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We consider certain model systems within which we seek solutions of the Schrodinger equation
that are antisymmetric on inversion in the origin. . We Gnd geometrical constructions that define
sequences of correlated random walks for which the overlap with antisymmetrical test functions are
asymptotically constant. The emphasis here is on problems in two dimensions, but the methods
generalize to many dimensions and to certain other model problems.
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I. INTRODUCTION

In attempting to understand the essence of the "sign
problem" [1] for the fermion Monte Carlo (MC) method,
we have formulated and studied a number of highly sim-
plified model problems. One that has been the subject
of many "thought calculations" is the solution of the
Schrodinger equation in a two-dimensional box. We have
sought simple elaborations of random walks that generate
populations having a stable overlap with test functions
that are antisymmetric on inversion in the origin. Such
conceptual algorithms have always been developed with
the pretense that a nodal line that will generate an exact
fixed-node solution [1] is not known.

We have recently solved this problem and, in the pro-
cess, a class of related problems. This paper is devoted
to the exposition of the new ideas that underlie the tech-
niques. It is important to emphasize that, while the orig-
inal problem was one in which a class of nodal lines is
known, that is not true for all the models for which the
new constructions apply.

Our interest in highly simplified model problems such
as this lies in part in their didactic interest, and in part
in the hope that important basic issues can be clarified
through their solutions. Perhaps the most basic issue
among these is the question whether antisymmetric solu-
tions of the Schrodinger equation necessarily require large
ensembles of interacting walkers [2—4] or can be treated
using independent walkers, or possibly correlated pairs
(triplets, quartets, . . .). Our previous failure to find an
elegant solution in the latter category led us to return to
the use of large ensembles [4].

This paper exhibits a method in which pairs of anti-
thetic walkers are created and sometimes destroyed at
predefined surfaces. These surfaces are not, in general,
nodal surfaces for the antisymmetric solution. We show
that the original problem of a particle in a square box can

be solved that way. We show explicit numerical solutions
for a particle in a rectangular and in a parallelogram, and
to a nonphysical Gaussian model introduced a few years
ago [5]. We sketch how the method applies to a particle
in enclosures of many shapes (that map into themselves
on inversion in the origin) and when potentials that sat, —

isfy certain inequalities are introduced. Finally, we re-
mark that the method can be carried out using pairs of
walkers in the d-dimensional rectangular box.

By way of a simple introduction, we will discuss the
solution of Schrodinger equation with the lowest energy
that vanishes on the boundary of an arbitrary parallelo-
gram and that has inversion antisymmetry.

The parallelogram is shown in Fig. 1 along with the
longer diagonal lm (which cannot be a nodal line of the
solution we seek) and with a line pq through the origin
perpendicular to that diagonal. These symmetry lines
divide the domain into regions A,B,C,D. Region A is di-
vided into A1 and A2 as shown. Al is the reflection of
D in atm and also the reflection of B in pq.

Walkers are started only in domain A. These walkers
follow continuous Brownian paths, or equivalently do-
main Green's function Monte Carlo (GFMC) [6—8] paths,
and multiply along the way. The children are walkers of
the same type; specifically, they have not yet left the
domain A. Any walker starting in A may, as its first pas-
sage out of A, cross an outer boundary, in which case it
terminates.

Consider now a walker whose first passage out of A is
on the diagonal lm, as shown in Fig. 2. We turn it into
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FIG. 1. A possible geometrical construction for a parallel-
ogram, which is divided by the symmetry lines lm and pq into
regions A,B,C,D. Region A is further divided into A1 and A2,
respectively.
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FIG. 2. A walker starting at region Al crosses the symme-
try line lm and splits into two walkers. One of them touches
the outer boundary line Lq later and vanishes while another
continues in region A.

two walkers with weight one half each and which together
follow correlated paths in which each is the reflection of
the other in /m. The diagram shown in Fig. 2 displays
one such pair one of whose members first touches an outer
boundary; its partner touches the dashed line at the same
time. The first terminates; the second continues its walk
and possible branching in region A.

We now consider a walker that first crosses the diag-
onal and turns into a correlated pair, but whose next
passage (out of A and D, respectively) crosses line pq,
as illustrated in Fig. 3. Each of these points is an inver-
sion of the other. An additional reflection of one walker
in pq guarantees that all future points (dotted paths) re-
tain that inversion symmetry. Such pairs will always give
zero for any test function that has inversion symmetry.
Therefore the pair need not be followed after the second
crossing.

