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Locking and Arnold tongues in an inSnite-dimensional system:
The nuclear magnetic resonassce laser with delayed feedback
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Experimental observations and computer simulations of locked states in an in~nite-dimensional
periodically Q modulated NMR laser with feedback are presented. Arnold tongues (AT' s) were ob-
served both for a harmonic and an anharmonic (square-wave) modulation. The width of selected AT' s
were significantly larger for the anharmonic modulation than for the harmonic modulation. In addition,
the AT s were observed to split into regimes of locking to ddFerent fundamental limit cycles as the modu-
lation amplitude was increased. Si~i~cant deviations of the locking behavior from predictions of the
one-+~ensional circle map were observed. The experimental results agreed in an excellent way with
simulations with a phenomenological Bloch-Kirchhof model with a heuristic relaxation term and conse-
quently present an exemplary test for the model.

PAC$ number(s): 05.45.+b, 76.60.—k

I. IN+RODUt:i xON

Various nonlinear dissipative solid-state systems exhib-
it temporal mode-locking phenomena. These include
charge density wave systems [1]driven by radio frequen-
cy electric Selds, resistively shunted Josephson junctions
driven by microwave fields [2], power modulated spin
wave systems [3], barium sodium niobate single crystals
driven by ac currents [4], and a NMR laser with injected
signal [5,6].

The NMR laser is ideal for the study of locking phe-
nomena because of its excellent long-term stability and
large signal-to-noise ratio. The NMR laser without feed-
back has been studied intensively, and the dynamics have
been analyzed both in the regular and chaotic regimes.
In addition, the system has been very well modeled by the
Bloch-Kirchhoff equations with phenomenological damp-
ing terms [7,8]. Here locking phenomena are reported
for the ruby nudear magnetic resonance (NMR) laser
with delayed feedback and quality factor (Q) modulation
[9]. Laser systems with delayed feedback but without Q-
factor modulation have been studied extensively [10]. In
addition to the locking phenomena caused by a harmonic
modulation, the i~&uence of a square-wave modulation
was observed. The parameters of the NMR laser without
Q modulation were tuned so that the system evolved to a
limit cycle of fundamental frequency coo=too(r, e), where
v is the delay time of the feedback signal and e is the
feedback signal amplitude. Under these conditions lock-
ing was observed at various rational frequency ratios
co /coo=p/q= 1/5, 1/4, . . . , 1/1, . . . , 2/1, where p
and q are integers, co is the modulation frequency, and
ct)o=top+dktop( V p to } is the frequency of the laser out-
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put which deviated from too by an amount h, too depending
on the modulation amplitude V 0 and the modulation
frequency to . The particular limit cycle studied was
anharmonic and, in contrast to the sinusoidal case, the
square-wave modulation caused a significant increase in
dtoo for small modulation amplitudes V 0. For larger
amplitudes, however, the locking was suppressed for the
square-wave modulation. In addition, the Arnold
tongues broke up into well defined regimes, which could
be identified as corresponding to different oscillation
modes of the laser, set up by the Q modulation.

H. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1. The ruby
NMR-laser activity was produced by the nuclear spins of
the 2 Al (I=5/2) in the single crystal ruby Alz03:Cr+3.
The crystal was subjected to a static external magnetic
field of Bo= l. 1 T, where the Zeeman splitting and quad-
rupole interaction resulted in Sve possible NMR spin-Sip
transitions hm =+1. The ruby crystal was placed within
a coil of induction L which was part of a narrow band
laser-cavity (LC} circuit with frequency to, =(1/LC)'~ .
The LC circuit was tuned to the strong central ( ——,', +—,

' }
spin-fiip transition frequency to, =gBu, thus enforcing
single-mode activity and allowing the system to be de-
scribed by a Sctitious two-level spin- —, system. The spin
population inversion was obtained by means of dynamical
nuclear polarization (DNP) [11]where the electron spins
of the Cr + were pumped with microwaves slightly above
resonance at about 30.2 GHz and the electron-nuclear
spin interaction caused the Zeeman energy of the Cr +

electron spin system to be transferred to the Al nuclear
spins [5].

