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Synchronization among globally coupled, chaotic map lattices can be related to stable periodic win-

dows in isolated chaotic maps. This relation provides a simple predictive tool for the understanding of
complicated behavior in coupled systems.

PACS number{s): 05.45.+b, 05.90.+m, 87.10.+e

Synchronization of coupled map lattices (CML's) has
been studied by several authors in recent years [1,2].
CML*s can be viewed as an intermediate state between
low dimensional dynamical behavior, seen in simple
maps, and infinite dimensional behavior, for example, of
turbulent fluids. Moreover, understanding of synchroni-
zation of coupled systems is important for the study of a
variety of physical [3], chemical [4], and biological [5]
problems. Under some conditions, all of the maps in an
ensemble will spontaneously synchronize and behave as
one. Under slightly different conditions, they will break
into two, three, or many distinct clusters. And under yet
different conditions, the maps will behave nearly indepen-
dently. In this Brief Report, we address several ques-
tions. Why should coupled maps behave in such a com-
plicated way? What is the mechanism for synchroniza-
tion? Is there a relation between the nonlinearity in com-
ponent maps and synchronization, or could linear maps
also synchronize? To address these questions, we de-
scribe one mechanism which leads to synchronization in
globally coupled maps.

Let us begin by defining a globally coupled CML com-
posed of ¹identical sites:

KX„+,(i)=F(X„(i))+ g X„(j),
j =1;j~i

where X„(i)denotes the state of the ith site at the nth
iterate. The map F(X) then defines the evolution of the
state of a single isolated site, and the constant K deter-
mines the strength of the coupling between this site and
all of the other sites in the lattice. For simplicity, we take
X to be a scalar, and we study coupled logistic maps,
F(X)= aX (1—X), where we choose the constant a to lie
in the chaotic regime of the map. Rather than trying to
decipher the coupling expression, which is quite compli-

cated, we will focus on the behavior of an individual map
site, which is much simpler.

The crucial observation of this Brief Report is that in-
dividual maps frequently exhibit periodic [6] and stable
windows. That is, even if an isolated map is specified to
lie in the chaotic regime, the coupling parameter may
often be such as to perturb the map to an attractive, e.g. „

periodic, state. For example, let &x=3.8, which is in the
chaotic regime. This map, defined by the state X„,can be
brought into a large period-3 window by the addition of a
constant term c,
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FIG. 1. Bifurcation diagram for Eq. {2).
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X„., =3.8X„(1 —X„)+c,
where c is in the interval I =[0.011,0.015]. This is
demonstrated in Fig. 1, which shows a bifurcation dia-
grarn for the map, Eq. (2). For each value of c in the
figure, we iterated Eq. (2) 1000 times starting from the in-

itial state X0=0.5 and then plotted the values of X,oo,
through X,o«.
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FIG. 2. Synchronization of 100 globally coupled logistic
maps (k =0.023 to hit c =0.015); me mention that all map
states are plotted.

The presence of a periodic windo~ for an isolated map
implies that whenever the coupling term in the coupled
maps lies in I, we can expect all initial conditions on [0,1]
to converge onto one of the periodic points. This effect
can be demonstrated by choosing z in Eq. (1}so that the
coupling term for given initial conditions is in the desired
range. Suppose, for example, that we choose a uniform
initial distribution of states X„(0).This distribution rap-
idly approaches an asymptotic distribution with mean
X—=0.64. In order to bring the maps to the periodic win-

dow, we require that Eqs. (1) and (2) agree, i.e., we re-
quire ~0.64=c. Now if we choose c to lie in I, say
c =0.015, then we obtain ~=-0.023. This suggests that if
we set ~ to be 0.023, then the states of a CML may con-
verge to the periodic points.

The completion of this migration depends on two
things. First, the actual average state of the maps can be
expected to vary from the calculated value X. The actual
average X, will change from iterate to iterate even in the
isolated map, but in addition, the average state in the
synchronized condition X„willin general differ from the
average state for the isolated map. Nevertheless, for a
sufticiently large stable window, such as the one shown in
Fig. 1, both k, =c /X, and k, =c /X, can be contained in

the window and synchronization can be observed. In
particular, we note that for our example, every time that
the mean map state approaches 0.64 (which can be ex-
pected to occur often) the synchronized period-three state
will be reinforced. Second, the convergent influence of
the periodic window may or may not exceed the diver-
gent influence of the chaotic map. Thus whether synch-
ronization actually occurs or not depends on whether the
inverse of the Lyapunov exponent of the chaotic map
exceeds the characteristic convergence time within the
periodic window. If so, synchronization can occur; oth-
erwise it cannot.