Figure 4 shows what happens when the first passage
out of A crosses the line pq. In one outcome, a walker
next touches the outer boundary and vanishes, having
its partner to continue the walk (and branching) in A.
Another pair is shown touching the diagonal at inversion
points and terminating together.

The global outcome is that walkers move through re-
gions A, B, and D but never enter C. Thus all walkers, in-
cluding their partners, have overlaps with inversion anti-
symmetric test functions whose average value is bounded
away Rom zero as the walks continue.

All walks are subject to branching determined by a
trial eigenvalue. Unpaired walkers (which live in A only)
may create other such walkers. Pairs symmetric in some
line may create other such pairs whose future history
follows the same rules independently.

Zhang and Kalos [4] have stressed the importance of

FIG. 4. Two scenarios for a walker whose first passage out
of A is to cross the symmetry line pq. In one case, a walker in
the region B touches the outer boundary and vanishes, while
its partner continues in A. In another case, both walkers in
the split pair next touch the diagonal line lm at inversion
points and are terminated.

the symmetry of positive and negative walkers in the
fermion Monte Carlo method. In the present paper, there
are no negative walkers. Nevertheless, the issue is essen-
tially the same: for a particle in a box, walkers following
ordinary dynamics will eventually distribute themselves
symmetrically so that the average of any antisymmetric
test function will be zero. The correlated walkers used
here prevent this version of the fermion catastrophe.

There is an alternative version of our method that uses
walkers of both signs. In this point of view, walkers that
make their first passage out of region A are also split
into two, but one of the pair is reflected in the origin and
given a negative sign. In two dimensions, this pair of
walkers is then constrained to move so that their walks
are mirror images in the line perpendicular to the one on
which they were split. They are then guaranteed to meet
at next passage on the mirroring line, and annihilate.
The global outcome is that positive walkers can traverse
regions A, B, and D, while negative walkers permeate
regions B, C, and D. Here the plus-minus symmetry is
broken and asymptotic overlaps with antisymmetric test
functions are not zero.

II. A PARTICLE IN A TWO-DIMENSIONAL BOX
%VITH DIFFUSION MONTE CARLO

The first model we consider is a &ee particle confined in
a rectangular box. The box is centered at the origin and
has dimensions 2a x 2b (a ) b ) 0) . Our goal is to find the
first excited state by the method described above. The
analytical solution is of course trivially obtained and the
nodal surface is simply x = 0. But, as mentioned in Sec.
I, we will not make use of such knowledge.

The Schrodinger equation Hf = Eg written in the
appropriate units is

—V~@(R) = EQ(R),

FIG. 3. A walker starting at region Al first crosses the
symmetry line lm and splits into two walkers. Both of them
touch another symmetry line pq later and become two pairs
with inversion symmetry. These pairs are terminated.

where R = (x, y) is the coordinates of the particle and
the solution g(R) vanishes at the boundary of the box,
i.e., x = +a or y = +b. The corresponding eigenvalue is
E. We will solve for the first antisymmetric wave func-
tion (under re8ection at the origin) gi by a correlated
random walk, using the antithetic pairing scheme imple-
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mented with the diKusion Monte Carlo (DMC) method
[1], a special case of the Green's function Monte Carlo
method.

Define an operator g: g(R, R')—:(R]exp( —rH)~R'),
where 7 is a positive constant. The DMC method is
based on the idea that @i can be obtained from an ar-
bitrary initial state @~ l by repetitively applying g, pro-
vided that g~ ) has an antisymmetric component not or-
thogonal with gi. In other words, with AT a trial eigen-
value, the equation

4~"~)R) = AT f g)R, R') Q
"t-'~ R)') dR' (2)

will in principle lead to Q~

The iterative procedure defined by Eq. (2) can be car-
ried out as a random walk by Monte Carlo. In fact, in
most cases it is the only possible way because the inte-
gral in Eq. (2) is in many dimensions. The wave function
at each stage, @~"l, is represented by an ensemble of dis-
crete points (random walkers) (R)~"l. In each iteration,
walkers are advanced and multiplied by the kernel g to
obtain new walkers for the next generation. The trial
eigenvalue A~, when chosen properly, maintains on the
average a constant population size in the random walk.