In the experiments described here the laser output,
which was monitored as the voltage V, , between the two
capacitors C& and Cz of the capacitive voltage splitter,
was demodulated, ampli5ed, and then fed back to a
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FIG. 1. Schematic representation of the experimental setup
for the ruby NMR laser with delayed feedback and quality fac-
tor modulation. The gain medium consisted of the nuclear spins
of the Al nuclei within a ruby crystal which was subjected to a
static Seld Bo. Population inversion was obtained by dynamic
nuclear polarization with microwaves supplied by a klystron.
The resonator was composed of a coil, a capacitive voltage
splitter (C&,C2) and a tuning capacitor C, and a variable resis-
tor (p-i-n diode). The laser output was fed back to the p-i-n
diode after a delay time ~. In order to observe locking phenom-
ena, periodic voltage modulation (G) was applied to the p-i-n
diode.

voltage-controlled resistor (p-i-n-diode) after a delay time
v. The change in resistance resulted in a change of the
quahty factor Q of the resonator. In order to observe
locking, an additional periodic voltage modulation V (t)
was added to the feedback signal. Either a harmonic
modulation V (t)= V osin(ro t) or a square-wave modu-
lation V (t)= V osgn[sin(co t)] was employed.

III. EXj.'I 'NDED SLOCH EQUATIONS WITH DELAY

The experiments were very well described by the ex-
tended Bloch laser (EBL) model [7]. Under the condi-
tions of single-mode operation and zero detuning from
the central spin-fiip transition, the rotating frame approx-
imation is valid and the EBL equations are given by

DNP pump rate, M, is an effective pump magnetization
assigned to the DNP-pump system, y is the coupling con-
stant, and co, is the laser frequency. It is well known that
the phenomenological Bloch equations often provide in-
correct predictions in solids [11]. Therefore, we replaced

y~ by yj[1+(a/3)lMl„], thus taking into account
lowest-order nonexponential dephasing which is propor-
tional to the amplitude M, of the transverse nuclear mag-
netization. Assuming the lowest-order nonexponential
dephasing term to be proportional to the absolute value
of M„guarantees a symmetrical deviation from linearity
similar to the case of a strong spring.

The time dependent quality factor Q(t) was given by
Q(t)=Qo —pV», „(t),where Qo was the unperturbed
quality factor obtained with a fixed bias voltage applied
to the p-i-n diode, V~; „wasthe feedback plus modula-
tion voltage applied to the p i ndi-o-de, and p =23.5 V
was a factor given by the characteristics of the p i n--
diode, which was determined experimentally. %ith de-
layed feedback and modulation, the additional voltage
applied to the p-i-n diode was

V; „(t)=V osinco t+gQ(t r}lM„—(t —r)l,
where $=5poriANto, was given by Faraday's law of in-

duction, and 5 represented a variable factor containing
the capacitive voltage divider, an ampliScation factor,
and the characteristics of the demodulator. Finally, r
was the delay time. A relative quality factor q (t}was in-
troduced in the following way:

q(t)= =1—u osinto t eq(t —~)lM—„(t—r)l,Q(t)
0

(3)

where U o=pV o/Qo and the feedback coupling was

The output of the experiment was given by

V,« =5p,~A rid, Q l M„l,
where p0 was the permeability of free space, X was the
number of turns of the NMR coil, A was the cross sec-
tion of the NMR coil, and r) was the filling factor of the
NMR coil.

In order to obtain improved numerical accuracy, the
ESL model was expressed in the dimensionless time
t' =ty ~ and dimensionless variables

dBu coc

Ct 2Q(t)
-=' B. , y=-3g

Vl

6gXQo
U 7

dM„
riM. —1+—IM. I +9gM,a„,

dt

dM, = —y)((M, —M, ) —gM„B„,
where M„and M, are the transverse and longitudinal
components of the nuclear magnetization which arises
from the active Al spins, 8„is the transverse com-
ponent of the radiation magnetic Seld, g=6.97X10
(Ts) ' is the gyromagnetic ratio of the z Al spins, y~ is
the decay rate of the transverse magnetization, y~~

is the

lggXQo
and z= (M, —M, },

~c'Vx

resulting in

dX X
I( ~

)

dp
,
= —y (1+ay )+rx —xz,dt'

dz
,
= —bz+xy .dt'



