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Stabilizing unstable periodic orbits in fast dynamical systems
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We present a technique for stabilizing unstable periodic orbits in low-dimensional dynamical
systexns that allows for control over a large domain of parameters. The technique uses a continuous
feedback loop incorporating information from many previous states of the system in a form closely
related to the amplitude of light re8ected from a Fabry-Perot interferometer. We demonstrate that
the approach is well suited for practical implementation in fast systems by stabilizing a chaotic diode
resonator driven at 10.1 MHz.

PACS number(s): 05.45.+b

In many cases of practical importance, it is desirable to
render a chaotic system periodic by applying only small
perturbations to some accessible system parameter. An
eKcient schexne for achieving such control was proposed
by Ott, Grebogi, and Yorke (OGY) [1].The key idea is to
take advantage of the unstable periodic orbits (UPO's)
embedded in the chaotic attractor. As the system ap-
proaches an UPO, the strength of the perturbations re-
quired to keep it there vanishes, so that the smallness of
the feedback signal is limited only by the noise level in
the system.

In the simplest implementation of the OGY idea, a
variable is measured as the system passes through a sur-
face of section, the difference &om a known fixed point
value of the surface of section xnap is determined, and a
control parameter is adjusted accordingly. Several vari-
ations of this method [2] have been successfully applied
to many experixnental systems with natural &equencies
ranging from 10 Hz to 10s Hz [3]. None of these tech-
niques, however, can be scaled up to the significantly
higher &equencies encountered, for example, in high-
speed electronic or optical systems. They require accu-
rate sampling of a variable at discrete times in order to
compare it with a reference value and involve discontin-
uous adjustments of the control parameter [4].

An alternative implementation, recently introduced by
Pyragas [5], employs continuous feedback designed to
synchronize the current state of a system and a time-
delayed version of itself, with the time delay equal to
one period of the desired orbit. We refer to this method
of control as "time-delay autosynchronization" (TDAS).
The feedback in TDAS does not require rapid switching
or sampling, nor does it require a reference signal corre-
sponding to the desired orbit. Unfortunately, the domain
of system parameters over which control can be achieved
via TDAS is limited [5]. The method fails for highly
unstable orbits.

In this paper, we introduce a generalization of TDAS
that is capable of extending the domain of effective con-
trol significantly. We refer to the scheme as "extended
TDAS" (ETDAS). We show, for the discrete analogue of
ETDAS, how utilization of the information from many
previous states of the system allows control to be main-
tained for arbitrarily highly unstable fixed points. While
the use of many previous states of the system or many

past iterates of its surface of section map has been con-
sidered by others [6—8], ETDAS has the advantage of
being easy to implement in high-speed systems. As evi-
dence, we present experimental results on the control of
a chaotic diode resonator operating at 10.1 MHz.

For a dynamical system with a measurable variable (
and an UPO of period T, ETDAS prescribes the contin-
uous adjustment of an available systexn parameter by a
feedback signal

x„—(1 —R) ) R" 'x„
k=1

= p(x„—x„g) + Re„,.
(2)

The first form is obviously analogous to Eq. (1), while
the second, equivalent form is the easiest to study ana-
lytically.

For concreteness, we consider the controlled logistic
xnap,

f(x;e) = (Is+ e)x(1 —x), (4)

where 0 & R & 1 and T. The case R = 0 corresponds to
TDAS, the scheme investigated by Pyragas [5]. We will
see that in the limit R -+ 1 UPO's with arbitrarily large
negative Floquet multipliers can be stabilized. We em-
phasize that, for any R, e(t) vanishes when the system is
on the UPO, since ((t kT) = ((t)—for all k. Thus, when-
ever ETDAS is successful there is no power dissipated in
the feedback loop.

The factor that limits the domain of control for a given
R is not simply the continuity of the feedback: stabiliza-
tion is known to be possible using continuous feedback
of the difference between the current state of the system
and the desired position on the UPO [9]. Rather, the
problem stems &om the use of a comparison to a past
state of the systexn instead of an ideal reference state. To
understand the latter effect, it is helpful to study a sim-
ple discrete version of ETDAS. We consider a fixed point
x' of a single-variable map, x„+q ——f(x„;p), where p is
an accessible control parameter that is adjusted on each
iteration by an amount e„. The feedback is given by
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though the analysis clearly applies to any fixed point of
a smooth, single-variable map. Results concerning tra-
jectories that stay close to a fixed point x* are universal
properties depending only on the quantity dx'/de and
the Floquet multiplier v = f'(x*).

The logistic map has a fixed point at x* = (p —1)/ti
which is unstable for p ) 3. To determine the values
of p that render this fixed point stable for a given R,
the controlled map is linearized about x*. Letting y„=
x„—x' and e„=y„—y„ i, Eqs. (3) and (4) yield
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FIG. 2. Convergence properties of the controlled logistic
map. Rate of convergence for B = 0 and 0.5 as a function of
feedback gain p, shown for p = 3.7.

where v = 2 —p, and p = p(l —v)(dx*/de) = ~(lj, —1)/p, '".