For the form of H in this problem, an approximation
for g at small 7 can be derived &om the &ee diffusion
operator by taking into account the boundary condition.
That is, for ~ &( b2, the walkers can be treated as &ee
Brownian particles until they are in the vicinity of the
boundary of the rectangle. The kernel of the Brownian
motion can be written as a product of Gaussians in both
directions, each with variance 2v. . Explicitly,

go(R, R') = (*- *')'+ (y —y')'exp-
4w

To move R' by a step according to go simply means
sampling a pair of coordinates &om the two-dimensional
Gaussian centered at the old position. Inside the rectan-
gle, the kernel g is well approximated by the free kernel

go in (3). Close to an absorbing boundary line, however,

g must vanish as the line is approached. The correct form
that ensures this can be obtained from the difference be-
tween the original free kernel at R' and the &ee kernel
centered at its mirror image, i.e.,

go(R, R') = go(R, R') —go(R, PR'),

p(R, R')—:1 —exp( —dd'/r),

where d and d' are the distances of the new and old po-
sitions &om the line, respectively. The distance d is as-
signed a negative sign if the new position R is outside the
boundary line; thus, a move to the outside of the absorb-
ing boundary is never accepted, as should be the case.
At the corners of the rectangle, mirror images generated

where P stands for the reflection with respect to the line.
To advance a walker at R according to go in (4) implies
sainpling the Gaussian go(R, R') and then accepting R
with probability

by both sides are included and the kernel is

go(R, R') —go(R, PaR') —go(R, PsR') + go(R, P P),R'),

where P and Pg denote reflections with respect to the
two sides which form the corner. The expression above
can also be written as a product of the two factors after
modification by the image construction.

The simple random walk as outlined above will nec-
essarily fail to generate the desired antisymmetric state,
due to the fermion "sign" problem. That is to say, with-
out explicit usage of the knowledge of the nodal surface
at x = 0, the standard way of carrying out noninteracting
random walks yields asymptotically a zero overlap with
any antisymmetric test function. We shall show that, by
incorporating into the random walk process the corre-
lated pairs method as described in Sec. I, a stable anti-
symmetric component is ensured asymptotically and the
"sign" problem is completely removed in this case. Other
than technical issues related to the DMC implementa-
tion, the basic approach of correlated random walks dis-
cussed in Sec. I is directly applicable to the current prob-
lem. Random walkers diffuse according to the kernel g,
with a typical step size controlled by the parameter v.
Since the random walks described by g are discrete with
finite step sizes that are random at the symmetry lines,
the probability of a walker landing precisely on the lines
is zero. Thus, the details of first passage and crossing in
general need to be addressed for the particular case here.

The symmetry lines are given by y = kz and y = —z/k,
where the slope k must satisfy b/a ( k ( a/b Walker. s
are started in region A in the box, where kx & y
—z/k. When an initial walker first crosses a symmetry
line, it is reflected with respect to that line and turned
into a pair of correlated walkers, with the weight factor
reduced by half. In these calculations, no weight factors
are carried. So when a weight m is involved, a walker or
pair is turned into int[io + g] walkers or pairs, where (
is a random number on (0, 1). Because of the finite step
sizes, however, this "splitting" is done only after the first
passage has occurred and the walker is already in either
of the neighboring regions of A. This would introduce a
discontinuity at the line, in precisely the same way as
treating an absorbing boundary line by simply rejecting
all walkers that cross it. To correct for this, the image
construction is again used. With a finite probability, a
walker that remains in A after a step but is within a small
distance of a symmetry line is also reflected and turned
into a pair. The probability is easily obtained from (5)
and is given by exp( dd'/r), where ag—ain d and d' are
the distances &om R and R' to the symmetry line.

Once an antithetic pair is formed, they remain mirror
images and their random walks are always correlated,
until one or both are absorbed. The former can hap-
pen if the image walker in region B or D is close to the
boundary line, and the latter when the pair approaches
the perpendicular symmetry line. In order to make the
absorption smooth, we can again use the by now familiar
image construction. In the first case, as the walker in
B (or D) moves toward the boundary (and its partner
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approaching the dashed line in Fig. 3), the pair remains
a pair with probability p as given by (5). Otherwise it
is reduced to an unpaired walker in A, with the image
walker in B (or D) deleted. The probability p becomes 0
as the image walker reaches the boundary, as expected.
Sixnilarly, in the second case, the pair is removed &om the
population with probability 1—p as the walkers approach
the perpendicular symmetry line.