50 LOCKING AND ARNOLD TONGUES IN AN INFINITE-. . . 3385

q'(t') =1—v osin(co' t') —e'q'(t' —v')y(t' —r'), (8)

where r'=~y~ is the delay time, co' =co /y~ the modula-

tion frequency, and e'=ceo, y~/6gXQo, all expressed in

dimensionless units. Finally, by introducing the rescaled
variables

X=x/xo, Y=y/xo, and Z=(z —zo)/xo, (9)

with xo =+&b(r —1), and setting t"= t'xo, Eqs. (6) were

transformed to

X, X

dY„=—Y(c+aY}+X(c—Z), (10)

= —PZ —1+XY,

where o =cr/xo=384, c=l/xo=79, and P=b/xo
=1.57 X 10 2. Since the damping rate of X is o' »c,p,
the variable X can be adiabatically eliminated [12) by set-

ting, to lowest order, dX/dt" =0, leading to

„=—Y [(c+aY)+q"(t"}(Z—c}],

The parameters are

18gXQocr=, r= M, ,
2Qo'Yx ~e PI

aa), yq ~ll0= and b=
18gXQo

'

The variation of the relative quality factor is now given

by

Equations (11) were used for the simulations presented
below. Because of the presence of the delayed feedback,
this model represents an infinite-dimensional system.
However, the fractal dimensions determined by the
method described in [13,14] yield values between 2 and 3,
as noted earlier [9]. Such a reduction in efiective dimen-
sion has been shown to prevail in infinite-dimensional sys-
tems [15]. Figure 2 shows the numerically determined bi-
furcation diagrams as a function of the feedback coupling
constant e for the EBL model with feedback but without
modulation (V o=0). In Fig. 2(a) the delay time was

~=105 ms. For each e value, the first 50 maxima were
plotted after a transient time of 5 s. For small feedback
coupling e(0.11 the system was in a steady state; at
about a=0. 11 a bifurcation occurred to a period-1 limit

cycle, which increased in magnitude until at a=0. 15 a
further bifurcation to a quasiperiodic state took place,
which again was followed by a period-1 limit cycle at
@=0.20. The locking experiments were performed at
a=0.25, where the system evolved to a period-1 limit cy-
cle of fundamental frequency vo=41. 65 Hz. This operat-

ing point is indicated by a dashed line in Fig. 2. For com-

parison, the bifurcation diagram is also shown for a
smaller delay time of ~=41 ms [Fig. 2(b}]. Here the value
of @=0.25 lies inside the quasiperiodic regime.

Figure 3 shows the regions of various stable periodic
orbits in the parameter space given by the feedback cou-
pling e vs the delay time ~. The following color coding
was used: a time series of fixed length ( =1 s} was calcu-
lated for each value of r and e. Then all maxima of the
time series were determined. The color was given accord-
ing to the number of different values taken by the maxi-
ma. When no maxima were present (constant signal), the

= —PZ —1+q "(t"}Ydt"

where

TABLE I. Experimentally determined NMR-laser parame-
ters for standard running conditions. The numerical values are
used to calculate the system parameters of the EBL model.

NMR-laser parameters

gyromagnetic ratio
quality factor
static NMR field
laser frequency

pump magnetization
longitudinal pump rate
transverse decay rate
EBL dephasing coefBcient
fi11ing factor
coupling constant
Number of windings
cross section of the NMR coil

g
Qo
80
Vc

M,
rll
7l
a
7l

x

A

6.97X10 1/s T
310

1.109 T
12.3 X 10 [Hz]
—0.75 [A/m]

4.76 [1/s]
2.38 X 10 [1/s]

0.607 [m/A]
0.42

10.19 [Tm/As]
30

47.746X 10 [m ]

q "(t") = 1 vosin(co—"t" ) e"q"(t"—r" )Y(t"—r"}—
with e"=xone', r"=xo~', and co" =xo/co' . For a compi-
lation of the NMR-laser parameters, see Table I.

