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A numerical procedure that provides an accurate solution of the Boltzmann equation in cylindrical
geometry with coordinates (p, v) is discussed. Statistical methods such as Monte Carlo can be used
but sufFer from statistical noise and thus do not resolve low density regions well. Furthermore,
the slow speed of pure Monte Carlo methods makes self-consistent simulations quite dificult. A

direct solution of the Boltzmann equation avoids these difFiculties but sufFers from errors due to
Snite size mesh efFects. In this work we examine a solution method, based on the convected scheme,
that eliminates some speci6c sources of numerical difFusion in cylindrical geometry. The velocity
is represented as (v„v~, A4), where Af is a moment arm or "reduced" angular momentum, AA =
p sing, and P is an azimuthal angle in velocity space (referenced to the unit vector p). The reasons for
all the coordinate choices are discussed. Propagator algorithm(s) for solving the kinetic equation are
presented which remove certain numerical errors. Examples of the performance of the algorithm(s)
under various conditions are presented and discussed. A self-consistent kinetic model of a dc positive
column is described.
PACS number(s): 02.70.Rw, 05.20.Dd, 52.65.+z

I. INTRODUCTION

We present a scheme for solution of the kinetic equa-
tion in one spatial variable, the cylindrical radius p, and
three components of velocity, v. It is a version of the
"convected scheme" (CS) [1—4] which provides a fully self-
consistent and kinetic treatment of the positive column
discharge. In a CS simulation the electron distribution
function f, (r, v, t) (as well as the ion distribution func-
tion) is advanced in time using a propagator

f (rv, t+ dt) .= ff, f (i",v", t).
xp(r, v", r ",v ",b, t)d r "d v" (1).

The propagator (or Green's function) is broken into two

parts: ballistic motion followed by collisions. The distri-
bution functions and propagators are defined on a phase
space mesh. The simultaneous solution of Poisson's equa-
tion makes the simulation self-consistent.

In earlier work we have implemented an algorithm
based on the method of characteristics that avoids cer-
tain sources of errors in finding the distribution function.
It does not use interpolation to implement the method
of characteristics so there is no assumption of "smooth-
ness" or that derivatives are well defined everywhere. It
also is set up to exactly conserve particles and energy
locally on the mesh [1—3]. Since it uses characteristics it
can take long time steps, which reduces the number of
steps and decreases the errors associated with each step.
Tests of the method have been described elsewhere [1—3].
In extending this approach to cylindrical geometry, new
sources of error arise. We show below how we can design
a mesh and a solution scheme in cylindrical geometry
which has the advantages of the schemes we developed
in previous work.

In the past, we modeled dc and rf glow discharges
between parallel plate electrodes, using the variables

(z, v„v~) [1—3], where z is the distance from one elec-

trode, v, is the corresponding velocity component, and

v~ is the magnitude of the velocity component perpen-
dicular to the z axis. Both the phase space mesh and

propagators must be redefined in order to perform sim-

ulations in cylindrical geometry. The spatial coordinate
z is replaced by a radial spatial coordinate p and a third
velocity coordinate is added to provide a representation
of the two components of e~. The separability of v, from

p and from the components of v in the azimuthal plane
makes this a useful choice.

The perpendicular velocity is represented by its mag-
nitude v~ and by M = psinP, where p is the (spatial)
cylindrical radius and P is an azimuthal angle made by
the velocity v" with respect to p in the azimuthal plane.
The magnitude of the angular momentum per unit mass
about the z axis (p = 0) is then Mv~. Reasons for using

v~ and M instead of v~ and v~ are discussed in Sec. II.
In this paper, we first describe the coordinate system

and the mesh we use for electrons in cylindrical geome-

try (Sec. II). Section III treats the "ballistic move" of
the electrons on this mesh; Sec. IV deals with collisions
of electrons with neutral atoms. Section V treats the
ballistic move of ions on a related but simplified mesh

in cylindrical geometry. Section Vj describes ion-atom
collisions. Section VII presents tests of the algorithms.

II. COORDINATE SYSTEM AND MESH FOR
ELECTRONS IN CYLINDRICAL GEOMETRY

In this section, the coordinate system used to describe
electron motion is described, as well as the reasons for

choosing it. Then the electron mesh is introduced.
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In earlier work on discharges between parallel plate
electrodes, two different coordinate systems were used to
describe electron motion; (z, v, p) and (z, v„v~) [1—4]. In
this earlier work z was the spatial coordinate (distance
from one of the infinite plane parallel electrodes), v, is
the corresponding velocity, v is the total speed, p = v /v,
and v~ is the speed in the plane perpendicular to z.

Collisions are easier to describe in the set (z, v, p), be-
cause we often know the final energy after a collision,
hence v, and need to distribute scattered electrons to
various p. It is relatively easy in this case to distribute
the scattered electrons on the (z, v, p) mesh. If the final v

after the collision is equal to the initial v, it can be done
with no numerical diffusion in v. Isotropic scattering of
electrons results in an uniform distribution in p, .

