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Stability of light beams in nonlinear antiwaveguides
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We consider the standard models of the nonlinear light-guiding systems in the form of a core
sheathed by a cladding with a difFerent refractive index, the Kerr coefBcient being the same in both
media. Recently, it has been demonstrated that this system may support a light beam localized near
the core not only in the case of the usual waveguide configuration, when the core is optically denser
than the cladding, but also in the opposite case (the antiuraveguide) In t.his work, we compute
the efFective Hamiltonian of the localized beam (normalized to the number of quanta) versus the
refractive index difFerence. We demonstrate that, while this dependence is trivial in the waveguide
case, for the antiwaveguide it reveals nontrivial minima at special values of the parameters. These
minima may be a strong argument in favor of stability of the corresponding antiwaveguide states.
We compare the loci of the minima with the possible stability regions predicted recently by means of
another heuristic criterion. The comparison yields an additional argument in favor of the stability.

PACS number(s): 42.81.+b, 42.79.Gn

It is well known that light can propagate in nonlin-
ear waveguides, a silica fiber being a typical example [1].
In a general case, the waveguide may be regarded as a
core of an optically dense material sheathed by a less
dense cladding. However, it has been recently demon-
strated [2] that an antiuraveguide cylindrical configura-
tion, in the form of a less dense core in a denser cladding,
may also support a light beam localized near the axis. It
is necessary to note that, for planar nonlinear optical sys-
tems, the antiwaveguide configurations were considered
in a number of works [3—6].

Evidently, a crucial issue is the stability of these beams
[5—7]. In Refs. [2,7], curves of the eigenvalues (the field

amplitude in the center of the core) of the correspond-

ing nonlinear boundary problem versus the refractive in-

dex difFerence between the core and the cladding have

been obtained numerically. On those curves, nearly ver-

tical segments were found in certain parametric regions.
Heuristic arguments were given in favor of stability of
regions corresponding to the vertical segments.

As a full stability analysis is very hard, in this work

we aim to develop a simplified approach to the stability
problem based upon energy arguments. Using the an-

tiwaveguide states found numerically in Refs. [2,7], we

compute the values of the corresponding effective Hamil-

tonian, normalized to the number of quanta of the beam.
The main finding is that the curves of the normalized
value of the Hamiltonian versus the control parameter

(refractive index difference) demonstrate nontrivial lo-

cal minima in certain regions both for the cylindrical
and planar geometries. It is necessary to emphasize
that the minima are found only for the antiwaveguides,
and never for the usual waveguide states. Intriguingly,
the location of the minima practically exactly coincides,
for both geometries, with location of one of the above-
mentioned vertical segments in the dependences of the
eigenvalue versus the control parameter. Thus the cor-
responding parametric regions have really good chances
to support stable planar or cylindrical nonlinear light
channels. Comparison with the results of Refs. [2,7]
shows also that points at which the eigenvalue depen-
dences have the vertical segments always correspond to
some critical points (which, however, are not necessarily
minima) in the dependence of the Hamiltonian upon the
control parameter. Thus the presence of the vertical seg-
ments seems to be only necessary, but not sufficient, for
the stability. It is also relevant to emphasize that, since
the Hamiltonian minima are discovered, as a matter of
fact, in narrow parametric regions, the results obtained
in this work may give practically important informatiorl
for the search of antiwaveguide configurations producing
stable light beams.

We start our analysis with the general nonlinear
Schrodinger equation governing distributions of the elec-
tromagnetic field envelope u(z, z) along the longitudinal
coordinate z and the transverse coordinate x, which can
be derived from Maxwell's equations for a Kerr focusing
medium and inhomogeneous refractive index [8]:
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Here x is the transverse Cartesian coordinate for the pla-
nar (N = 1) configuration, or the transverse radial coor-
dinate for the axisymmetric cylindrical (N = 2) config-
uration. The "potential" U(x) is defined as follows [2]:
U = 0 for x & x, and U = Uo for x ( x, where x is
the core half thickness or the core radius for N = 1 and
N = 2, respectively. The constant Uo is proportional
to the re&active index difFerence between the cladding
and the core. Negative and positive values of Uo cor-
respond to the ordinary nonlinear waveguides and anti-
waveguides, respectively.

The effective Hainiltonian corresponding to Eq. (1) is

(4)

We limit ourselves to solutions that correspond to the
fundamental mode of the ordinary linear waveguide.
That is, we require bounded, square integrable solu-
tions for Eq. (4) which are non-negative for all val-
ues of r. Furthermore, they must be symmetrical, i.e.,
R( r) = R(r)—and R'(0) = 0, and both R(r) and R'(r)
must be continuous at the core-clad interface at r = r„
where r, = z, /2p(). The constant A = —U()/po plays
the role of the control parameter as in Ref. [2], while
Ro = R(0) will be regarded as an eigenvalue of Eq. (4).

Numerical solutions of Eq. (4) were reported in Ref.
[2] for N = 2, and in Ref. [7] for N = 1. Note that, at
certain values of the parameters, the solution satisfying
this condition is not unique; it is also interesting to note
that, in some cases, the ground-state solution can be a
nonmonotonic function of r (i.e., it may have local max-
ima and minima at r g 0). Once the solution is found,
it can be substituted into Eq. (2) to calculate the corre-
sponding value of the Hamiltonian. Integrating Eq. (2)
by parts, and making use of Eq. (4), one can cast the
Hamiltonian into the following final form:

0 i 2~r dr
(2 )

(5)

Knowing the value of the Hamiltonian corresponding

(2)

where the integration is &om —oo to +oo in the case of
N = 1, and &om 0 to +oo in the case of N = 2. We look
for a solution to Eq. (1) in the form

u(z, z) = ~PpR(r) exp(iP()z),

where r = x/2Po, Po is the propagation constant of the
electric-field envelope (unlike the propagation constant
of the carrier wave P from Ref. [2]), and the multiplier