0

'0

1 I
) I I

'

&f+

/'
l

I

I

~ I I sl.

I

I I

0.2 I 0.4
0.25

e (A" m)

(bj

0.6

FIG. 2. Numerically determined bifurcation diagrams. For
each feedback value e the first 50 maxima were plotted after a
transient time of 5 s. (a) ~=105 ms, (b) ~=41 ms. The dashed
line corresponds to the e value of the limit cycle used in subse-

quent studies of locking phenomena.
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FIG. 3. Computed asymptotic properties of the solutions of the EBL model in the parameter space of delay time ~ vs feedback
coupling e. The color coding corresponds to the number of maxima of different values in a time series of given length. White, sta-
tionary solutions. Light blue, period-2 solutions. Bottom, index showing the color used for a particular number of different maxima.

point was colored white. This case corresponded to sta-
tionary solutions. When all maxima had the same value
this corresponded to a periodic behavior, and the point
was colored light blue. The correspondence between
color coding and the number of difFerent maxima values
is shown at the bottom of Fig. 3. The fractal dimensions
were estimated from selected time series within the red
and black regions, revealing values up to 3. Experimen-
tally this behavior was reproduced in an excellent way for
a selected region of the parameter space. The bifurcation
diagrams shown in Fig. 2 correspond to parameter varia-
tions along straight vertical lines at v=105 ms and at
~=41 ms in Fig. 3.

IV. LOC&&D STATES
INDUCED BV HARMONIC MODULATION

Locked states were identified experimentally by plot-
ting the laser output vs the modulation amphtude V 0.
When a stable Lissajous Sgure was found the system was
considered to be locked. This procedure is demonstrated

in Fig. 4, where the logarithm of the laser output is
displayed vs the harmonic modulation
V = V Osin(2n v t). Experimental results are shown on
the left, and the corresponding numerical results, ob-
tained from Eq. (11), are shown on the right. The fre-
quency was v =70.3 Hz and the amplitude V 0=0.09
V. A stable Lissajous Sgure was observed which indi-
cates that the laser was locked to half the modulation fre-
quency. When the modulation frequency was lowered
the system was no longer locked, resulting in a partial
filling of the phase space.

The presence of more than one crossing point in Fig. 4
also indicates that the time dependence of the laser out-
put was not harmonic. For a harmonic response the fre-
quency ratios 1 fn would result in a maximum of n —1

crossing points. The harmonic content of the free-
running laser output signal is shown in Fig. 5 both for the
experiment [Fig. 5(a)] and for the simulation [Fig. 5(b)].
The logarithm of the power spectral density was plotted
as a function of the frequency. The power of the higher
harmonics decayed roughly exponentially. The box
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FIG. 4. Laser output log&0{ V,„,) vs modulation signal. Left,
experiment and right simulations using the EBL model [Eqs.
{ ),'. The modulation frequency v was close to the frequency{11j~

of the limit cycle, md the system was locked as evidenced by the
closed Lissajous figures.

CL
O

O

4 100

within Fig. 5(b) shows the logarithm of the power spec-
tral density obtained from the laser autput when the feed-
back strength was chosen slightly below the second bifur-
cation at @=0.28 [Fig. 2(a)]. A frequency appeared at
vcc=34 Hz which originated fram an additional mode of
the system. As shawn below, this mode was manifest in
the low frequency part of the 1/1 and 2/1 Arnold
tangues (Fig. 6}. The system was locked there to this fun-
damental frequency coco.