At various corners, when more than one image is
needed, the product of these kernels is used. When the
angle at the corner is not z/2, however, this is only an
approximation. The parameter v. is chosen small enough
such that the error is negligible in our calculations.

This method of correlated walks clearly ensures a sta-
ble asymptotic antisymmetric component. The energy
eigenvalue is given by

(7)

where Qz is an antisymmetric trial wave function and
the sum runs over all the walkers generated by the ran-
dom walk after the initial relaxation phase. In these cal-
culations a rather crude trial wave function was used:
Qz (R) = z(z —a )(y —b ). We note that the method
works correctly regardless of the speci6c choice of the
symmetry lines, as long as they satisfy the prescription
given in Sec. I. This is con6rmed by our calculations.

For a square with side 2 (a = b = 1), the two symmetry
lines are the diagonal lines. Our computed result is E =
12.336 + 0.003, in good agreement with the exact result
of E = 12.337. For a rectangle with a = 2 and b = 1, we
tested several values for the slope k of the symmetry line,
all with satisfactory results. With k = 0.9, we obtained a
6rst excited state energy of 4.936+0.003, while the exact
result is 4.9348.

In the case of a square, it is straightforward to see
how the algorithm gives the correct solution. After re-
laxation, each walker in the population will have crossed
one of the two symmetry lines and will therefore have be-
come a pair. The population is naturally divided into two
equal parts, each consisting of pairs that were created by
the saxne symmetry line. These pairs are now confined
in the region formed by the other symxnetry line and two
sides of the square. Thus asymptotically they represent a
6xed-node solution with the other symmetry line as the
node. The other half of the population behaves in a sim-
ilar fashion. These two solutions, with the two diagonal
lines as nodes, respectively, are both correct first excited
state solutions and they add up to give the desired solu-
tion. For rectangles and even more general situations, a
similar "decomposition" would include more complicated
structures, but the possibility of obtaining the antisym-
metric solution &om the combination of several solutions
analagous in some sense to those derived &om a fixed-
node method remains an intriguing one.

III. DOMAIN GREEN'S PUNCTION MONTE
CARLO

In this section, we further explore the correlated pair
algorithm discussed in Sec. I by utilizing a more sophis-

ticated GFMC scheme to study the first excited state
of the Schrodinger equation for a &ee particle moving
inside an arbitrary parallelogram with hard walls. The
wave function for the first excited state has inversion an-
tisymmetry, namely, g(R) = @(—R).

By introducing a Green's function G(R, R'), the
Schrodinger equation can be written as

QtR) = R J G(B,R')Q(R')dR'

where E is the eigenvalue and G(R, R') is defined as sat-
isfying the following equation

HG(R, R') = b(R —R'),

and H is the Hamiltonian of the system. The GFMC
method is an exact algorithm that gives an iterative pro-
cedure whose asymptotic limit gives the state with the
lowest E in Eq. (8).

In general, the Green's function for a many-body par-
ticle system is not known explicitly. Even for our sixnple
model problem, the Green's function for the Schrodinger
equation is not available analytically. One solution for
this problem is to use some approximate schemes, such
as the "short tixne" approxixnation for the Green's func-
tion used in the previous section. The so called domain
GFMC (dGFMC) method to be used in this section is
in principle, an exact scheme that samples the Green's
function with the aid of the Monte Carlo technique. It
samples a series of paths using a known Green's func-
tion in a small domain, usually one with some special
geoxnetry.

Assuxne we want to obtain the Green's function in the
desired domain D of coordinate space. The first step is to
find the solution of the Green's function in a subdomain
D„(Rp) that is wholly contained within D with Rp in
D„(Rp). The subdomain Green's function is the solution
of

HG (Ri, Rp) = V iG (Ri, Rp—) = b(Ri —Rp), (10)

which satisfies G„(Ri,Rp) = 0 when Ri is on the bound-
ary of D„(Rp). With the help of Green's theorem, one
can readily find that

G(Ri Rp) = G~(Ri ) Rp)

+ [ V„G„(R,Rp)]G—(Ri, R)dR,
S

where 8 is the boundary of D„(Rp) and V„ is the
outward-directed normal derivative with respect to R on
S. Note that the integrand is positive because G„(R,Rp)
is positive on D„(Rp) and zero outside. With the above
expression, we are ready to sample G(Ri, Rp) provided
G„(Ri,Rp) is known. The details of how we sample
G(Ri, Rp) for our model problem are given in the Ap-
pendix A. More information related to this method can
be found in Ref. [7].