Figure 2 shows synchronization to the period-three
state for the example described above. In the figure, we
show the time evolution (in five-iterate time steps for clar-
ity) of an initially uniform distribution of 100 lattice sites.
Note that all of the sites are displayed on every fifth time
step. Within 500 iterates, all of the sites are clustered [7]
very near to the period-three state, indicated by the three

N

X„+,(i)=(1—a)F(X„(i))+—g F(X„(j)).
j=1

(3)

The presence of the coupling constant ~ in two terms
confounds the problem; nevertheless, we can adopt essen-
tially the same strategy as before. An isolated map is
defined by

X„+,=(1—a)F(X„)+ac', (4)

where c' is a constant which determines the average
influence of the ensemble of maps. We can approximate-
ly determine the value of the additive term in Eq. (4) by
observing that c' is O(1) and is never far from 0.5. If we
use the approximation c'-=0.5 and retain the previous
form for F(X) [i.e., F(X)=3.8X(1—X)], then by apply-
ing precisely the procedure described for Fig. 1, we ob-
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FIT&. 3. Synchronization diagram for logistic map lattice.

arrows in the figure. Identical results have been obtained
using 1000 and 10000 sites, with the exception that
synchronization occurs more rapidly with more sites.

Apparently, we can exploit the mechanism described
above to rationalize synchronization in coupled chaotic
maps. Moreover, we can use knowledge of this mecha-
nism to predict in advance when synchronization will
occur. For example, for the logistic maps discussed
above, the entire periodic window shown in Fig. 1 ex-
tends from c =—0.011 to c —=0.021. The asymptotic mean
of the isolated logistic map is X -=0.64, while the mean of
the synchronized periodic state is about X, =—0.53. The
stable window must persist for both the isolated logistic
map and for the synchronized state, so we require both
KXg and zX, to lie within (0.011,0.021). Thus z must lie
in (0.022,0.035}. In Fig. 3, we show a confirmation of this
prediction. In the figure, we show the results of iterating
100 coupled maps 1000 times starting from a uniform dis-
tribution of initial map states. For each value of ~, we
display the 1001st iterate for all 100 maps simultaneous-
ly. As expected, there is a large synchronized window ex-
tending from about ~=—0.022 to ~=—0.035.

The example shown above is particularly simple, be-
cause only one large periodic window is evident in Fig. 1.
By modifying the form of the coupling [8], however, one
can generate other large stable regions and hence other
possible synchronization patterns. For example, one
CML that has been studied recently [1]is of the form
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the bands close to the bifurcations between periods, l, 2,
and 4. This, too, is to be expected since the location of
the bifurcations will vary with the chosen value of c',
which is only known approximately. The point to be
stressed is that the correspondence between Figs. 4(a} and
4(b) is unmistakable, and by the 1001st iterate all 100
maps have synchronized to one, two, or four values of X
in each of the three grey shaded regions of Fig. 4(b).

We can now provide answers to the questions posed at
the beginning of this Brief Report. First, coupled maps
can be expected to synchronize in complicated ways
when more than one stable state is present in the isolated
map. By studying the stable states of the isolated map,
we can deduce some of the synchronization behavior of
the coupled system. Second, we have presented one pos-
sible mechanism that leads to synchronization. Other
mechanisms may exist also. Irrespective of the details of
these mechanisms, to be effective they must share the
property that the synchronized state is stable. For
example, it is informative to rewrite Eq. (1) in the follow-

ing form:

X„+,(i)=F(X„(i)}+IcX„(i)
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FIG. 4. (a) Bifurcation diagram for isolated logistic map, Eq.
(4); (b) synchronization diagram for 100 coupled logistic maps,

Eq. (3).

tain the bifurcation diagram shown in Fig. 4(a). In the
figure, a variety of stable states are evident, extending all
of the way back through the inverse period doubling cas-
cade to a stable fixed point. Correspondingly, we find an
inverse synchronization cascade, shown in Fig. 4(b)
where we plot the 1001st iterate of 100 initially uniform
coupled maps. Note that all of the maps in the rightmost
grey region in Fig. 4(b) are synchronized to a single X
value. The values of I shown do not follow an obvious
pattern as ~ is changed, and in our numerical experi-
ments we have found that these values depend on the ini-
tial state of the maps. This is to be expected for chaotic
maps, Moreover, synchronization is not predictable in

K+ g (X„(j)—X„(i)).
J =1;j'~!

In the synchronized state, it is clear that the individua1
maps will be governed by X„+&(i}= F( X„(i)}+&X„(i)
Written in this form, we see that whereas the individual
map F (X) may be chaotic, it is possible by modifying a to
make the new map, G (X)=F (X}+~X, stable around the
synchronized state. Thus the stability of G(X) is intrinsi-
cally related to the observed synchronization. Conse-
quently, future studies of synchronization may also
benefit from examination of stable states in the isolated
systems.

Finally, we can confirm that there is a very particular
relation between the nonlinearity in component maps and
synchronization: maps with stable windows —e.g., C'
unimodal maps —can be used to synchronize by the
mechanism described. Since many coupled systems can
be reduced to such a map by a Poincare surface of sec-
tion, we anticipate that this synchronization mechanism
may be common.

The author wishes to thank S. Strogatz for helpfu1 dis-
cussions.
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