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Fractal growth in hydrodynamic dispersion through random porous media
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Results &om the numerical simulation of hydrodynamic dispersion in model random porous media
are presented. The morphology of a spreading dye (or tracer), as a function of Peclet number,
is studied. In the limit of infinite Peclet number, the dye pattern formed is &actal with fractal
dimension close to that observed in difFusion-limited aggregation (DLA) in both two and three
dimensions. Also, as in DLA, multifractal behavior is exhibited. At moderately high Peclet numbers
the pattern formed by the dispersing dye in a two-dimensional porous medium is &actal over the
width of the &ont as observed in experiment. In the low Peclet number regime contours of equal
concentration are self-afBne with an anomalously large roughness exponent. By comparison, we show

that the pattern formed by a dilute ion concentration driven by an electric field, rather than a Sow
field, is also self-aKne but with the usual roughness exponent of 0.5.

PACS number(s): 47.55.Mh

I. INTRODUCTION

The Bow of Buids through random porous media plays
an important role in a wide variety of environmental and
technological processes. Examples include the spread
of hazardous waste in soils, the displacement of oil in
petroleum engineering, and separation processes such as
chromatography and catalysis. Studies of both miscible
and immiscibe Quid invasion in porous media have re-
vealed a wealth of interesting growth morphologies such
as compact, invasion percolation and difFusion-limited ag-
gregation (DLA) growth [1—21]. Such diverse behavior is
the result of a variety of growth mechanisxns which de-
pend on the Quid properties, the structure of the porous
medii~m, and the external driving force which displaces
the Buids.

Suppose a porous mediuxn is saturated with a New-
tonian Buid. A pressure gradient is applied across the
medium maintaining steady Bow. The Quid Bow is
assumed to be divergenceless and in the limit of low
Reynolds number. If we now introduce a xniscible dye at
the side &om which the Quid is entering, the dispersion
or spread of the dye is locally described by the advection-
diffusion equation [20, 19]

Bc
Bt
—+ v - V'c = D V' c.

Here c is the concentation of the dye, v is the local
Quid velocity, and D is the molecular difFusion constant.
A dimensionless number which is useful to characterize
the coxnpetition between difFusion and advection in the
spread of a dye is the Peclet number [20] Pe= (v)l/D
where (v) is the average Huid speed and l is a length scale
which depends on the pore geometry. When Pe is small,
the difFusion process doxninates the spread of the dye; at
large Pe, advection dominates.

At length scales much larger than the typical pore size,
hydrodynamic dispersion is generally described by the
macroscopic advection-diffusion equation [20]

BC B~C B2C
+V VC = Dr, +DT

Bt Bx2 By2 ' (2)

where C is the macroscopic xnean concentration, DL, and
DT are the longitudinal and transverse dispersion coeK-
cients, respectively, V is the macroscopic xnean veloc-
ity, and z is in the direction of the mean Bow. The
macroscopic advection-difFusion equation is valid when
the squared width of the dispersion &ont scales linearly
with time. When the squared width scales nonlinearly,
dispersion is called anomalous [13,15].

Previous theoretical work [11,13—15] concerning scal-
ing in hydrodynamic dispersion through a disordered
porous xnedium has largely focused on the understanding
of anomalous dispersion and the prediction of Dl, and DT
as a function of Pe and pore geometry. Here, consider-
able progress [11]has been made by applying percolation
[11]concepts to dispersion in random network models of
porous media or by direct simulation of dispersion [14],
at the pore scale, via the numerical solution of Eq. (1).

Recently, experiments by Mal@y et al. [18] have found
a new morphological feature of a Buid undergoing hy-
drodynamic dispersion in random porous media. They
showed that equal concentration contours resulting &om
the displacement of a clear Quid, by a colored Buid with
the saxne viscosity exhibited &actal scaling. It was argued
that because hydrodynamic dispersion does not have an
intrinsic length scale between the size of the pore and the
width of the &ont, which diverges with time, it is reason-
able to expect fractal scaling [18] over this range. How-
ever, since the experimental results described by Malgy
et al. were over a limited range of Pe, it is not clear what
role Pe should have in controlling the morphology of the
dispersing &ont.