On the other hand, the set (z, v„v~) is better suited to
describe the ballistic motion. All the cells at different v~
but having the same (z, v, ) have the same ballistic mo-
tion, and this can be exploited to accelerate the "move"

[1]. Collisions are more difficult using (z, v„v~). If the
speed after the collision equals the speed before, but the
angle is different, it will usually not be possible to find a
cell with the exact v. Then the electrons must be split
between two or more cells, to conserve energy. A "sim-
plified" elastic collision operator, which conserves energy
but is "grainy" in polar angle, was developed to reduce
numerical difFusion (in kinetic energy) and speed up the
calculation [2,5]. The simplified elastic collision operator
removes the most severe problem due to numerical diffu-
sion in the set (z, v„v~) and preserves the advantages of
the set of variables during ballistic moves.

Extending the calculation to include the radial motion
is more straightforward when based on the (z, v„v~) set
than (z, v, p), because the ballistic motion is less coupled
in the former case. Collisions present no substantial dif-
ficulties in either case, although some care is necessary.
The mesh for v~ is the same as the v, mesh but inde-
pendent of v, . The radial motion is then the same for all
values of v, that share those components of v~. Ifwe used
(v, p, ) and some other variable such as P, the azimuthal

angle in velocity space, the radial motion would be dif-
ferent for every permutation of the values of (v, p, P) on
the mesh. This would greatly increase the computational
difBculty.

Having established the reason for using v, and com-
ponents of v~, we now turn to the components of v~.
The set we choose is (v~, M), where v~ is the magni-
tude of the velocity component perpendicular to the z
axis (p = 0) and M—:psinP. Here p is the radius, P is
an azimuthal angle between the velocity and p, and thus
M is a moment arm or a "reduced" angular momentum.
The magnitude of the angular momentum about the z
axis (p = 0) is v~JH, but if we work with M, the M
mesh is independent of v~.

The choice to use M is partly because it is a conserved
quantity during the ballistic motion (in the case of zero
radial electric field). More importantly, however, a mesh
in (v~, vy) leads to unacceptable numerical diffusion. As
electrons move radially outward in p in the absence of an
electric field, the angle P decreases (where P is defined to
be zero for an electron moving purely radially outwards).
Electrons in the smallest P cell at one radius should be
placed in a smaller P cell at the next radius they go to.
On a uniform P mesh this is impossible, unless there is
a cell at P = 0. A cell at P = 0 will then trap electrons
at P = 0 if they bounce ofF the outer wall and move
to smaller radii. In either case, electrons are "pumped"
towards or away from P = 0. Numerical difi'usion then
becomes a severe problem.

The way to avoid this systematic inaccuracy is to
choose a mesh on which cells from one radius are mapped
exactly onto cells at all other radii (at least when the ra-
dial electric field is zero). This essentially means using M
to define the mesh. The W mesh has two distinct parts,
one for electrons with negative radial velocities (inward
going) and one with positive radial velocities (outward
going). Figure 1 is an illustration of the mesh in the

(p, M) plane. The halves of the mesh share a single M
cell at the smallest radius. The innermost cell is labeled
"ao" in Fig. 1 and it includes p values &om 0 to p~ and

outward

FIG. l. Schematic of (p, M) mesh. With
Ep: 0 particles will travel horizontally. For
example, starting at b q, a particle will travel
tob I, bo, bg, b2, . . ..

inward
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JH running from 0 to pq (since M = pt sing ). At
the second radial cell, extending &om pq to p2, we have
three M cells, one inward going and one outward going
&om M = 0 to M = pt and a third cell (split in Fig.
1) from M = pt to M = p2. This continues all the way
to the last radial cell, extending &om p~ q to p~ which
has 2/V —1 cells in Al. 7r/2 as

III. THE ELECTRON BALLISTIC MOVE

@$2 = d P d Vq (2)

where the infinite range z coordinate is ignored. Figure

In this section, we describe the way in which the col-
lisionless motion (or ballistic move) of the electrons is
implemented numerically.

The mover has some similarities and also some differ-
ences in comparison to that used previously for another
set of coordinates [1—3]. The distribution in p is updated
first. In earlier work the equation of motion was solved
(at least approximately) to update the spatial distribu-
tion. Here we use conservation of phase space volume
(density) in formulating the ballistic mover to update
the spatial p distribution. Conservation of energy is used
next to update the distribution in v~ as in earlier work,
and then conservation of angular momentum is used to
update the distribution in M. The distribution in v, is
completely independent of the azimuthal coordinates and
is updated by integrating the z equation of motion.

The positive column has a radial electrostatic potential

4(p), a corresponding radial field Ep = — &(P), and a
uniform axial field E .