The dGFMC paths are illustrated in Fig. 5. A walker is
started &om position 1 in the subregion A1. A rectangu-
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state is given by

g M~(R) = ) [b(R —R, ) —8(R+ R;)],
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IV. A GAUSSIAN MODEL IN TWO
DIMENSIONS

@a(x) =)a J e ~ '~'&2e ' '
gg(z')ch'

=Ay g~ x)x tU x g x dx j (15)

g (*,*') =
7r

w(x) = ~2e

Solutions exist for the eigenvalues Ag ——2", k

0) ly 2y ~ ~ ~ )

4 (*) = p (*)e

The model used here [5] derives from the homogeneous
integral equation in one dixnension:

given the correct symmetry. The function @z is a trial
wave function not orthogonal to Qo. Based upon this, we

expect that a "mixed estimator" would be effective that
uses a good trial function as well as the Monte Carlo
information about the solution:

O'Mc(x) = ).~(x —x ).

In the last expression, xz is the set of positions at which
walkers are found after equilibration. Such a xnixed esti-
mator is

f vPT (x)u)(x)QMc(x)dx

f f yT (x)n)(x)g~(x, x')m(x')&Mg(x')dxdx'

Z, 4~(x~)~(x.)
P . f QT (x)n)(x)g (x, x, )n)(x )dx

As discussed in the Ref. [5], the importance sampling
transformation for this model problem has the form

where pp is a polynomial of order k. For the first four
states, we have

pp(x) = 1; p)(x) = x; p2(x) = x ——; ps(x) = x —x.— 2 —1. 3

The general solution can be expressed as

@s(x) = A(x)~(x)&s(x)

=AI 0XQJZg~X, X 0X

=%I, g zz' l x'dx'; (20)

pi(x) = ) (os,~-2 *" '");
g-(* *') = exp[ —2(x —x'/2) ]. (21)

where n = 0, 1, 2, ..., M, with M = int[k/2]. If we choose
ag g as the normalization constant, the rest of the coef-
ficients (n ) 0 terms) can be derived from the following
recursive relation:

4" ". „(2t—1)!!
& &—2 +k—2n+gl l +A:,k —2n+2l )4n 4l=l

where C& 2n+2l are binomial coefficients. More concisely,
the polynomial py can also be obtained &om

For k = 0, AI,
——1, and the kernel is normalized to unity.

Implementation of the random walk that derives &om the
importance sampled equation requires no branching, and
involves a rescaling of the previous coordinate, x' ~ x'/2
to get the centroid of the Gaussian &om which the next
position is sampled.

When using this form of the equations and of the ran-
dom walks, our estimate of the solution for QMc(x) is
again given by a sum of b functions similar to Eq. (18).
Thus, the corresponding mixed estimator for the eigen-
value is

(16)
A= T &j 0 &j

E, f &T(x)/&o(x)g (»x~)dx
(22)

in which we choose aI, ,g = 1.
This xnodel has some resemblance to a path integral

for a harmonic potential. Its interest here lies in its sim-

ple random walk implementation: a walker at position x'
branches so that, on the average, Aqur(x') walkers con-
tinue, and each such walker moves to position x, drawn at
random from the probability density function g (x, x').
If a population of such walkers is iterated for many steps,
the asymptotic density is exp( —x /2) = @e(x), and us-

ing the factor A~ makes the population asymptotically
constant, on the average.

The expression

f QT (x)m(x)QT (x)dx

f f QT (x)m(x)g (x, x')m(x')@T (x')dxdx'

is a variational upper bound for the lowest eigenvalue,

Solutions for the multidimensional Gaussian model can
be built up from solutions in one dimension. For example,
in the case of two dimensions,