In general, the numerical study of pattern formation
and &actal scaling in Quid invasion of porous xnedia

[12, 4—6] has focused on immiscible fluids. These stud-
ies are typically in the quasistatic regixne where capil-
lary forces dominate viscous ones. In the most widely
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studied model of fluid invasion, invasion percolation [12],
the porous medium is mapped onto a network of nodes
and bonds where nodes correspond to pores and bonds
correspond to throats which connect the "larger" pores.
The invading Quid is allowed to pass through the throats
and pores depending on the given pressure drop and the
wetting properties of the Quid. In these simulations self-
similar &actal scaling is observed as the invading Quid
forms a percolating pattern across the porous medium.
Results &om more detailed simulations of Quid invasion
[10, 4], where the wetting properties of the fluids have
been explicity included, exhibit self-similar and self-a%inc
scaling depending on whether the invading Quid is non-
wetting or wetting, respectively [4, 5].

In this paper, results are presented of a theoretical
study of pattern formation associated with the hydrody-
namic dispersion of a dye (or tracer) as a function of Pe in
two- and three-dimensional random porous media. From
the numerical simulation of hydrodynamic dispersion at
the pore scale, it is found that tracer dispersion through
a random porous medium exhibits a fractal or self-afBne
growth morphology depending on whether advection or
diffusion controls the spread of the dye. In the limit of
pure advection, or infinite Pe, the &actal dimension of
the pattern formed by an invading dye is close to that of
DI.A. At intermediate Pe, as suggested by experiments
by Mal@y et al. [18], the morphology of the region de-
fined by a threshold of dye concentration exhibited frac-
tal scaling but with &actal dimension greater than DI.A.
In the low Pe regime the pattern formed by the invading
dye was found to be self-aKne with an anomalously large
roughness exponent. Since it is quite common to draw an
analogy between Huid How [22] and How of electrical cur-
rent in porous media, results from dispersion due to an
electrically driven dilute concentration of ions are given
for comparison. Again, the morphology of equal con-
centration contours of ions was found to be self-afFine,
but with a roughness exponent different &om that deter-
mined in the Huid driven case (for Pe P 0). Results from
these simulations are compared to scaling behavior found
in studies of immiscible displacement of Buids.

Section II summarizes the numerical techniques and
describes the modeled porous media studied. Section III
presents results of simulations. Finally, Sec. IV further
discusses the results and presents conclusions.

II. NUMERICAL CALCULATIONS

A. Models of porous media

Most of this paper will focus on dispersion through
two-dimensional porous media constructed by randomly
placing digitalized disks on a lattice such that they do not
overlap. The disks have diameter 11, in units of lattice
spacing, and the number of packed disks is such that the
porosity P = 0.8. Typical system size was 300 x 300. For
a qualitative comparison of hydrodynamic dispersion in
diHerent porous xnedia, cases where the porosity is very
high (dilute concentration of disks) and where the poros-
ity is near a percolation threshold are also considered.
In the former case the porous medium is constructed

with nonoverlapping disks having diameter 11 but with

P = 0.95 and in the latter, the porous medium is con-
structed by randomly overlapping disks of diameter 23
such that P = 0.4. In addition, dispersion in the infinite
Pe limit for the case of Bow through a three-dimensional
porous medium was studied for a porous medium con-
structed by randomly parking nonoverlapping digitalized
spheres. The systexn size was 100, and equal numbers
of spheres having diameters 15, 11, 7, and 3 were used,
resulting in P = 0.528.

B. Summary of numerical methods

L. /Laid Pom

In the limit of slow incompressible Bow, steady state
Quid How is described by the linear Stokes [20] equations

q'I7 v(r ) = V'p(r ),

V v(r) =0, (3b)

where v and p are, respectively, the local velocity and
pressure fields, g is the Quid viscosity, and r is the lo-
cation. The Huid velocity must vanish at pore/solid in-

terfaces and a pressure difference is applied at the inlet
and outlet faces. To numerically solve the Stokes equa-
tions, we use a finite-difference scheme in conjunction
with the artificial compressibility relaxation algorithm
[23, 24]. The pore space is discretized into a marker-
and-cell (MAC) mesh [24], where pressures are defined
at the nodes and Quid velocity components are defined
along the center of bonds connecting nodes. Each voxel, a
unit square [or cube in three dimensions (3D)], represent-
ing either pore or solid, is centered on a node. Near the
pore/solid interface, noncentered difference equations are
used to improve the accuracy of the solution and to force
the Huid velocities to zero at the pore/solid interface. As
a result, velocity profiles across voxels are accurate to at
least second order [25].