It is important when designing the electron mover to
include both the effect of cell-to-cell variations in phase
space volume and the effect of the centrifugal potential
in order to control numerical diffusion and related mesh
errors. This is accomplished by first using conservation
of phase space volume to construct a ballistic mover in
the E~ = E, = 0 limit and then modifying this mover
for Ep Q 0 and E, $ 0.

The initial cell, with indices (t', j, k, l) has mean
values pi, v ~ ~, Mg, and v, ~. It has faces at
pi —1 pi y vL. ,j—1& VJ,jy ~k —1& ~Ie~ vz, / —1& and vz, l& where

p, = (p; i + p, )/2, etc. , except for Mg. The parti-
cle density in a cell is assumed to be independent of
P (isotropic) including moved cells. This means that

= fz& Mdr/)/b, r/)i„where APs is the range of )))

in the cell. This definition has an effect on the particle
redistribution in ~ cells after the ballistic move. In or-
der to make this discussion more specific we shall focus
on the cell identified as b2 in Fig. 1. The electrons in
this cell are moving outward (to larger p). This cell has
faces at p = p3, p = p4, M = pq, and M = p2.

During the ballistic move collisions are neglected.
This reduces Boltzmann's equation to Vlasov's equation.
Vlasov's equation [6] tells us that the contents of this cell
move as an incompressible (phase space) fluid as the con-
tents advance through the cells labeled 63, 64, b5, . . . , in
Fig. 1. The phase space volume of cell 62 is

Rg 3
0

p1 p2 p3 p4 p

FIG. 2. Schematic of (p, )))) mesh. With Ep = 0, particles
will travel along curved lines in the direction indicated. The
range of ))) = arcsin(M/p) for a cell can easily be found.

2 is a plot of the cells in the (p, P) plane, which is useful
for establishing limits of integration in evaluating g.

We find
p4 f arcsin(ps/p)

rjs, = dP i 2'pd p
ps ( arcsin(pr/p) )

Vg & Vs, l

X Vgdvg dvz.
VJ )2 —1 Vx, / —1

(3)

Ag;, i, i =2m (Mi, —Mi, g)(v~,. —v~, , )

x(v, i
—v, i i)At/3

Typically, for small v~, Aqp, & qp, and Agp, & qp, .
The mover in this case transfers a fraction Ar)i„/qb, of
the electrons in cell 62 to the 63 cell. For large v~, aI1

We then approximate the limits of the P integral using
arcsin(pt/p&, ) as a lower limit and using arcsin(p2/p&, )
as an upper limit where ps, ——(ps + p4)/2. This approx-
imation yields

s, = x(p4 —ps) [tocsin(p2/ps, ) —arcsin(pt/A, )]

x(v~, —v~, t)(v, i
—v, i i)/2. (4)

In general we find

rI, ~ q i = vr(p, —p; t) [arcsin(Ms/p, )
—arcsin(Mi, t/p, )]
x(v~, —v~ ~)(v, i

—v, i i)/2. (5)

Next we must calculate the phase space volume Egg,
"swept-out" by the electrons advancing through the sur-
face between 62 and b3, during a time step At. The
electrons velocity component normal to this interface is
v~ cos P, thus

c~ ) f arcsin(ps/p4)

Agg, ——

Vz, l

x 2' p4v~ 8v~ dv z +~
Vs, f —1

= 2m (p2 —pq)(v~, . —v~, ,)(vs i
—v, i ~)/)st/3

(6)

A general expression for the phase space volume swept
out which is valid for cells going outward or inward is
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The error in this approximation decreases with decreas-
ing mesh size; the error vanishes for an infinitesixnal
mesh. The above equation defines a time average v~
during At. For an initial cell, the volume of phase space
"swept-out" is computed for each radial boundary by us-
ing E~ at each boundary. This allows the initial phase
space volume to expand or contract in the radial direc-
tion.

Using this time average v~ during At simpli6es the
phase space volume calculations. Speci6cally, the only
variables that enter into the phase space volumes are p
and JH (or correspondingly P).

Conservation of energy is used to update the distri-
bution in v~. Suppose some of the electrons &oxn the
initial cell with mean radius p; and mean velocity v~ j
are distributed to a final spatial cell with mean radius
p . These electrons should, by conservation of energy,
have a moved perpendicular velocity, v&, given by

v~ =
I vL, , + —[4'(p ) —@(p,)] lm (10)

Typically v& does not correspond exactly to the mean
v~ in a cell on the mesh, in which case the electrons are
shared between the two neighboring vg cells in such a way
that kinetic energy (in the azimuthal plane) is conserved.
If a 6nal radial spatial cell is energetically forbidden, the
electrons retrace their trajectory to the previous radial
cell, reversing the sign of their radial velocity.