Stability of the Axed point requires that y„~ 0 as
n ~ oo. A standard analysis of Eq. (5) reveals that the
domain of stable control in the (v, P) plane is bounded
by the curves p' ( 1, 2p'+ v' ) —1, and v' ( 1, where
v' = v + R —Rv and p'—:p + Rv [10]. The niaxi-
mum value of ~v~ for which control can be maintained
corresponds to v' = —3, which in turn corresponds to
v = ( —3—R)/(1 —R). For R = 0 (the original TDAS) one
finds that control cannot be maintained for v & —3 [6].
The maximum value of ~v] can be made arbitrarily large,
however, by choosing R close enough to unity. The value
of P required for stabilization at this v is (1+R) /(1 —R),
which also becomes large. Figure 1 compares the domains
of e8'ective control for the logistic map with R = 0.5 and
R = 0, clearly displaying the advantage of ETDAS ~

The domain of eff'ective control obtained with ETDAS
may be compared to the corresponding domain for the
most straightforward implementation of the OGY idea
that uses comparison to a known fixed point [1]. If we

take e„=p(x„—x*), control is achieved in the infinite
strip defined by ~p + v] ( 1. Using ETDAS, the limit
R + 1 yields precisely the same domain, though only for
v & 1.

The rate of convergence to the Axed point for the lin-
earized map [Eq. (5)], defined by e„exp(an) for large
n, is given by a = ln ~P' if D ( 0 and a = ln[( —P' —v'+
~D)/2] otherwise, where D—:(P'+ v') —4P'. Figure 2
shows the rate of convergence toward the fixed point as
a function of p for fixed y, at R = 0 and 0.5. (The fastest
convergence for a given p is obtained at D = 0.) The sim-

ilarity between the shape of the R = 0 curve and plots
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FIG. 1. Enhancement of control using ETDAS, illustrated
with the parameters appearing in Eqs. (3) and (4). The region
outlined in heavy lines produces a stable fixed point of the
controlled map with B = 0.5. For comparison, the dashed
lines (light lines) show the stable region for R m l (B =- 0).

of the inaximum Lyapunov exponent in continuous sys-
tems controlled by TDAS [5] suggests that the discrete
map problem does indeed contain many of the crucial
ingredients of the continuous problem.

The basin of attraction for convergence to the fixed
point for the controlled nonlinear map [Eqs. (3) and (4)]
is finite. It is found that the system does not always
converge to the fixed point (and e„remains large) for
certain initial conditions. We expect, however, that the
fixed point generally can be reached by a tracking proce-
dure beginning in a regime where the desired behavior is
stable [11].Some care may be required, as it appears that
the basin of attraction becomes smaller as R is increased.

The generalization of these results to higher order cy-
cles becomes somewhat complicated. It is clear that any
unstable q cycle of a discrete map f(x) can be stabi-
lized by applying ETDAS to g(x) = f~(x) The ap. -

propriate analogy to continuous control, however, is to
adjust the control parameter on every iteration of f, us-

ing e„= p(x„—x„~)+ Re„v. With no control, the
four-cycle becomes unstable at p = 3.54... . Numerical
studies show that with R = 0 control of the four-cycle
of the logistic map control cannot be maintained above

3.62, but with R = 0.5 control can be maintained
up to p 3.75.

While our analysis clearly demonstrates the potential
usefulness of ETDAS, it is not entirely transparent why
it is so successful. A frequency-domain analysis of the
controlled system provides a partial answer. Obviously,
there should be no feedback when the system is on the
UPO and hence the transfer function F(w) of the ETDAS
feedback generator must satisfy F(0) = 0. On the other
hand, sufhcient feedback must be generated at all other
frequencies. (For the discrete map we define the time for
one iteration to be unity and consider only 0 & w & x.)

Let w„(Ri) be the frequency at which the entire cori-

trolled system first becomes unstable as P is increased at
fixed v with R = Ri, and let v, (Ri) be the largest mag-
nitude of v for which control is possible with R = Rq .

A straightforward calculation shows that for R & Ri,
one obtains more sensitivity in the feedback at ~„(Ri)l,
without significantly altering the sensitivity at higher fre-

quencies; F(ur) becomes fiat over a broader range of fre-

quencies below and including ~ = vr. This results in an
enhanced domain of control for each v and an increase in

lv. (R) I

Some remarks concerning the relation of ETDAS to
other techniques may be helpful. (1) Bielawski et al. .