2. Adoection digPusion-

For finite Pe, the advection-diffusion equation was
solved numerically using finite-difference methods [26—
30,24]. The local concentration was specified on the
nodes of the same MAC mesh used in the Quid Bow sim-
ulation. An advantage of using the MAC mesh is that it
naturally forces conservation of matter throughout the
porous mediuxn. To improve numerical accuracy and
prevent oscillations in concentration which may appear
due to steep gradients in concentration, we adopted the
Barton [26, 27] scheme in solving the advection-diffusion
equation. Periodic boundary conditions were imposed
along the sides parallel to the xnain Bow direction. At
the outlet the boundary condition Bc/02: = 0 was main-
tained. Initially, the dye concentration is zero throughout
the porous medium. A fixed dye concentration is intro-
duced at the inlet and spreads according to Eq. (1) until
the pore space is nearly saturated with dye.
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A difFerent numerical method was used to examine the
infinite Pe limit. Here, a line of point particles (also
called tracers), introduced along the inlet, were advanced
by using a second order Runge-Kutta [29] method. Off
lattice Buid velocities were interpolated to second order
accuracy using a Taylor expansion for MAC mesh vari-
ables developed by Chan and Street [28]. The accuracy
of the interpolation scheme was adequate enough so that,
with a small enough time step, a tracer would cross the
porous medium and, via periodic boundary conditions,
closely approach its initial position.

III. RESULTS

A. Pattern formation as a function
of Peclet number

Figure 1 shows dispersion patterns formed by an invad-

ing dye for the case where P = 0.8 and Pe=0, 0.25, 25, and
oo. Here the length scale in Pe is the disk radius. Clearly,
at the lowest Pe, difFusion dominates pattern formation.
Contours of equal concentration generally form a single-
valued function with respect to a line drawn along the

p ~ 5P

]1~ [

1 ~ l

FIG. l.. Panels (a)—(d) show snapshots of different types of pattern formation in hydrodynamic dispersion for pe=0, 0.25, 25,
and oo, respectively. Dye concentration scales such that blue is c = 1 and red c = 0. Green areas correspond to c 0 5 ~he
porous medium was initially saturated arith a red Suid. A blue dye then entered from the left.
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inlet. The small local variation in concentration profiles
is due to the presence of impenetrable disks and relatively
small Buctuations in the velocity fields. As Pe increases,
advection begins to dominate and fingers form as the
dye advances through channels where the Quid velocity
is greatest. Slow How velocity regions take much longer
to invade because the dye enters primarily by di8'usion.
At infinite Pe, well defined fingers forxn as the dye follows
the winding tortuous path of the Quid. It is striking how
the dye tracers can enter the same pore &om diHerent
starting points, asymptotically approaching each other,
and then separate. Experimental studies [31] of hydro-
dynamic dispersion in etched networks are in qualitative
agreement with our simulations.

B. Fractal scaling at Peclet number = oo

To determine the fractal dimension of the pattern
formed in the infinite Pe limit, the dye is allowed to move
through the porous medium until it first percolates (any
part of the dye reaches the outlet). The region that is
invaded by the dye is converted into a digital image. A
box counting algorithm [2] was used for several infinite
Pe images. Here the nnmber of boxes N(l) with sides of
length l needed to cover the pattern scales as N(l) lD',
where D& is the box &actal dimension by definition.

We found Ds = 1.72 +0.06 in two dimensions (Fig. 2).
This value is close to that obtai»ed in DLA (Ds 1.7).
For comparison, n»clerical studies of quasistatic immis-
cible displacement [4, 5] of one fiuid by another in two
dimensions have obtained a Dg 1.S8 and 2 for nonwet-
ting and wetting invasion, respectively. Results simi&ar to
the nonwetting case have also been obtained in studies
of invasion percolation [6] on a square lattice. In qua-
sistatic immiscible displacement of fiuids, the invading
&ont is largely driven by capillary forces as opposed to

the viscous Qow and diffusion as described in this paper.
Therefore, it is not surprising that quasistatic immisci-
ble deplacement of Quids and hydrodynamic dispersion
exhibit diferent &actal scaling.