(23)

has eigenvalue AI, Al. In the present work, we seek a solu-
tion to our Gaussian Model in two dimensions that van-
ishes on y = —x and that is antisymmetric on inversion
in the origin. In applying our method of perpendicular
lines, we introduce two lines x = 0 and y = 0 to define
geometric doxnains. Walkers are introduced in the first
quadrant only (in fact along the line x = y). Follow-
ing our construction these walkers move according to the
rules for the Gaussian model, modified by importance
sampling for the ground state. That is, a walker at R0
moves to Ro/2 and then to a differenct point sampled
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&om a Gaussian g(R, Rs) = —exp[ —2(R —Rs/2)2] cen-
tered about the rescaled position. Clearly walkers are
conserved. Let us leave aside the question of how to de-
fine "first passage" across a surface for a model that al-
ternates coordinate rescalings and discrete steps sampled
from a Gaussian. Otherwise, the construction goes as be-
fore: Upon first passage at either y = 0 or x = 0, a walker
splits into walkers (of weight one half each) which then
move as mirror images reBected in the line just touched,
until they both touch the other coordinate line. At that
stage the walkers are at points that image each other by
inversion in the origin and their walk is terminated.

First passage events are defined as follows. Consider a
walker at R0. After the rescaling required by the impor-
tance sampled kernel, it is moved to Ro/2, a move that
does not cross either coordinate line. The next step is
to sample R &om a Gaussian kernel g(R, Ro). This ker-
nel can be thought of as a Green's function of the heat
equation in two dimension

go(R, R., t) = exp i-
4t

x 1 —exp

Ogp(R, R„t)
0y y —0

Ogo(R, R. , &)

t9fl

yg i( & +y~ii
4~t" '

E 4t

m(RiR, ) =
0 OD

y8

vr(z2 + y~)'

(27)

The last expression is a joint probability distribution for
a position x and time t for a first passage across the line
in question. The marginal distribution for x is obtained
by integrating in t:

1 ( (R —Ro/2) r 1
g, (R, Rp, t) = exp ~—

4vrt i 4t ) '
8

which may be sampled as

x = y, tan[~(( —
—,')]. (28)

t oo

g, (R, R„t) = g, (R, R', t —t')
0 —oo

Bgp(R', R„t')
|9A

(24)

a a'a
where '

&„'
" is the outer normal derivative of the

Green's function for the heat equation that vanishes on
the line. The latter is obtained from an image construc-
tion and is

gp(R, R„t) = exp[ —(R —R, ) /4t]
4m't

—exp[ —(R —RI) /4t], (25)

where RI is the image of R, in. the line. If the line is

y = 0 and R, = (0, y, ), RI = (0, —y, ), then

We may follow walkers through a process that simulates
the Brownian motion &om Ro/2 up to time t = s either
by approximating a Brownian path or by using exact
Green's functions. We only discuss the latter here. A

source at point R, above a line satisfies the recurrence

Given a value of x as chosen, a value of t sampled jointly
with that z from Eq. (26) is

~2 + y2

—41n( ' (29)

QT (R) = exp[ —(R —Rz') ]
—exp[ —(R + RT ) ], (30)

with RT ——(6 ii2, 6 ii ). To keep the program simple,

where ( is a uniform random number between 0 and l.
Note that this applies directly to the first passage

crossing of either member of a correlated pair. The first
stage crossing is out of quadrant A, where either y = 0
for x & 0 or x = 0 for y & 0 is crossed. We proceed
as above constructing a Green's function that vanishes
on both these lines; three images are needed. Rejection
methods for sampling coordinates and times are easily
set up. Note also that after a crossing at time t' there
remains t —t' = 1/8 —t' left for the path in question.
A next event is sampled from a Green's function in an
appropriate region (or from next passage across another
line) using the appropriate time remaining.

A program was written embodying these ideas and al-
gorithms. The test function was taken to be

TABLE I. Eigenvalues computed for the lowest antisymmetric state of the Gaussian model in
two dimensions with diferent fixed population sizes N. In addition to the value of N, the computed
eigenvalue and its standard error, we show an estimate of the population bias, and its standard
error.

2500
5000
10000

Eigenvalue

2.00003729
2.00001830
2.00000600

Standard
error

0.00000450
0.00000385
0.00000325

(eigenvalue —2)
0.0932
0.0915
0.0600

standard error
0.0113
0.0193
0.0325



50 MODEL FBRMION MON IE CARLO METHOD WITH. . . 3227

the population of walkers was fixed in a naive way. It
was necessary, therefore to run at several populations
and extrapolate the eigenvalue to infinite population. A
number of completely independent runs were made at
populations fixed at 2500, 5000, and 10000 walkers. The
results are shown in Table I. The fourth column shows the
eigenvalue bias times the population size; it is constant
within the appropriately reduced errors (column five).
That is, the results are consistent with a bias propor-
tional, within this range, to 1/N. Hence a weighted least
square fit to a straight line in 1/N was made. The result
is an eigenvalue extrapolated to 1/N = 0 of 1.999996 24,
with an estimated standard error of 0.00000432. This
agrees with the correct eigenvalue, namely, 2.