Once p and v~ distributions are updated, the M dis-
tribution must be updated. The electrons distributed to
a Gnal cell with mean values p and v~ have a xnoved
W given by

~I vJ,j~k
vt

Again, typically M' is not exactly equal to the mean M
in a cell on the mesh, in which case the neighboring M
cells are used as final cells. Due to the discreteness of

of the electrons will leave the b2 cell. A fraction (Erjs, —
srIs„)/gs, of the electrons from cell b2 will reach

cell b~ where 0 ( Egs, —Pv:spy„( gs . Cell b is
the furthest cell reached by electrons &oxn 62 during At.
The remaining electrons are distributed in sequence to
the bq 1, bq 2, . . . cells. The fraction of the electrons
distributed to the bq „cell is the lesser of the &action
remaining or re, „/rIg, .

When a radial electrostatic potential 4'(p) is included,
the above algorithm is slightly adjusted to take into ac-
count the radial force. The equation of motion for v~
1s

(P) (I ~2/ 2)
1/2

m Bp

where the minus sign is used for inward going electrons.
During the computation of b,g using Eq. (6), (v& . —
vz ~)/3 is approximated as v~ i(v& —v& . z)/2,
where

e 2 -2 1/2v~i = Vg,i p Ec,(I —MI /p;) bt.

the v~ mesh, the above equation may give a M' which
is outside the allowed range (at that spatial location).
In this case, the electrons retrace their trajectories to
the previous radial cell (reversing the sign of the radial
velocity).

Complete decoupling of the z motion &om the radial
motion results in a very simple ballistic mover for v, .
The axial Geld E is uniform in a positive column. The
(i,j,k, I) initial cell has mean velocity v, ~. After a time
step At, the moved cell has

v,' = v, ,~
—eE,b, t/m. (i2)

This moved velocity is typically not equal to the mean
v in a cell on the mesh. The two neighboring cells are
chosen and the &action going to each of these final cells
is determined so that the energy (mv', /2) is conserved.

IV. THE ELECTRON COLLISION OPERATOR

where k~ is Boltzmann's constant, Tq is the gas tempera-

Cross sections for electron-atom (and ion-atom) colli-
sions in helium are better known than those for any other
gas. Simulations reported here, like most of our earlier
simulations, are for He glow discharges in order to facili-
tate meaningful comparisons with experiments.

Elastic electron-atom collisions, inelastic collisions re-
sulting in excitation, and inelastic collisions resulting in
single-step ionization are included in the electron collision
operator, as well as Coulomb collisions between electrons.

Two versions of the elastic collision operator are used.
The "simplified" version includes momentum transfer but
neglects energy transfer due to recoil during electron-
atom collisions. The simpli6ed operator is also "grainy"
in its angular distribution. The primary advantage of the
simplified operator is that it is free &om numerical dif-
fusion in kinetic energy. High rates of elastic scattering
can otherwise result in signi6cant numerical diffusion in
energy.

The full elastic scattering operator is used after, say,
499 operations of the simpli6ed operator. It includes ex-
tra energy loss due to recoil to coxnpensate for neglecting
recoil energy loss in the simplified operator. The full
operator also has a smoother angular redistribution of
scattered electrons.

Both operators have been designed to provide an
isotropic distribution of scattered electrons with a scat-
tering rate computed &om the elastic momentum transfer
cross section, or to provide an anisotropic distribution
with a scattering rate computed from the total elastic
cross section. The following describes the implementa-
tion of the momentum transfer (isotropic) approxima-
tion. A xnomentum transfer cross section oMz is deter-
mined from LaBahn and Callaway's differential elastic
scattering cross section [7]. The fraction, N„qq/N„u, of
electrons elastically scattered out of a cell with indices
(i, j, k, I) during a time step 6 t is

N„~gg/Ngeu = 0M2 (vz, i + v~ ~ + 3kaTg/M) Nb, t)

(i3)
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ture, M is the mass of a He atom, and N is the density of
He atoms. The full operator redistributes the scattered
electrons with a reduced kinetic energy

4 (m
(v) =v, , +v~, ——

~

—(v, , +v~, ) — k~—Tg ~.

(14)

Isotropic redistribution is accomplished by putting a frac-
tion, (v, „—v, p i)/v', of the scattered electrons into the
pth v, cell for all ~v, p~ ( v'. The corresponding v~ cell(s)
are at

v' = [(v') —v, „]') .

Usually the absence of a v~ cell at this precise v& requires
splitting the electrons between two adjacent cells in a
fashion which conserves energy. Isotropic redistribution
on the M mesh requires that the fraction of the scattered
electrons distributed to the qth cell on the M mesh be
proportional to the range b,P of P in the cell;

) i p )
(16)

The simpliGed elastic scattering operator redistributes
electrons among a subset of cells which have different val-
ues of v, and v~ but have exactly the same total kinetic
energy. The simpli6ed operator is quite similar to that
described previously and used during simulations in the
variables (z, v„v~) [2,5]. The only significant refinement
is that both the full and simpli6ed operators provide a
complete redistribution (uniform in P) on the )t4 mesh.