The parameter space of (co, V c) was scanned, and
locked states were determined by two difFerent methods.
The results shown in Fig. 6 were obtained by using the
procedure described above. The points correspond to pa-
rameter values where the system was locked. Several Ar-
nold tongues could be identified. These include the ra-
tional ratios co~/ac=1/5, 1/4, 1/3, 1/2, and 1/1. The
gray areas in Fig. 6 are the locked states as determined
from Eqs. (11}. The simulated locked states were deter-
mined by the same procedure as the experimentally deter-
mined values, by calculating the time evolution of the

0 200
v (Hz)

I

400

FIG. 5. Logarithm of the power spectral density vs frequen-

cy of the laser output without modulation for a feedback
strength of a=0.25. Top, experiment and bottom, simulation.
The inset (bottom) shows the spectrum for a value of the feed-
back strength a=0.28 which was chosen near the second bifur-
cation point (see Fig. 2}. Note the appearance of a second fre-
quency voo {arrow) below the fundamental frequency vo.

slowly varying laser output. After a transient of more
than 100 periods of the modulation cycle, the output was
plotted vs the modulation, and the stable Lissajous
figures were identified. The results shown in Fig. 7 were
obtained by performing a harmonic analysis of the time
series, which were analyzed after a transient of approxi-
mately 100 periods of the modulation cycle. The follow-
ing color coding was used: the highest Fourier peak
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FIG. 6. Locked states in the parameter
space of modulation frequency vs modulation
amplitude. Circles, experiment. Shaded areas,
simulations. The inset shows the Arnold
tongue 1/2 on an enlarged scale. Note the
splitting of the AT for higher modulation am-
plitudes and the excellent agreement between
experiment and simulation.
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(disregarding the dc offset) was normalized to 1, and the
point in the parameter space where more than 2S Fourier
peaks were found above the threshold P,&=0.73 was
colored red. The fractal dimension was calculated at
selected points in the red region, and the behavior was
identified as chaotic. The green points represent values
of co~ and V where the response of the NMR laser was
quasiperiodic. The blue points stand for (co, V ) values
where the behavior of the laser was periodic, e.g., only
higher harmonics of a single frequency were observed.

I'"igure 7(a) shows the results for the experiment, and Fig.
7(b) the corresponding calculations The general trend is
for the blue regions, which correspond to the locked
states, to decrease in width with decreasing V o in accord
with universal predictions for coupled oscillators [2]. In
the experimental case the resolution (typically 20X20
grid points) was much lower than in the simulation
(100X100 grid points). Correspondingly, the calculation
shows features on a smaller scale than the experiment.
Nevertheless the main features coincide. These include a

0.05 -=

0

0.20:-

0.5 0 '.5 2.0

FIG. 7. Map of the type of
dynamics in the parameter space
of modulation frequencies vs
modulation amplitude obtained
by performing harmonic analysis
on the time series; top, experi-
ment and bottom, simulations.
Blue points correspond to
periodic time series, green to
quasiperiodic, and red to chaotic
time series. The main features
agree very well, although the
resolution was higher for the
model calculations, resulting in
more detailed structures.

0.05-

0 05 0 '.5 2.0
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FIG. 8. Same as in Fig. 7 but

for a reduced delay time of 41
IDS.
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FIG. 9. Relative AT width vs modulation amplitude on a
log-log scale showing the scaling behavior for the tongues 1/1
and 2/1 for the expetiment and the model. The Stted exponents
(straight lines) for the model are 0.85 for the 1/1 tongue and 1.6
for the 2/1 tongue.

splitting of the tongues for large modulation amplitudes
(blue regions), and an insensitivity of the system to small
modulation amplitudes (blue stripes at low modulation
amplitudes). For comparison, Fig. 8 shows the results of
the calculations for a delay time of 41 ms. The same
transient time was used as in Fig. 7. Here the width of
the Arnold tongue (AT) decreased in a monotonic way.
Also, the quasiperiodic regimes (colored green} were

more extended than for the ~= 105 ms delay time.
The dependence of the width hco /roe on the modula-

tion amplitude is shown in Fig. 9 for two selected AT' s
(1/2, 1/1) and a delay time of ~=105 ms. Within a limit-
ed range of the modulation amplitude V e, a linear St to
the data suggested a power law scaling of the form

vb~g
« (12)

From the data one obtained b (1/1)=0.85 and
b (1/2) =1.6.