[6] have sho~n that a fixed point of a map can be sta-
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bilized for arbitrarily large ~v~ by applying TDAS-type
feedback only on every other period. This requires, how-

ever, that the feedback be switched on and off' every pe-
riod, whereas ETDAS allows stabilization for arbitrar-
ily large v using a completely continuous feedback. (2)
Rollins et al. [7] have studied a control protocol similar
to Eq. 3 but with the crucial difference that f„—(„ i is
replaced by ( —g', where (* is the fixed point value. The
analogy to continuous systems in this case would require
that a signal executing the desired continuous motion
be available for reference (a method also considered by
Pyragas [5]) rather than a time-delayed signal taken from
the system itself. (3) Flake [8] has considered a scheme
similar to ETDAS in which the feedback is proportional
to („—~~ P& i(„s. In the limit N -+ oo, this be-

comes equivalent to the R ~ 1 limit of ETDAS. Unlike

ETDAS, however, direct analog implementation of this
scheme requires N delay lines and correspondingly many
amplifiers. (4) For ETDAS, no property of the desired

UPO need be determined in advance except its period

[5,6]. In periodically driven systems, where the period of
the orbit is determined by the driving, no features of the
VPO need ever be explicitly determined.

To con6rm the e8ectiveness of ETDAS in a continu-
ous system and demonstrate its practicality [12],we have

used it to control the dynamics of a chaotic electrical
ciruit: a diode resonator [13] driven at 10.1 MHz (cor-
responding to a drive period under 100 nsec). The ET-
DAS algorithm was implemented using analog circuitry
as shown in Fig. 3. The voltage drop V(t) across the
resistor (proportional to the current flowing through the
circuit) was used as the accessible dynamical variable.
It was sensed with a high-impedance buffer so that the
resonator was not disturbed.

The infinite series in Eq. (1) was generated with a sin-

gle delay line whose output, weighted by R, was summed
with its input V(t). The propagation time through this
loop (including the amplifier propagation delays) was

precisely adjusted to the period T of desired UPO. The
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voltage in the loop was sensed by a bufI'er, weighted

by (1 —R), subtracted from V(t), and amplified by an
amount p to produce the ETDAS feedback voltage V, (t).
Finally, V, (t) passed through a switch, was summed with
the the drive voltage (denoted by Vg sin~t), and injected
into the resonator.

We chose to study the period-4 orbit because it could
not be controlled beyond V& = 2.3 V using the original
TDAS algorithm (R = 0). For increasing R, the res-
onator could be controlled for higher and higher drive
voltages. Successful control was indicated by the obser-
vation of a small feedback voltage [V,(t) ( 0.005 V~] and
the observation of a stable, periodic form of V(t). For
parameters corresponding to successful control, it was
found that the system always approached the same orbit
independent of its state when control was initiated at an
arbitrary time, in contrast to the convergence behavior
observed under some conditions for the logistic map.

Figure 4(a) shows V(t) corresponding to the period-4
orbit when R = 0.65, p = —2.1, and Vg ——2.4 V together
with the associated ETDAS feedback voltage. Analysis
of the return maps of the controlled and uncontrolled
systems reveal that the stabilized orbit is indeed an UPO
of the uncontrolled system and not an orbit created by
the feedback circuitry. We found that the smallness of V,
was affected by slight distortion in the delay line which we
minimized by predistorting the wave form with a single-
pole filter. It is seen in Fig. 4(b) that the maximum value
of V, is no greater than 0.4% of V~ which is comparable
to the noise level in the system (0.1'%%uo).

Figure 4(b) illustrates that ETDAS significantly in-
creases the domain of control of the period-4 orbit in
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FIG. 3. Analog implementation of ETDAS used to con-

trol a diode resonator. Components: high-impedance buffers

(BUF), inverting op amp (—AMP), inverting, summing op
amps (—Z), attenuator (ATTEN. ), and low-loss variable de-

lay line. The time lag tp between BUF~ and —Zz was 10
nsec.

FIG. 4. Control of an unstable four-cycle of a diode res-
onator. (a) The controlled orbit and the ETDAS feedback
voltage at Vq = 2.4 V and R = 0.65. (b) The parameter
region where a stable four-cycle is obtained for R = 0 (the
original TDAS) and R = 0.65. The dashed vertical line marks
the values of Vz at which the four-cycle becomes unstable in
the absence of feedback. The criterion for successful control
is when the maximum feedback drops below 0.005 Vg.
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comparison to the original TDAS scheme. It is seen that
a larger range of feedback gains p provide control at a
given Vg and that control is possible for all values of Vg

for R = 0.65. These results are consistent with expecta-
tions based on the discrete-map analysis.

Our analysis and experimental evidence suggest that
ETDAS is a promising approach to the stabilization of
UPO s in systems with high frequency chaotic oscilla-
tions. It is especially attractive since it lends itself natu-
rally to an all-optical implementation. Note that Eq. (1)
represents precisely the signal reQected from an interfer-
ometer consisting of mirrors with reQectivity R, spaced
such that the round-trip transit time in the cavity is equal
to the period of the UPO [14]. We speculate that a Fabry-

Perot interferometer could be used to implement ETDAS
and suppress deterministic chaotic Huctuations that or-
cur on the nanosecond time scale in laser diodes.

Note added in proof . After submission of this
manuscript we became aware of another mention of a
version of ETDAS by Abed, Weng, and Chen [15].
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