Cross sections for excitation to singlet and triplet He
s, p, and d levels with principal quantum numbers n =
2, . . . , 5 are taken from Alkhazov [8]. The kinetic energy
of the scattered electrons is

where v„ is the threshold energy for the rth inelastic pro-
cess. Isotropic angular distributions are achieved using
the same algorithm as in elastic scattering.

The cross section for electron impact ionization is also
from Alkhazov [8]. The two outgoing electrons from
single-step ionization share the available energy accord-
ing to the difFerential cross section [8]. Isotropic angular
distributions for the ejected and scattered electrons are
achieved using the same algorithm as in elastic scatter-
ing.

For an anisotropic redistribution of scattered particles,
scattered particles are assumed to have a distribution
given by a two-term Legendre polynomial. To Gnd the
coefficients of each term, number and an average v are
conserved. Electrons are still redistributed isotropically
in JH space. The anisotropic distribution is described
in the appendix, and is necessary for an accurate com-
putation of the v distribution [2,5]. Electron-electron
Coulomb collisions are also included in an approximate
manner to describe energy transfer between electrons.
The algorithm used here is identical to that described
in Ref. 5.

V. THE ION BALLISTIC MGVE

In this section, we describe how the ballistic motion of
the ions is implemented numerically. Unlike electrons,
the ions are adequately described using (p, vp, v, ) for
cylindrical geometry, where v~ is the component of the
velocity in the radial direction. The remaining compo-
nent of velocity at the beginning of a ballistic move is
assumed to be given by a Maxwellian distribution at the
neutral gas temperature. This approximation is adequate
if the mean &ee path for charge-exchange collisions with
neutral atoms is comparable to or less than the radial
"width" of the cell. This approximation is related to a
"cold gas" approximation in which the ions move radi-
ally outward in a positive column. Both approximations
avoid tracking any ion angular momentum about the z
axis. Our approximation, of setting vy = gk~Ts/M at
the beginning of the ballistic move, provides a small cen-
trifugal acceleration. This acceleration helps prevent ions
from "piling up" in the innermost radial cell.

Ion ballistic motion is described by solving the equa-
tions of motion. We will discuss motion in the azimuthal
plane without and then with a radial electric Geld. The
v, distribution is updated in exactly the same way the
electron v, distribution is updated.

The initial cell with indices (i, j, k) has mean values
of the coordinates given by p, , v~~, and v, A, . It has
faces at pz $& pz& vp j—$& vp j vz A; ] &

vz I &
where p;

(p, i + p, )/2, . . . , as before. We approximate the initial

v@ = gk~Tg/M The equa. tion of motion for the radial
coordinate is

L2 e
(18)M2p3

where I is the angular momentum about the z axis and
M is the mass of the ion. The angular momentum I is
conserved; at the start of a move I = MpgkBTg/M.
Note that (v2+ v&~) is also conserved when Ep ——0. The
mover is constructed from the exact solution of this equa-
tion in the Ep 0 limit. The second integral with Ep —0
yields

[p(t+ &t)]' = [p(t)]'+ 2p(t)v. (t)&t

+(k~Tg/M+ [vp(t)] }At .

The location of the moved cell face p,
' is

(p';) = (p;) + 2p, vp~At+ (kgyTg/M+ V, )At .

The direction the cells are moving is determined by the
sign of v~. Both radial faces of the cell are moved inde-
pendently.

When a radial electrostatic potential 4(p) is included,
the above algorithm is slightly adjusted to take into ac-
count the radial force. The equation of motion for v~
1S

(21)M2p3

During the calculation of the location of the moved radial
face using Eq. (20), vp ~ is replaced by the time average
v~ during At,
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L ev' = rrp, + b, t+ E—p(p, )ht
M2p;

(23)

Typically, v' does not correspond exactly to the mean v~
in a cell on the mesh, in which case the ions are shared
between the two neighboring v~ cells in such a way that
the moved velocity is conserved.

L e
S, , = S,,,+, , b,t+ E,(p, )At . (22)2M2p3 2M

The fraction of the area of the moved cell overlapping
each final spatial cell is set equal to the fraction of the
ions from the moved cell distributed to each final cell.
The velocity of the moved cell is approximately given by
equation of motion for v~,

B. Beam distributions and sources

A constant production rate (number per unit time)
was introduced at the center cell in this test. Electrons
were produced at a specific v~ and directed towards the
outer wall. Electrons were allowed to escape at the wall.
Again, there was no electric field. When the sixnulation
achieved steady state, the (real-space) density varied as
1/p (to within 1%).