V. ANHARMONIC MODULATION

In addition to the harmonic modulation discussed
above, the inhuence of a square-wave modulation was
studied. Two opposite efFects were expected: on the one
hand, since a square wave is composed of higher harmon-
ics, part of which correspond to the limit cycle of the
free-running system, the locking should be more efFective;
on the other hand, the abrupt changes of the modulation
signal may drive the system into a chaotic regime for
smaller amplitudes than in the case of a himnonic modu-
lation. Both efFects were indeed observed. The results
are su~~arized in Fig. 10 both for the experiment and
the simulations. Circles (Mluares} mark the boundary of
locked states dete~lned from experiment with the har-
monic (anharmonic} modulation. The width of the
locked states was significantly larger for the ~»armonic
modulation. In addition, the locking was more efFective
on the side of the Arnold tongue which exhibited smaller
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o
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0.05-

FIG. 10. Simulated and mea-
sured points showing locked
states 1/1 and 2/1 with anhar-
monic (blue regions) and har-
momc (green regions) modula-
tians. The overlapping regions
are colored red. The squares
(+~&Lrmonic modulation) and
circles (harmonic modulation)
correspond to the measured bor-
der of the locked intervals. Note
the significant broadening when

modulated with an anharmonic
signal, and also the rapid decay
of the width of the AT in the
case of anharmonic modulation
with increased modulation am-

plitudes.

1.0 1.2 1.6 3.7

slopes. Also square-wave locking persisted only up to a
certain value of V e, which was greatly reduced with
respect to the value for the harmonic modulation. Both
these efFects were also found in the simulations. The
green (blue) areas represent the locked states obtained
from Eq. (11) for a harmonic (square-wave) modulation,
and the red is the intersection of the two areas. The ex-
cellent agreement between experiment and model once
again conSrmed the validity of the EBLmodel.

VI. DISCUSSION

For a delay time of ~=105 ms and harmonic modula-
tion, the general behavior in some regimes (lower range
of the modulation amplitude) was similar to those pre-
dicted by the circle map [2]. The width of the AT, within
a limited range of modulation amplitude, followed the
hierarchy described by the Farey tree, and the widths of
the AT increased with modulation amplitude [2].
Signi5cant deviations from the circle map included a non-
monotonic critical line which displayed a very complex
dependence on modulation frequency. The rich structure
of the critical line was probably due to the modulation,
which caused the system to move periodically to the re-
gime where two frequencies were present [Fig. 5(b)].
Thus one efFectively has a system mth three competing
frequencies. Such systems have been shown to display
very complex critical lines with extended AT boundaries,

which consist of alternating chaotic, quasiperiodic, and
periodic regimes [16]. The in8uence of the second fre-
quency was evident for modulation amplitudes above
V 0=0.04 V, where the AT's were split. In this case the
system was locked to the»mit cycle with fundamental
frequency v00=34 Hz. This is particularly obvious in
tongues 1/1 and 2/1, as shown in Fig. 6. In this respect,
the modulation of the quality factor can be seen as a sen-
sitive method for forcing the difFerent modes of the sys-
tem to emerge, and stabilizing them.

Note also that locking was not observable near zero
values in the modulation amplitude. In fact, the limit cy-
cle was stable against the modulation up to some small
threshold modulation amplitude.

VII. CONCLUSIONS

In conclusion, locked states were studied in the
infinite-dimensional NMR laser with delayed feedback.
%ith a delay time of v =10S ms the free-running system
was evolving to an anharmonic ~~m~t cycle, whereas with
a feedback delay of ~=41 ms the system was quasiperiod-
ic. In both cases, locking was observed by adding a
periodic modulation to the feedback signal. The width of
the AT's were signi8cantly larger with an anharmonic
square-wave modulation for small modulation ampli-
tudes. For large modulation amplitudes the width of the
AT rapidly decayed to zero for the square-wave modula-
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tion, but continued to increase for the sinusoidal modula-
tion. Furthermore, the AT broke up into distinct regimes
of locking to»|nit cycles of difFerent fundamental fre-
quencies. All the experimental observations were
modeled extremely well by the 81och-KirchhofF model
with heuristic relaxation.
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