We also determined the box dixnension of the pat-
tern formed in the three-dimensional porous medium de-
scribed in Sec. IIA. It was found to be consistent with
DLA with D~ = 2.54 6 0.05 (note 2.5 is close to the bulk
&actal dimension of both DLA and 3D percolation).

C. Multifractal scaling

Also studied was whether Pe=ao dispersioD. , as in
DLA, exhibits muti&actal behavior [1, 2]. For instance,
in DLA one considers the scaling of the distribution of lo-
cal growth probabilities along the aggregate &ont. These
probabilities are higher at the tips of the interface (where
it is more likely that a particle is captured) and are
greatly reduced in fjords due to screening. The spatial
distribution of local growth probabilities is known to be
multi&actal in DLA. . In analogy to the DLA local growth
probability, the local velocity along the advecting &ont,
which is typically greater along tips of the interface and
small in regions where the local configurations of disks
restrict How, was examined. Consider the set of normal-
ized interface velocities p~ = vz/P, ".

~ v;, where j is the
jth grid point along the interface and the s»~ is over
grid points the interface intersects. Define p;(c) as the
average normalized velocity in the ith region of size e. In
general, p;(e) e where e is small compared to the sys-
tem size and —oo & o. ( oo. The number of boxes with
the same a is N (e) e ~( ), where f(a) is the &actal
dimension of the subset of boxes with exponent a. Note
that for an ordinary»»iform &actal the f(a) spectrum is
represented by a single point in the f aplane w-hereas a
system characterized by a set of a with associated f(a)
is described as multi&actal. Also, it can be shown that
the maxi»m of f(a) with respect to a is the box dirnen-
sion of the interface [2]. Following techniques described
by Vicsek [2], f(a) was determined for the infinite Pe
case. Results are shown in Fig. 3. Clearly the normal-
ized velocities along the dye interface are described by
a multi&actal set and, as expected, the maxim~~~ value
of f(a) is approximately the box dimension of the dye
pattern as is seen in DLA.

tg 2
0 D. Fractal sealing at Peclet number ( oo

I

0.0
I

0.5
I I

i.0 1.5
&ogio(~)

l

2.0 2.5

FIG. 2. The log of number of boxes N(l) with side length
l needed to cover pattern formed in the Pe=oo case. The
negative of the slope D& = 1.72 is equal to the box dimension
and is close to that found in DLA.

Mal@y et aL [18] provided the first experimental evi-
dence that the morphology of a dispersion pattern formed
on scales smaller than the width of the dispersion &ont
is &actal. They ex~~i~ed equal concentration contours
(c = 0.5) formed in the displacement through a glass
bead pack of a clear Huid by a viscous matched colored
Quid. Mal@y et OL found that the kactal dimension
of the concentration &ont D, = 1.42 + 0.05 (where the
subscript 8 indicates the determination of the box dimen-
sion of an equal concentration contour). We examine the
box dixnension of both the invasion &ont and the pattern
formed by the invading dye for the case where Pe= 25.
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FIG. 3. Plot of the f(a) spectrum associated with normal-
ized velocities along the dye interface. The maximum value
of f(a) is close to the box dimension of the dye pattern.

FIG. 4. The log of the number of boxes N(l) needed to
cover the front formed by an equal concentration contour
where c 0.5. The negative of the slope, equal to the box
dimension of the front, was D, = 1.4 6 0.1. Results here are
presented for a single front. Si~i&ar results were obtained in
other simulations.