In a related test, a source rate was introduced in each
radial cell which introduced the saxne nuxnber of electrons
per unit time, which corresponds to a production rate per
unit volume proportional to 1/p. Newly created electrons
were all at the saxne speed and directed towards the radial
wall. The steady-state (real-space) density was found to
be uniform.

VI. THE ION COLLISION OPERATOR C. Harmonic and Coulomb potentials

In this section, we describe the ion collision operator.
In discharges considered here, ion motion is dominated
by charge-exchange collisions with ground state atoms.
Cross sections for charge-exchange (+Ex) are given by
Sinha, et aL [9] The cross section is increased slightly
to reproduce measured ion mobilities [10], and thereby
include the effect of elastic scattering at lower energies.

In a time step At the &action of ions suffering a colli-
sion is given by

(, 2 4kgyTgl
' '

+scatt/+ceu —OEX
~

'Ue S + U +
~

Nkt.

(24)

The scattered ions are distributed with a Maxwellian dis-
tribution at the neutral gas temperature.

VII. PRELIMINARY TESTS OF THE
ALGORITHMS

In this section, we describe some preliminary tests of
the electron mover including: (A) verifying that an ini-
tially uniform electron distribution in phase space re-
mains uniform, (B) verifying that the density is propor-
tional to 1/p when electrons launched in a single radial lo-
cation are moving only radially outwards (inwards), and
(C) verifying that the electrons orbit the z axis (p = 0)
in simple harmonic and Coulomb potentials.

A radial electric field E~(p) was introduced in these
tests. The field E~(p) took two forms, namely an har-
monic force (Eq oc p) and a Coulomb force (E~ oc 1/p)
law. After choosing an initial radius and the form of
Eq(p), a v~ was found so that the electrons would travel
in a circular orbit. The electrons were then launched with
their velocity perpendicular to the radial vector. Regard-
less of the tixne step At and the length of the simulation
for these E~(p), the electrons stayed in the initial radial
cell with no diffusion.

Next, the electrons' speed was decreased slightly so
that their radial motion should be bounded by the ini-
tial radius and a radius three cells nearer the center.
Initially a fraction, depending on the time step, of the
electrons stayed in the initial cell and the rest moved
inwards. About 5% of the electrons, when they first re-
Bected from the centrifugal potential, went past the in-
ner bound. Then as the electrons returned to the initial
radius, some (3%) went outward past the initial radial
cell. Much later in the sixnulation, after 50 orbits, the
electrons were spread throughout the column, though the
majority were still confined to the "physical" region. The
reason for this unphysical behavior is numerical diffusion
in speed or kinetic energy. As the electrons moved to
different radial cells, the mover split the electrons into
v~ cells which were too low or high in order to conserve
energy on average. This diffusion in energy effectively
changes the physical turning points.

A. Initially uniform distribution D. Positive column results

This test was designed to help validate the ballistic
part of the electron mover by verifying conservation of
phase space volume. The simulation was started with
the mesh containing a spatially uniform density, at one
specific v~, and isotropically distributed in M. No elec-
tric field was applied, however, the electrostatic potential
4 was discontinuous at p = p „,so that all the electrons
would refiect at the outer radius. Regardless of the time
step taken and the total time of the sixnulation, the den-
sity remained uniform throughout the column to better
than 1 part in 10000.

Here we show soxne results for a positive coluxnn in he-
lium. The results are preliminary, and cannot yet be com-
pared to highly detailed experiments, because metastable
atoms and the associated multistep ionization processes
are not yet included in the code. There is only direct ion-
ization kom the ground state of helium. The parameters
of the discharge are summarized in Table I.

The axial electric field E delivers power to the elec-
trons to sustain the discharge. It was found that simply
specifying a fixed value of E, caused the simulation to
become unstable: too high an E, caused the plasma den-
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TABLE I. Discharge parameters. 1500 [-

Quantity

Neutral density
Neutral temperature
Vo —V,
Rg
L
Pxnax

Value

1.61
300

2.559
200
13
1

Units

10 cm
K
kV
kB

1000 t-

500 I—

sity to increase without bound, too low a value did not
sustain the discharge. We then incorporated an external
circuit on the discharge, specifying an "effective" applied
voltage Vp —V and ballast resistor B~. The supply volt-
age is Vp and V, is the voltage drop across the cathode
fall; both are assumed to be constant. The axial electron
current is I. Given the length L of the positive column,
the axial field is given by

Vp —V, —IRI3
L

(25)

and is independent of the radial coordinate.
Gauss's law is used to compute the radial electric field

Ep(p). By symmetry, Ep(p) = 0 at p = 0. The radial
electrostatic potential is found by integrating Ep(p). For
convenience, 4(p) = 0 at p = 0.