Two-dimensional histograms are also in agreement
with those derived &om the exact eigenfunctions, when
two of the latter are combined, one with x=0 as node,
the other with y=0.

V. DISCUSSION

We note that the boundaries in the problem can be per-
turbed in various ways without invalidating the construc-
tion discussed in Sec. I. Obviously the geometry must al-
ways satisfy inversion symmetry. Given that, the key to
the method is to establish the "base" region (A in Fig.
1) and prevent walkers from entering its inversion region
(C). For the algorithm to succeed in this form, the neigh-
boring regions (B and D) must be completely contained
in the "base" region upon refIection at the symmetry
lines. This ensures that all walkers in the neighboring
regions are paired, each with an antithetic walker in the
"base" region. Any entry of such a paired walker to the
"prohibited" region C leads to a symmetric pair at in-
version, which can then be eliminated; thus the entry is
indeed prohibited. With this satisfied, details of the ge-
ometry do not affect the success of the algorithm. That
is, the boundaries can be arbitrary provided that, under
some choice of symmetry lines, all neighboring regions
fall within the base region after re8ection. The geometry
shown in Fig. 7 is one such example.

We also mention that the method remains applicable
even in the presence of certain forms of potentials with in-
version symmetry in addition to or instead of hard wells.
Recall that the potential V(R') affects the multiplicity of
a walker at R' in the random walk process. In the DMC
method, at the small r limit the potential appears in the
random walk directly as a weight factor, exp (—7 V(R'))

In the dGFMC method, it manifests itself as the con-
tinuation probability for the random walk with which
the Green's function G(R, R') is sampled, 1 —V(R')/U,
where U is a constant chosen such that U & V(R'). We
see that in either case, the larger the potential V(R') is,
the smaller the multiplicity becomes for a walker at R'.
Therefore, if the potential at any position in the neigh-
boring region B or D is no less than the value at the
reflected point in the "base" region A, it can be arranged
that a walker in B or D always remains a member of a
pair. It is then guaranteed that walkers will never enter
region C and the algorithm will work successfully. This
provides yet another simple illustration of the general
principle discussed in the previous paragraph.

Finally, the method is by no means limited to two di-
mensions. The basic principle outlined in Sec. I can be
easily generalized to higher dimensions. For example, for
a d-dimensional hypercube centered at the origin, we can
construct all the symmetry surfaces as (d—1)-dimensional
hyperplanes, with each containing d —1 axes. A walker
denoted by (xi, z2, xs), xg) is followed until it touches
a symmetry plane, that is, one of the coordinates, say z&,
becomes zero. We then split the walker into a correlated
pair of walkers with each carrying a weight of one half.
The coordinate of the mirror image walker is given by
(xi) x2, x3) ~ ~ ~ ) xg) ~ ~ ~ ) zing). The pair is followed until
another coordinate, say z~, of both walkers is on its cor-
responding symmetry plane. The walkers are not split
this time. Instead, the coordinates of the image walker
become (zi, x2, xs, . . . , —zs, . . . , —zz, . . . , zg). This pro-
cedure continues as successive coordinates are refiected.
The walk stops when the last symmetry plane is reached,
i.e., the last coordinate is re8ected.
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APPENDIX: SAMPLING DOMAIN GREEN'S
FUNCTION

Let us consider the case where the subdomain D„(Rp)
is a rectangle. It is clear that D„(Rp) is a Cartesian
product of two one-dimensional subspaces, D„(Rp)
d (xp) ds(yp). Define g(x, xp, t) that satisfies

8 8
,g(x, x„t)+ g(*,x„t) = 0, —

g(x, xp, 0) = b(z —xp),

(A1)

FIG. 7. Geometries can be constructed by perturbing the
boundaries of the parallelogram without invalidating our
method.

and g(x, xp, t) = 0 on the boundary of d (xp) and outside
of d (zp). The same equation holds for the y direction;
g(y, yp, t) vanishes on d„(yp) and outside d„(yp). Thus
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for R, RQ in D„, it is easy to show that the function

