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Symbolic dynamics of the Lozi map is described for both positive and negative Jacobians. Based on
the ordering rules of symbolic sequences, the geometrical structure of foliations associated with attrac-
tors is constructed for some typical cases. The critical parameters between one- and two-piece attractors

are also given.
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I. INTRODUCTION

Symbolic dynamics provides almost the only rigorous
way to understand all possible motions of dynamical sys-
tems. Symbolic dynamics of one-dimensional (1D) maps
on the interval is well understood [1,2]. Recent progress
is mainly in the extension from 1D to two-dimensional
(2D) maps. Two-often-studied 2D models are the Hénon
map [3] and its piecewise linear version, the Lozi map [4].
By considering forward and backward foliations, which
are a natural generalization of stable and unstable mani-
folds [5], a 2D map may be decomposed into two coupled
1D maps. There is a procedure to construct a “good”
partition for the Hénon map from tangencies between
forward and backward foliations. For the Lozi map the
situation is much simpler since a partition is given by the
definition of the map at the beginning. The symbolic
description of the partition line determines the admissi-
bility conditions for allowed orbits [6,7]. Furthermore,
foliations are well ordered according to their symbolic se-
quences. Symbolic dynamics helps us to understand the
geometry of attractors. It is known that for relatively
weak dissipation a two-piece attractor may exist even if
the fixed point possesses homoclinic points. In Ref. [8]
an approximate criterion for the critical parameters be-
tween one- and two-piece attractors was proposed. In
this paper we shall perform a symbolic analysis of the
problem to obtain a better estimation.

The paper is organized as follows: In Sec. II we give a
brief summary of symbolic dynamics of the Lozi map. In
Sec. I1I we then apply the symbolic dynamics to discuss a
simple example, the boundary for the existence of a finite
attractor. Section IV is the main part of the paper, where
we determine critical parameters between one- and two-
piece attractors by means of symbolic sequences. Based
on ordering rules of foliations, we sketch the geometry of
attractors. Finally, in Sec. V, we make some concluding
remarks.

II. SYMBOLIC DYNAMICS OF THE LOZI MAP
The Lozi map is defined by
x'=y, y'=1+bx—aly|. (1)

It is expected that the Lozi map exhibits certain topologi-
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cal similarities to the Hénon map.

We assign the letter L to the half plane x <0, R to
x>0, and C to x =0. For a given initial point (xy,y,),
we may encode its orbit according to the sign of y coordi-
nates as

e oSme . S5S7@S0S Sy - Sy .

where s, (R or L) indicates the sign of y, s, corresponds
to the nth image, and s, corresponds to the mth preim-
age. The “present” position is indicated by a bullet,
which divides the doubly infinite sequence into two semi-
infinite sequences, the backward sequence . . .s_. . .555;@
and the forward sequence @sys;S;...S,.... A straight
line segment on which all the points have the same for-
ward sequence @®s,S, ;... forms a forward foliation.
Assume that the line equation for this foliation is

y—k,x=§, . (2)

The slope k, and intercept &, may be calculated from the
forward sequence by means of the recursion relations [7]

En=kn(&y 1 —1)/b, (3a)
k,=b/(ae,+k, ), (3b)

where €, denotes the sign of the y coordinate of any point
on the foliation, and k, , and £, ,, correspond to the
shifted sequence ®s, 5, +,. . . . Similarly, for the back-
ward sequence . . .s, _;5,®, we have the line equation

y—h,x=n, @)
and the relations

h,=—b/h,=b/ae,+h,_,), (5a)

M=1+h, _m,_; . (5b)

Foliations are well ordered according to their symbolic
sequences. More specifically, a bundle of forward folia-
tions intersecting with some backward foliation is or-
dered as

®E,R...>®E,L..., ®O,R...<@0,L..., (6

where finite strings E, and O, consisting of letters R and
L contain an even and an odd number of R, respectively.
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The ordering rules for backward sequences are different
for different signs of . For b >0 the rules are

...RE;@>...LE®, .. RO@<...LO®, (7

where strings E; and O, contain an even and an odd num-
ber of L, respectively. For b <O the ordering rules are
similar to (6), i.e.,

...RE,e>...LE,®8, ...RO,@<...LO,®. (8)

The above ordering rules can be understood from the *‘lo-
cal” ordering that both eigenvalues of the fixed point R ™
(and L ®) for the Lozi map with b <0 are negative (and
positive), while for the map with b >0 both are of oppo-
site signs, and only the stable eigenvalue of the fixed point
R © and the unstable eigenvalue of L * are positive.