Ions hitting the outer radial boundary are assumed to
be neutralized and recycled as atoms. Electrons which
reach the outer radial boundary are absorbed on the
boundary. The wall potential decreases until the fIux
of electrons to the wall matches the ion fiux in steady
state. Although we here assume a re8ection coefBcient
of zero for the electrons at the radial boundary, we could
just as easily use any value from zero to near unity. The
main result of using a (perhaps more physically correct)
nonzero refiection coefFicient is a smaller radial field.

The simulation, after an external circuit equation in-

cluding a ballast resistor was introduced, ran stably and
quickly. Convergence of the solution was confirmed when
the total number of ions per second from direct ionization
equaled the number of ions per second hitting the radial
boundary to better than 0.5%. A steady-state axial cur-
rent of 9.93 mA was found. The axial field E, fiuctuates
in steady state by about 5% around 48.2 V/cm, which
is larger than the experimental value of 41 V/cm at 10
mA [11]. The difference is in part due to the neglect of
multistep ionization in this simulation.

Figure 3 shows the calculated radial electric field E~
and the corresponding potential 4(p) as functions of ra-
dius.

Figure 4 shows the ion and electron densities as func-
tions of radius. The ion density exceeds the electron den-
sity everywhere. Also shown is the average electron en-

ergy, which rises toward the outside. It is interesting to
note that it is necessary, at these parameters, to include
anisotropic scattering of electrons, or some electrons run
away near p = 0 leading to a peak in the average electron
energy near p = 0.

The average electron energies shown in Fig. 4 are quite
high. The difference between ~(mv /2), and (mvz/2),

i.
0 0.2

I I I ] I l ~ I [

0.4 0.6 0.8 1

p (mm)

—50

FIG. 3. Radial field E~(p) (solid) and electrostatic poten-
tial 4(p) (dashed) as functions of p.

I I I I

[
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(mvg /P. ), ~

+ 10

I

L

I-

0 I I « .
s I i r & a I

0 0.2 0.4 0.6
p (mm)

0.8

FIG. 4. Electron (solid) and ion (dashed) densities,

(mv ), (solid) and (mvz), (dots) as functions of p.

is an indication of the anisotropy of the electron velocity
distribution. Both observations are consistent with the
rather high axial E,/N of 3.0x10 i V cm2 in the pos-
itive column simulation. We deliberately chose a small
radius-pressure product of 0.05 cm Torr, which produced
the high E,/X, in order to accentuate kinetic eH'ects in
this first positive column simulation.

Figure 5 shows the ionization rate per unit volume and
radial ion Bux density as functions of radius. Figure 6
shows the ionization rate as a function of radius.

The classic models of the positive column by Schot-
tky [12] and by Tonks and Langmuir [13] and most sub-

sequent variations assume an electron velocity distribu-
tion function that is independent of radius. One of the
most interesting results from our kinetic simulations is
the radial variation of the electron distribution function.
Although there are some earlier models and simulations
that explore such radial variations, none of these are for
conditions directly comparable to ours. Qualitative, but
not quantitative, comparisons are, therefore, appropri-
ate.

Bernstein and Holstein [14] used a spatially averaged
two-term Legendre expansion of the electron distribution
function to study the in6uence of radial electric fields on
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electron transport coefficients. Their model is not actu-
ally a positive column model because it does not include
wall losses. They assumed a parabolic radial potential.
They were able to conclude that radial fields without wall
losses have less inQuence on the total ionization rate than
other phenomena such as multistep ionization.

Blank [15]explored the limits of the isothermal approx-
imation for the electron energy distribution. He also used
the venerable two-term Legendre expansion for the dis-
tribution. He assumed a constant electron-neutral elastic
collision frequency which provided the dominant energy
loss through recoil. A near Maxwellian distribution re-
sults &om these assumptions. His approach is applicable
to large radius-pressure products (low E/N) with low
current densities so that Coulomb collisions are negligi-
ble.

Tsendin [16] and Tsendin and Golubovskii [17] stud-
ied the effect of transverse or radial inhomogeneity in
a positive column model. It is widely known that the
electron energy distribution is depleted above the first
inelastic threshold. Tsendin and Golubovskii found a
second break in the electron distribution which can oc-
cur at the space charge potential of the positive column
if the energy relaxation distance is large compared to the

transverse dimensions of the column. This second break
is a manifestation of diffusive cooling [18]. Diffusive cool-
ing refers to a preferential loss of the tail of the electron
distribution as energetic electrons climb the ambipolar
potential to reach the positive column wall.

Zech et aL [19] reported a nonisothermal numerical
model of a low pressure argon positive column under
conditions comparable to those found in an argon ion
laser. Their basic approach consisted of using estab-
lished numerical methods to find simultaneous solutions
of the Buid equations including coupled particle, momen-
tum and energy conservation equations with Gauss's law.
The relatively high electron density of 2 x 10 cm in
these simulations resulted in such a large electron ther-
mal conductivity that no significant radial gradient of
electron temperature was found.

