying a control criteria. For exam-
ple, when the peak value of the oscillations of x (subse-
quently referred to as b,x) reached a specified maximum
value, p and q were determined using (12) and (13) and
control applied for an appropriate amount of time. The
system is then allowed to evolve until the control criteria
is again satisfied. In Fig. 3 we show results when
hx =0.2; if the control is turned off, the system then be-
comes chaotic. Note the long time between control per-
turbations with respect to the natural period of the sys-
tem. In Fig. 4 the action of a single control correction is
shown; the effectiveness of the method is demonstrated
by the fact that after the control is turned off, oscillations
are imperceptible. Since the control criteria is monitor-
ing the maximum of x, the system is in nearly the same
phase in the unstable manifold when p and q are deter-
mined, the variations being due to the overshoot of the
peak of x from hx. The parameter q explicitly depends
upon this phase, so that the variations around the mean
value q =0.71995 are very small. This is the reason why

p was always positive.
The control method is robust in the presence of noise,

as shown in Fig. 5(a), where uniformly distributed ran-
dom perturbations in the range ( —0.05,0.05) were added
to the 6ow variables. There exist regions where bursts in
the system require large control perturbations, as shown
in Fig. 5(b). An approach used when controlling periodic
orbits embedded in a chaotic attractor is to disallow large

We control a higher-dimensional system when n =3
using the well-known Lorenz equations [10]. They are
given by

X =o(y —x),
dt

dy
dt

=rx —y —xz,

dz =xy —bz .
dt

For the parameter values of b =—,'and cr =10, the stable
steady state solution (x,y, z) =(Vb (r —1),&b (r —1),
r —1) undergoes a Hopf bifurcation at an approximate
value of r =24.74. . . . There is a complex-conjugate pair
of eigenvalues with positive real part and a real negative
eigenvalue, which are functions of r. We will stabilize the
steady state when r =28, for which we can explicitly cal-
culate cr, co, f&, and fz as required in (12}. Thus p wiH
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FIG. 3. Control of the positive nonzero steady state of the
Lorenz equations. The error between the variable x and the un-
stable steady state is allowed to grow until the difference is 0.2.
Control is then activated (the dotted lines) by determining the
appropriate perturbation to r and the duration of time it is to be
applied. Once control is turned off the system becomes chaotic.
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FIG. 4. Detailed view of the effect of control. When
hx &0.2 (the peak value of x, indicated by the solid line, is
greater than the dashed reference line), control is activated us-

ing a small perturbation in the control variable r, indicated by
the dotted line. Control is one for less than the period of the os-
cillation s.

FIG. 6. In contrast to Fig. 3, control is activated when the
magnitude of the error Uector is greater than 0.38. The system is
sampled at arbitrary phases in the unstable manifold, so that
there is a wide range of values of q [q G(0.57,0.67)], while the
long-time mean ofp will approach zero.

control perturbations, and use the chaotic dynamics to
return the system to a small neighborhood of the steady
state, as was done in [1]and [2]. Control using only small
perturbations can then be turned back on. For the
Lorenz system, the chaotic flow will not return the sys-
tem to the nonzero unstable steady state, so that this
method cannot be used.

Equations (12) and (13) determine the values of p and q
that give optimal control in the sense that the time be-
tween the required control perturbations was maximized.
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We find that the method was quite tolerant of deviations
from these values. For instance, in the above example,
we determined the appropriate value ofp but then fixed q
arbitrarily. Control was maintained for deviations from
the optimal value of +0.2. The effect was that control
had to be applied more often because the corrections
were less eScient.

Recall that the simulations in Figs. 3-5 implemented
control when the maximum of the sealer dependent vari-
able x was greater than a specified value. We called this
the control criteria. This is not the only control criteria
that may be used. For instance, in Fig. 6 we have
specified the maximum magnitude of the error vector
x=(x,y, z). In this case, the phase of the vector x in the
unstable manifold is arbitrary (in the previous case it was
fixed, since we always sampled the system on the max-
imum of x). Since the parameter q depends upon this
phase, the range of q will be much greater, allowing p to
take on positive and negative values. The mean of p over
many control corrections will approach zero. For the
time series shown in Fig. 6, q G (0.57,0.67), and the mean
value ofp =0.008.

V. SUMMARY

I i(l I »itii h I Ii t'ai liii till 1 »I i II
I

I I

Li llllllth II hll 0 1 I

FIG. 5. {a)Control is maintained in the presence of noise, al-
though (b) control corrections occur more often. There are
brief bursts of large deviations in the system variable s that re-
quire large control perturbations.

%'e have been successful in controlling a steady state in
the flow of a high-dimensional system, by using parame-
ter variation and control duration. These considerations
were necessary to account for the transients occurring off
the attractor w'hen the control parameter was varied.
Our approach is impossible when considering the system
modeled by a Poincare' map, as the control parameter
cannot be modified between the system samples that
define the map.

Our results also suggest that OPF may be more than
simple a one-dimensional version of the OGY method.
In OPF, the control duration is adjusted along with the
feedback gain to achieve control. We have seen that our
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method maintains control, although nonoptimally, when
the duration is fixed as is done in the OPF experiments.
In either case, successful control depends on using the
control duration as an additional parameter.

We remark that the parameters appearing in (12) and
(13), which are necessary to determine p and q, can be
determined from an experimental time series using
embedding techniques to reconstruct the attractor [15];
thus the control method is independent of any specific

model. In this case, the control method must be general-
ized since the state vector is constructed using time delay
coordinates [16].
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