Since both forward and backward sequences are well
ordered, tangencies between them put restrictions on al-
lowed sequences. (For a piecewise linear map the term
“tangency” still makes sense. For example, we may call
the case when two backward foliations QR@® and QL@
meet with some forward foliation ®@P at a single point a
tangency). A point of tangency on the partition line y
axis (C®) may symbolically be represented as QC®P.
The sequence UV where U@ is between QR® and QLe@,
and @V > @P, must be forbidden by the tangency QC®P.
(This is the meaning of a pruning or forbidden rectangle
in the symbolic plane [6,7,9].) Consider a finite set of
tangencies {Q;Ce®P;}. If the shift of a sequence
.. Sg_ @SS 4 - - satisfies the condition that the back-
ward sequence . ..s; _,5; @ is not between Q,R@® and
Q;Le, and at the same time ®P; > @s;s; ;. . . for some i,
then this shift is not forbidden by any tangencies, due to
the well-ordering property of foliations. Thus, we may
say that the shift is allowed according to that tangency.
If all shifts of the sequence are allowed according to the
set of tangencies, then the sequence is admissible. Based
on the above described symbolic dynamics of the Lozi
map, we shall study some typical cases in the Secs. III
and IV.

II1. BOUNDARY FOR THE EXISTENCE
OF A FINITE ATTRACTOR

When varying the parameters of the map, the structure
of the attractor is changed. For b >0 the smallest and
greatest backward sequences are R “® and R L@, while
the border forward sequences are ®RL “ and ®L . For a
fixed b at a critical value a, of a, the foliation ®RL * is
tangent to R “@®@ and R *L@ at the y axis. The tangency
or the tangent point may be denoted by R “CeRL ~.
The tangency condition is

E(@RL”)=n(R @), 9)

from which the value a, =2—»5 /2 can be determined [8].
If a is further increased, there will no longer be any finite
attractor. Images (R “CRL“®L ) of the tangent point
R*CORL* are on the stable manifold ®L *, while its
preimages (R “@R*L *) are on the unstable manifold
R “e@. Foliations associated with these points are ar-
ranged according to the ordering rules as sketched in Fig.
1.
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FIG. 1. Manifolds and their symbolic sequences at the criti-
cal situation of heteroclinic tangency R “C@®RL ™~ for b>0.
The scale is not relevant. Only the relative position has a mean-
ing. Heteroclinic points are numbered according to their
sequential order on the orbit.

For b <0 the border forward sequences are still the
same as those for b >0, but the border backward se-
quences are now L “@ and L “Re@. The boundary for the
existence of a finite attractor then becomes the tangency
L*CeRL ~. This tangent point, some of its images and
preimages, and foliations associated with them are shown
in Fig. 2. From

k=k(®L*)=h(L*@)=(a—Va*+4b)/2 ,

b
(k +a)k +b) ’

: (10)
L~ @)= 1% =((@RL )=

the condition for the critical a, is

FIG. 2. Manifolds and their symbolic sequences at the criti-
cal situation of homoclinic tangency L “ C@RL * for b <O0.
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TABLE I. Admissibility of periodic sequences up to period 7.
Here the letter X stands for R or L, and only nonrepeating
strings of the sequences are given. A shorthand notation is
used. If the kth shift of the periodic sequence P“@®P~ is al-
lowed or forbidden by a tangency T, we write the criterion as
kT or kT, respectively.

Sequence Period  Admissibility Criterion
X 1 Allowed 0K
RL 2 Allowed oJ1J
RLRR 4 Allowed 0J1J2J3J
RLR*X 6 Allowed 0J1J2J3J4J5J]
RLR*X 7 Allowed 0J1J2J3J4J5J6J
RLR*X 5 Allowed 0J1J2J3J4J
RLR*LRX 7 Forbidden oJ
RLX 3 Allowed 0I1K2K
RL?RLR 6 Allowed OH1K2K3H4K5K
RL?*RLRX 7 Forbidden or
RL?RX 5 Forbidden or
RL*R*Xx 7 Forbidden or
RL?R*X 5 Forbidden oI
RL?R*X 7 Allowed OI1K2K3K4I5K 6K
RL*X 4 Allowed OH1K2K3K
RL*RLX 7 Allowed OH1K2K3K4I5K6K
RL3RX 6 Forbidden oI
RL’R*Xx 7 Forbidden or
RL*X 5 Allowed 0G1K2K3K4K
RL*RX 7 Forbidden oI
RL*X 6 Allowed 0G1K2K3K4K5K
RLX 7 Allowed 0G1K2K3K4K5K6K
2a3+3a%h —4a?—8ab —4b2*=0 . (11)
For the combination of a=1.77798 and

b=—0.60526 satisfying relation (11), there are five
tangencies on the y axis:

G: L*R*L?CeRL®R*L’RL. ..
H: L*RLC®(RL’R)’LR? ..

I: L°R2Ce(RL??LRL?. ..

J: L*R*LRCORLR*LR)’RLR. ..
K: L*RCOR’LR*LR?. ..,

from which the admissibility of all periodic orbits up to
order 7 can be examined. The result is given in Table I.
Furthermore, from the tangencies G and K it can be
verified that any sequences consisting of only the seg-
ments RL* and RL? are always allowed, so chaotic orbits
can be constructed with them.

