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Stochastic resonance in an autonomous system with a nonuniform limit cycle
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In a recent numerical study, Gang et al. [Phys. Rev. Lett. 71, 807 (1993)] presented the first
example of stochastic resonance in an autonomous system. They considered a two-variable model in
which a limit cycle is born as some parameter is varied. Their numerical experiments revealed various
noise-induced effects, including a noise-induced shift in the frequency of the limit-cycle oscillations,
and noise-induced oscillations in the absence of a deterministic limit cycle. We show that both of
these effects are simple consequences of the nonuniformity of the motion along the limit cycle.

PACS number(s): 05.40.+j, 05.20.—y, 05.45.+b

The response of dynamical systems to noise is an ac-
tive field of study [1]. In particular, the phenomenon of
stochastic resonance [2] continues to attract considerable
attention [3]. In its simplest form, stochastic resonance
occurs in a bistable system driven by a periodic external
force. The periodic force raises the potential wells alter-
nately; when the noise is sufficiently strong, the particle
can jump over the potential barrier. The resulting parti-
cle motion is coherent with the driving force. Stochastic
resonance has recently been observed experimentally in a
system where the noise was purely thermal [4], as well as
in some biological systems [5-7]. In addition, it has been
found that noise can generate coherent motion in globally
coupled maps [8] and globally coupled oscillators [9].

In a recent Letter, Gang et al. [10] presented numeri-
cal simulations of a two-dimensional autonomous system
for which the inclusion of noise generates stochastic reso-
nance. The novel aspect of their results is that stochastic
resonance occurred in the absence of an external periodic
force. The model considered in [10] exhibits a stable limit
cycle for certain values of a control parameter. In this
regime, the power spectrum has a § function at the fre-
quency of the limit-cycle oscillations. Noise was found to
broaden the peak and to shift it to higher frequencies. In
another regime of the control parameter, the determin-
istic system does not have a limit cycle, yet noise was
found to induce a peak in the power spectrum at a defi-
nite frequency. This frequency was also observed to shift
to higher values for increasing noise strength. Further-
more, a plot of the height of the peak versus the noise
strength showed a clear resonancelike behavior.

In this Brief Report, we reexamine the model of Gang
et al. [10] and point out that their numerical results have
a simple explanation. Written in polar coordinates, the
system is

F=r(1-1%) +ql(t), (1)

0 = b —r2cos(20) + q2(t), (2)

where b is the control parameter and gq;(t),q2(t)
are white noise terms. In the absence of noise, the

phase portrait depends on b as follows. For b > 1
the system has a stable limit cycle with » = 1 and with
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period [”"d6/[b — cos(26)]. For b < 1 this limit cycle
no longer exists; instead we have four fixed points on the
circle r = 1 with = +3 arccos(b). Two of those fixed
points are stable (see Fig. 1) and the other two are un-
stable. The stable and unstable fixed points approach
each other as b approaches 1. They collide at 6 = 1 and
disappear for b > 1.

First consider the case b < 1. Without noise, the sys-
tem will settle in one of the two stable fixed points. The
effect of noise is to kick the system away from a stable
fixed point. When b is close to 1, the stable and un-
stable fixed points are close together. Therefore, if the
noise is strong enough, the system will occasionally be
kicked to the far side of the unstable fixed point, after
which it will flow rapidly around the circle towards the
other stable fixed point. Near this second fixed point, the
same scenario will apply again. This leads to coherent
motion around the circle with a certain frequency. It is
now clear why increasing noise will increase the resulting
frequency: the system is kicked “over the hump” more
often, and thereby skips the slowest part of the circle.

To test this idea we have simulated the equations
above, where for simplicity we have added a noise term
only to the equation for 6 (g; = 0). In this case we are
simulating the motion of the system on the circle r = 1.
The noise term is generated by choosing a random num-

FIG. 1. The phase portrait of the system with two stable
fixed points (solid circles), two unstable fixed points (open
circles), and the flow on the circle r = 1.

3249 ©1994 The American Physical Society



3250

0.04

0.03

®, 0.02

0.01

0'000.5 1.0 15 2.0

D
FIG. 2. The frequency w, of the peak in the power spec-
trum as a function of the noise strength D for b = 0.99.

ber from a uniform distribution between —1 and 1, and
then multiplying it by a noise strength D. We then nu-
merically integrated the system, using the same method
as in [10], and calculated the position w, of the peak in
the power spectrum [11]. The result is plotted in Fig.
2. For small noise strength, w, increases roughly linearly
with D. This is as expected from the arguments above.
If one doubles the noise strength, one expects that the
system will be kicked out of the stable fixed point at twice
the rate, and hence the frequency will double.

Now suppose the system has a limit cycle (b > 1). The
frequency shift of the peak is also explained by the above
picture. Without noise, and for b close to 1, the motion
around the limit cycle is highly nonuniform; the system
spends a long time passing through the slow regions at
0 = 0 and @ = 7, which are the ghosts of the former fixed
points. The effect of the noise is to help the system to
skip these slow regions. Consequently, the frequency will
increase in the presence of noise.

This can be seen most easily in Fig. 3, where we have
plotted the time series of # with and without noise. The
thick line shows 6 without noise: the system spends rel-
atively long times near § = 0 and # = w. In contrast,
when we add noise (in this case, D = 0.01), we find the
time series plotted as the thin line in Fig. 3. The system
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FIG. 3. The time series of the system in the case of a limit
cycle (b = 1.005). The thick line is the noiseless case while
the thin line is for D = 0.01.

spends less time in the slow regions of the limit cycle and
hence the resulting frequency is increased.

Although the system studied here has two slow regions
(because of a symmetry in the model), the same effects
would occur even if there were only one [12]. The crucial
property of the system is that a saddle-node bifurcation
occurs on an invariant cycle, thereby creating a limit cy-
cle along which the motion is strongly nonuniform. This
mechanism for the creation of a limit cycle is known as
an infinite-period bifurcation; it is common in physical,
biological, and chemical systems [13]. Therefore the ef-
fects discussed here should be experimentally observable
in a variety of systems. On the other hand, one would
not expect to find this type of stochastic resonance in
systems whose oscillations are created by a Hopf bifurca-
tion, since those systems have relatively uniform motion
on their limit cycles.
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