~0 in front of R(r) is introduced for convenience. Notice
that, due to the presence of this multiplier, the renormal-
ized radial coordinate r depends too on the propagation
constant. Insertion of Eq. (3) into Eq. (1) leads to the
following equation for the real amplitude R(r):

2

+ (N —1)r = [1+Ps U(r)]R —R .

to a given solution may assist in establishing stability of
the solution (see, e.g., Ref. [9]). First, if the Hamiltonian
is negative, this at least guarantees that the waveguide
or antiwaveguide state cannot simply decay into quasi-
linear (small-amplitude) waves, as the Hamiltonian is a
constant of motion, and, as it follows from Eq. (2), the
Hamiltonian of the quasilinear waves is always positive.
Indeed, for small amplitude, one can neglect the fourth
order term in expression (2), so that it becomes positively
definite [alternatively, one can use for the Hamiltonian an
expression of the type (5) in which, however, it is neces-
sary to take into account that the propagation constant
for the quasilinear waves has a sign opposite to that for
the waveguide or antiwaveguide mode]. Moreover, since
any transient process related to emission of the quasilin-
ear waves may only decrease the value of the Hamiltonian
of the remaining state, it is natural to expect (although
this is an assertion based on physical intuition rather
than a rigorous theorem) that a local minimum of the
Hamiltonian, if any, should give rise to a stable state.
On the other hand, if the values of the Hamiltonian are
bounded &om below, this may be viewed as a guarantee
against another sort of instability, viz. , collapse [9]. The
results presented below clearly show that the Hamilto-
nian is indeed bounded &om below, at least within the
class of all the (anti)waveguide modes.

In what follows below, we will display results of nu-
merical computation of the integral (5) with the eigen-
functions borrowed from Refs. [2,7]. It is relevant to
normalize the Hamiltonian, dividing it by another con-
stant of motion, the "number of quanta"

Q = f (2mz)~ 'Ch i+(T)P.

In Figs. 1 and 2, we display the normalized Hamiltonian
h = H/(QPO) versus the control parameter A for some
certain values of r, . In the definition of h, the multiplier
Po was introduced for some technical reasons related to
a procedure of plotting the dependences; actually, at all
the spots of interest, Po will be practically a constant, so
that this factor does not play any role. Anyway, follow-
ing the definitions of the scaled quantities r, Q, and h, it
is easy to interpret the results displayed below in terms
of the physical parameters of the system. In most cases,
the computations yield rather trivial dependence with no
local minima of h. However, for values of r, close to 2.3,
we were able to find a local minimum of h(A) located at
some negative value of A, i.e., just for the antiwaveguide
(see top portions of Figs. 1 and 2). In the lower portions
of Figs. 1 and 2, we display the eigenvalue Bo versus A
(see Ref. [2]). One notes that the local minima of h(A)
exactly coincide with the values of A corresponding to
vertical segments of Ro(A). In Refs. [2,3] it was argued
heuristically that the vertical segments might correspond
to stable configurations. Note that near the vertical seg-
ments the parameters A and P() change insignificantly.
The results shown in Figs. 1 and 2 give an additional
strong argument in favor of stability of the configurations
corresponding to these values of A.

The purport of the results obtained is that they indi-
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FIG. 1. The normalized Hamiltonian h vs the control pa-
rameter A in the planar system (N = 1) for the core's thick-
ness r, = 0.80 (broken line) and r, = 2.3 (solid line). Beneath
it, the eigenvalue Ro is shown vs A as per Ref. [3].

cate how to choose very special values of the parameters
r, and A of the nonlinear system, at which the system
may support stable antiwaveguide states. For example,
for the planar antiwaveguide, the value A = —1 seems el-
igible. It is noteworthy that we have never been able to
And a local minimum of the Hamiltonian for positive A,
i.e. , for the ordinary nonlinear waveguide. Note also that
vertical segments of Ro(A) were found (see Refs. [2,7])
not only near the Hamiltonian minima of the present
work but in other regions of the parameter A, as well.
In each case, the vertical segments are correlated with
certain peculiarities in the corresponding curves of h(A).
As an example, in Figs. 1 and 2 we display the results
obtained for r, = 0.80 (N = 1) and for r, = 0.86 (N = 2)
(the presence of the turning point in the plots shown in
Fig. 1 means that there is no solution to the left of it,
and there are two diff'erent solution branches on the right

FIG. 2. The same as in Fig. 1 in the cylindrical system

(N = 2) for the core's radius r, ——2.3 and r„== 0.86. The
plot of Ro vs A is taken from Ref. [2].

side). Comparing the upper and lower parts of these fig-
ures, we note that the vertical segments are located a,t
values of A at which some critical points exist with a very
steep variation of h(A) but not local minima. However,
there is no reason to assume that these critical points (un-
like the local minima) should give rise to stable states.
This observation implies that the presence of the verti-
cal segments may be only a necessary, but not sufhcient,
stability condition.

In conclusion, we consider an example for pulse param-
eters applicable to nonlinear silica-fiber antiwaveguides
[2]. Assuming pulse energy of 4.4 x 10 3, pulse dura-
tion of 10 ps at carrier wavelength of 1 pm, and Kerr
coefficient of 1.83 x 10 m2/Vz [10], with refractive
index diH'erence of 0.01 between the core and cladding,
one obtains r, = 2.3 and A = —1.5 which corresponds
to the Hamiltonian minimum in Fig. 2. Note that the
optical energy density approximately equals the density
necessary for self-focusing in a homogeneous material.
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