IV. CRITICAL PARAMETERS
BETWEEN ONE- AND TWO-PIECE ATTRACTORS

We shall consider only the case of b >0 since discus-
sions for b <0 are similar. For the unstable periodic or-
bit P~ symbolic sequences of its unstable and stable man-
ifolds are respectively of the types P~ We and @WP >,
where W stands for some finite string. Since an attractor
is associated with unstable manifolds of periodic orbit on
the attractor, a necessary condition for P to belong to
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the attractor is the existence of a homoclinic point or a
sequence P*UP®, where U is a nonblank string. As-
sume now that the periodic orbit P is on an attractor.
If no heteroclinic points from P ® to another periodic or-
bit Q * exist, or sequences P VQ ® are forbidden for any
finite string ¥, then Q® cannot be on the attractor.
However, a heteroclinic point from Q“ to Q“, or a se-
quence Q “UP * may still exist, which means that unsta-
ble manifolds of Q ® will be attracted to stable manifolds
of P*, and hence finally to the attractor.

It is emphasized that in two-dimensional maps the
symbolic dynamics is specified by an infinite number of
parameters, one for each tangency on the partition line
[6]. The condition that the fixed point R ® possess homo-
clinic points is necessary for the existence of a one-piece
attractor, but it is not sufficient. If no sequences of the
type (RL)®UR © exist, the attractor cannot be a one-
piece attractor. In Ref. [8] the criterion for an attractor
to change from one- to two-piece form is that the x coor-
dinate of the point (LR)*CR %@ coincide with that of the
point (R*LRL)*@(R3LRL)*. For b =9.5 the criterion
gives a*=1.556..., which is close to the value
a*=1.555... from the computer simulation. However,
the criterion is not so directly related to manifolds. As
discussed in the above, we may estimate a* by looking
for the appearance or disappearance of sequence
(RL)*WR ~ for a certain length of string W. The pro-
cedure is as follows: The upper tip of the unstable mani-
fold (RL)”® is (x,y)=[0,7((RL)"®)]. From Eq. (5) it
can be derived that

A(RL)w@)=h=(—a+Va®—4b)/2,

~ (12)
7 ((RL)*@)=1—b+(1—a)k .

We then generate the forward sequence of the point for
decreasing a, starting from a rather large a below the
value a.. For example, for b =0.5 one can see the for-
ward sequence

FIG. 3. Manifolds and their symbolic sequences at the
heteroclinic tangency (LR )*C@RLR*LRLR © at a rather large
b. This is a case close to the critical transition from a one- to a
two-piece attractor.
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ORLRPLRLRYL... at a=1.5637
ORLRPLRLR'™L... at a=1.5638
ORLR3LRLR™L... ata=1.5639 .

From the ordering rules we know that the forward se-
quence @ORLR3LRLR™ is between a=1.5637 and
1.5638. The real value is a =1.563 7947, for which some
stable and unstable manifolds are sketched in Fig. 3.
Here the string W=RLR®LRL is of the length 8.
Increasing the length of W, we may obtain better esti-
mates. For example, the forward sequence
®(RLR’L)*RLR * is between a =1.5578 and 1.5579, and
O®(RLR®L)’RLR * between a=1.55698 and 1.55699.
These forward sequences are related to the orbit
(RLRPL)* of period 6. An even better estimate is given
by ® RLR’L)*RL)*R’LRLYR*L. .., with k =21 and
22 at a=1.555682 108 and 1.555 682 109. Since the pa-
rameters are close to those of the homoclinic tangency
R "RLR *, most sequences consist of only the segments
RR and RL. An even number of successive R in a se-
quence will indicate the appearance of R ® at a nearby
value of a.
For b =0.38 we find the forward sequence

ORLRLRM™L. .. at a =1.4822 ,
and

ORLR’LRLR™L... at a=1.4807 .
The latter sequence is the smaller of the two, so the
tangency between its manifold and the unstable manifold
(RL)”e® happens at the smaller a, which then dominates
the estimation of the critical a. At b =0.3675 we find
two close values of a =1.4728 and 1.4727 for sequences
ORLR’LR"L... and ®@RLR*LRLR™L. . ., respective-
ly. Further reducing b will stop the appearance of se-
quences of the latter type. In other words, the crossing
between (LR)“® and ®@RLR’LRLR * is now forbidden
by some tangency. For b =0.25 we find the forward se-

quence ORLR’LRVL... at a=1.4424, and
ORLRLRM™L... at a=1.4425. An estimate from
ORLR’LR®L. .. is a=1.4424689. Some manifolds at

the tangency (LR)”CRLR’LRLR * are shown in Fig. 4.

RLIC

/
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FIG. 4. Manifolds and their symbolic sequences at the
heteroclinic tangency (LR)*C@RLR°LRLR> for a rather
small b.

V. CONCLUSIONS

In the above we have described symbolic dynamics of
the Lozi map for both >0 and b <0. The map with a
positive Jacobian (b <0) plays an important role for
analysis of dynamics in differential systems [10]. Gen-
erally, symbolic dynamics reflects topological properties
of systems, and is not very directly relevant to metric
properties. Although it does not solve problems concern-
ing the stability of an attractor, it is still of much help in
understanding the structure of attractors. Based on sym-
bolic dynamics, we have determined the critical parame-
ters between one- and two-piece attractors. When some
tangencies on an attractor are known, we can obtain the
geometrical structure of the attractor from the ordering
rules of foliations.
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