To evaluate the &actal dimension of the dispersed dye,
the dye was allowed to advance until a region of 0.5 con-
centration percolated. The image of the invaded region
was then digitalized, thresholding it at c = 0.5. A box
counting algorithm was used to deterxnine the &actal di-
mension of regions having concentration 0.5 or greater.
We found that Dg ——1.8 + 0.05 when averaged over four
realizations. To obtain the &actal dimension of the front,
only those points in the image with concentration be-
tween 0.49 and 0.5 were retained. As in the analysis of
Mal@y et al. , a box counting algorithm was applied to the
image and we obtained D, = 1.4+O.l (Fig. 4). This scal-
ing was exhibited over a decade where the lower cutofF
was the disk diameter. At smaller length scales D, ap-
peared to be closer to 1.2. In the future we plan to carry
out larger scale simulations to obtain a better estimate
of D, . Although these results are close to that obtained
by Ma}@y et a/. , we have reservations about whether this
simulation actually xnodels their experiment and that the
agreement may be fortuitous. For instance, Malpy et aL
claim their results are valid in two dimensions. However,
the actual experiment was performed in three dimensions
so that the 0.5 concentration contour from which they de-
termine the &actal dixnension is a projection &om three
to two dimensions. In addition, their porous mediuxn
was composed of homogenously packed beads while the
system studied here consists of randomly packed disks,
and probably has a much larger distribution of pore sizes.
Further study is needed to determine the universality of
the dispersion &ont s &actal dimension for difFerent re-
alizations of porous medium and Pe. Nevertheless, it
appears that the pattern formed by a dispersing dye is
&actal over the width of the &ont.

E. Self-afHne scaling at lour Peclet number

In the low Pe regime contours of equal concentration
were generally single valued and appear to be self-afBne.
Here the dye may difFuse around a disk before it advances
very far into the neighboring pore space, thus producing
a smoother interface with few overhangs. The roughness
of the equal concentration contours, determined by the
root-mean-squared Buctuation of its height h over hori-
zontial intervals of width l, is

(4)

For a self-affine fractal to(l) l), with roughness expo-
nent P ( 1 by definition [2].

At Pe= 0, or pure diffusion, we obtained P = 0.48 6
0.02. A roughness exponent of 0.5 appears in a large
class of models which describe the evolution of an inter-
face subject to uncorrelated noise, such as ballistic depo-
sition and Eden growth [2]. Such growth models can be
described by the Karder-Parisi-Zhang (KPZ) [7] equation

where h is the interface height, p is the surface tension,
and A is a constant. The first term on the right produces
a smoothing efFect in the interface, the second term is
needed to account for lateral growth, and the third term
represents noise, which depends on the physical process
modeled. In the case of Pe= 0, if you imagine yourself
moving along with a constant average concentration pro-
file you would see local random perturbations in the con-
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stant concentration line due to impinging disks. These
pertubations would disappear as the dye difFuses about
the disk, mimicking a surface tension efFect. So it is easy
to see a connection between growth Inodels described by
the KPZ equation and these simulations.

Surprisingly, when Pe 0.25, m scaled with a rough-
ness exponent of about 0.75 6 0.04 for the same pore
structure (Fig. 5). This anomalously large roughness
exponent is close to that obtained in a completely difFer-
ent invasion process, where an immiscible wetting Quid
invades a porous medium, and has been the subject of
considerable debate [9, 3]. While it remains to be seen
whether there is a mapping between the two problems,
this study shows that such scaling is not unique to wet-
ting invasion and that further studies of hydrodynamic
dispersion may help improve the understanding of such
exponents. For instance, it has been demonstrated that
solutions of the KPZ equation, where the noise term has
power law spatial or temporal correlations [16, 17] can
produce values of P different from 0.5. In these dispersion
simulations, correlations in the How 6elds, a result of the
fluid primarily moving through the set of largest pores
that form a connected path, may produce this anomalous
behavior. However, at large enough scales, such that the
Bow is presumably uncorrelated, we expect the usual 0.5
scaling of roughness to develop.

disk model where P = 0.4. Near the percolation thresh-
old only one connected pore path makes a significant
contribution to How. Targe pockets or regions where
there is negligible Quid Bow greatly restrict the ingress
of the dye in that pore space. Here, the dye mainly en-
ters these pockets by difFusing through a tortuous path.
In this regime, anomalous dispersion [32] is expected to
take place.

Results from the opposite extreme, of dispersion in
highly porous media, are given for the case of P = 0.95
and Pe=25 in Fig. 6(b). Clearly the flow fields are cor-

F. Dispersion in other model porous media

As a qualitative illustration of the important role pore
structure plays in dispersion, two examples of disper-
sion are shown, to contrast with the previous simula-
tions. Figure 6(a) shows dispersion in the overlapping

1.0—

0.6—

0.4—
I

1.4
I

1.8
I

2.0
I

2.2
I

2.4

log„(l)

FIG. 5. The scaling of the root-mean-squared Buctuation
m(l) of a concentration contour where c = 0.5. The slope is
equal to the roughness exponent P = 0.75 + 0.04.