(R, Ro) = g(z, xo, t)g(y, yo, t)dt
Q

is the Green's function that satisfies the definition (10).
The Eq. (Al) can be solved analytically. For —ai (
z, zQ & ai, the solution is

g(z zo t) = —) sin
I (z+ ai) Iai (2ai

( km. fk7r)
x»n

I
(*o+ai)

I
exp —

I(2ai &2ai)

(A3)

in which H (t) satisfies H (0) = 1 and H (oo) = 0, and
u is an arbitrary positive parameter. It is best to choose
u such that the t dependence of exp( —ut) is close to the
distribution to be sampled. In our calculation, u is chosen
as (vr/2ai) + (vr/2a2), with ai and a2 being the length
and width of the rectangular domain. We erst sample t
from u exp( —ut). Using this value, we proceed to sample
z, g &om zQ, gp using the kernel given in the bracket in
the above equation. The product of the trial eigenvalue
and the factor H (t)H„(t) exp(ut)/u is used as a factor
to determine the multiplicity of branching of a walker
moved from RQ to R.

The sampling of the normal derivative term on the
surface S is little more tricky. We 6nd that the derivative
of H (t) with respect to t is

With a known expression of g(R, Rp, t), sampling

G(Ri, Rp) of Eq. (11) becomes an issue of how to sam-

ple G„(Ri,Rp) and the normal derivative —V'„G„(R,Rp)
for R 6 S. In order to sample G„(R,Rp), we rewrite Eq.
(A2) as

G„(R,Rp) = u exp( —ut)
g(*,*0,t) g(y, yo, t)

Q
H t Hyt

(A4)

H.'(t) =
a+zo —g(z, zp, t)dx
-a+&, t
a~

g(x, zpi. t)dz
a+xo

7'„.g(z, x„t) dx,
~ S

(A6)

a+xp
H (t) = g(z, zp, t)dx,

—a+zp
(A5)

where S is the boundary of d and V'„ is the outward
directed normal derivative with respect to z. Thus the
derivative term of Eq. (11) becomes

—V„G„(R,Rp) = [
—V'„g(z, xo, t)]g(y, yp, t)dt + [

—V'„„g(y, yp, t)]g(z, xp, t)dt

V„g(x, zp, t) g(y, yp, t)
H.'(t) H„(t)

[
—H'(t)H (t)]

"" ' ' ' ' dt
H„'(t) H. (t)

(A7)

Suppose t and t„are drawn independently from H' (t)
and H„'(t), respectively. The probability that the smaller
one is t and that t lies in a small interval of time dt near
t is H'(t)dt[J H„'(t&)dt&] = —H'(t)H&(t)dt. Thus, we

use the following method to sample the derivative term
—V„G„(R,Ro) We first sa.mple t and t„ from H'(t)
and H„'(t), respectively If t .( t„, we sample R on
S p d&(yp) using the kernel at t given by the brackets
of the first integrand of Eq. (A7); otherwise, we use the
kernel at t„given by the second integrand of the same
equation and sample R on S„ d (xo).

The process of sampling t from H' (t) is accomplished
by setting the corresponding cumulative distribution
function equal to a uniform random number, namely,
1 —H (t) = (. Thus, t = H (f'), where (' = 1 —(.
The inversion is implemented by matching ( with a pre-
computed table of H (t).

An important question unanswered so far is how to
sample the infinite series such as Eq. (A3). First, we no-
fice that g(x, xo, t) is a function of three dimensionless
variables, p = x/ai, po

——xo/ai, and 7 = t/ai The.
advantage of this dimensionless form is that the function

ag(p, pp, 7) is independent of the particular size of the

exp[ —(p —po + 2n)'/4~]

= Q(vr7) 1+ 2 ) cos[n7r(p —po)] exp[—(nor) 7]

we And that

ag(pi po~ r) = ].

~( )
). (—1)

~ exp[ —(p —po + 2m)'/4~]
is a very good approximation for ~ & 0.08.

rectangular subdomain. In the case of large 7, then Eq.
(A3) converges rapidly. For w ) 0.08, we only need use

the first Ave terms in the sum for sampling z to achieve
accurate results. However, if ~ is small, the eigenfunc-
tion expansion (A3) is only slowly converging and an al-

ternative method of sampling g(z, zo, t) is necessary. We

accomplish this by developing the short time expansion
of g(x, xo, t). By using the Poisson sum rule
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