FIG. 6. Examples of dispersion through porous media in
the limit where the pore space is near its percolation theshoM
[panel (a)j and in the opposite limit where the solid fraction
is only 5'Fo [panel (b)j.
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FIG. 7. Electrically driven dispersion of a
dilute ion concentration for Pe= 25. Note the
dramatic difference in the invasion pattern as
compared to Fig. 1(c).

related over very large distances compared to the size of
the disk. This leads to the formation of very long and
broad Bngers. It is surprising, even in this very dilute
case, how nonuniform the dispersion &ont is.

G. Electrically driven concentration

Finally, a comparison is made between the previous
dispersion pattern due to fiuid fiow at Pe= 25 [Fig. 1(c)]
and the dispersion of a dilute ion concentration driven
by an applied electric field (Fig. 7). Here, the same pore
space used in Fig. 1 is filled with a conducting Quid.
The disks are ass»led to be insulating and uncharged for
simplicity [33]. A potential gradient is applied across the
system and the Laplace equation is numerically solved to
determine the electric potential everywhere. The local
electric fields E are obtained from the negative gradient
of the potential. Next, a dilute concentration of ions
is introduced at the inlet. The ion velocity is given by
v = vzFE where v is the ion mobility, z is the ion charge
n»mber, and F is Faraday's constant [34]. The dispersion
of the ions is then described by Eq. (1) where c represents
the ion concentration and v is the ion velocity as given
above.

Clearly, the patterns formed by the two driving forces,
for the same Pe, are quite diferent. It is not unusual
to find textbooks [30] that explain fiuid fiow in terms
of electric current and vice versa, and to understand
Darcy's law as a type of Ohm's law for Quid Qow. How-
ever, there are several important differences, at the mi-
croscopic scale, between the electric fields and Qow fields
in these simulations.

Consider first the Quid case. Note that the Quid veloc-
ity is zero along the pore/solid boundary. In addition, the

solution of Stoke's equation will typically produce a ve-
locity profile, between neighboring disks, that is roughly
parabolic. Therefore, there is very little Bow in regions
only accessible to pores with narrow necks and most of
the Quid Bow is through the set of largest pores that
form a connected path across the porous medi»m. As a
result, a dispersing dye in this porous medium may forxn
long fingers as it moves through the faster channels while
slowly entering regions accessible through narrow necks.

In contrast to Quid Qow, the calculated electric fields
are zero only normal to the solid surface. Also, the solu-
tion of the Laplace equation results in an approximately
constant electric Beld along lines perpendicular to the av-
erage Bow that connect disks. Thus, in the electrically
driven case where V . E = 0, there is significant move-
ment of ions through both the narrow and wide pores
such that no portion of the &ont greatly advances rela-
tive to another.

We find that equal concentration fronts driven by the
electric field are self-adBne. The roughness exponent in
this case was about 0.51 + 0.02 which is smaller than
that for the Quid driven case at Pe= 0.25. The —0.5
exponent is an indication that Quctuations in the equal
concentration contours due to the electric fields are local
(as in the case of Pe= 0) and not correlated over long
distances. Further work is needed to see how this result
would change at higher Pe and for diH'erent pore struc-
tures.

IV. SUMMARY

This numerical study has demonstrated the &acta' na-
ture of hydrodynamic dispersion in model random porous
xnedia. The dye pattern formed in the infinite Pe limit
shares many features with DLA, such as &actal and
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multi-fractal scaling. As Pe number decreases, the pat-
tern formed in hydrodynamic dispersion appears to show
a transition from fractal to self-affine growth (at least
at scales up to the width of the front). At low Pe the
roughness scales with an anomalously large roughness ex-
ponent close to that seen in experiments and simulations
of wetting invasion. In contrast, the pattern formed by
a dilute ion concentration driven by an electric field was
also shown to be self-afBne but with a roughness expo-
nent associated with uncorrelated noise.

Further research is needed to determine the eKects of
finite system size on the results in this work. In addi-

tion, more theoretical and experimental work is needed
to understand the morphology of a dispersing tracer as a
function of pore structure and Pe.
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