Hartig and Kushner [20] recently described a positive
column model based on a modified two-term Legendre ex-
pansion of the electron distribution function. The modi-
fication included the addition of energy resolved drift and
diffusion as well as the effect of heating and/or cooling
by the radial fields. Although their model is appropri-
ate for larger radius-pressure products (low E/N), their
simulations did yield radial variations of average electron
energy and ionization rates. They found an average elec-
tron energy that increases slightly with increasing radius,
peaks, and then declines near the wall. They also found
an ionization rate that decreases slightly with increas-
ing radius. Hartig and Kushner explained their results
as due to a competition between diffusive cooling and
"Joule heating" in the ambipolar field. The competition
between these phenomena sects diferent parts of the
electron energy distribution difFerently; and thus changes
the shape of the distribution with increasing radius. Dif-
fusive cooling causes the decrease of the ionization rate
(per electron) with increasing radius. Radial variations
in the total (radial plus axial) electric field cause a ra-
dial variation in Joule heating and in the average electron
energy in Hartig and Kushner's simulation [20]. Our sim-
ulation is yielding similar variations in the average elec-
tron energy shown in Fig. 4. Our simulation is for a small
radius-pressure product (high E/N) where inelastic col-
lisions play a major role in the electron energy balance,
and thus the energy relaxation distance is rather long in
comparison to the column radius.
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FIG. 6. Ionization rate (S/n, ) as a function of p.

VIII. CONCLUSION

We presented an accurate method for solution of the
Boltzmann equation in the variables (p, v„v~, M). It
was found that the moment arm or "reduced" angular
momentum M was an appropriate variable to describe
the third component of the velocity with reduced numer-
ical dift'usion. Both ballistic and collision operators were
described in detail. The ballistic mover for electrons was
based on conservation of phase space volume and was
shown to be physically correct in simple simulations. Pre-
liminary results for a positive column were also reported.
We will, in future work, compare radially resolved exper-
imental results from a He positive column with a small
radius-pressure product to these self-consistent kinetic
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simulations. We will also in future work combine the pre-
viously reported method for the "planar" problem with
variables (z, v„v~) with the method reported here for
the cylindrical problem with variables (p, v„v~, M) to
solve the Boltzmann equation in the variables (z, &», v").
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APPENDIX: IMPLEMENTATION
OF ANISOTROPIC COLLISIONS

1. Elastic collisions

v,' = cos0, cos8, v'. (Al)

This quantity, which is proportional to the average z mo-
mentum of electrons at speed v' after an elastic collision
is used to redistribute the scattered electrons with an
anisotropic distribution described in Sec. 3 of this ap-
pendix. Although the angular dependence of the scatter-
ing cross section is here approximated using a two-terni
Legendre polynomial, our approach could be modified for
a multiterm expansion.

Since elastic collisions are an important collision pro-
cess in the discharges considered here, it was shown [2,5]
that special care must be taken to ensure numerical dif-
fusion is minimized.

Elastic collisions of electrons with neutral atoms are
typically anisotropic in nature. A common assumption
made by modelers of gas discharges is that use of the mo-
mentum transfer cross section is adequate. If this is used,
the scattered electrons are redistributed isotropically in
velocity space.

Instead, we here start with the differential cross sec-
tion for elastic scattering. The differential cross section
depends on the initial relative velocity between the elec-
tron and neutral atom and the angle through which the
electron is scattered from its initial velocity. The az-
imuthal scattering angle is uniformly distributed, so we
are only concerned with the polar angle 0„ to which the
electron is scattered.

We first find the average cosine of the angle electrons
scatter through, from the differential cross section, cos 0, .
We also average over the cosine of the initial angle the
electrons, which scatter to the same final speed (v'), make
with the z axis, cos 0;. Then the average component of
the final velocity along the z axis for the set of electrons
is given by

2. Inelastic collisions

3. Implementation of angular distributions
of scattered particles

We redistribute the electrons back onto the mesh using
a two-term Legendre polynomial for the angular distribu-
tion, so that v,' and, of course, the number of electrons
are conserved. The distribution of scattered electrons
with respect to y(= cosa) is f(p) = -(1 + ctp). The
first Legendre polynomial gives an isotropic distribution.
It is now required to find the coefFicient of the second
polynomial o.. Conservation of v,' requires that

v/
2

v'p(1+ o.p, )dp (A3)

(the factor of 1/2 is for normalization). Solving for a, we

find

avl
A (A4)

The above redistribution becomes negative if ]a[ & l. lf
[o[ ) 1, i.e. . ~v&, /v'~ ) 1/3, we then restrict the range of

p in which the electrons are redistributed so that both
v,' and electron number can be conserved with a positive
electron density. For v,' ) 0, we let the lower limit of
integration be pt& and now use f(p) = 2(p —pt)/(I —I&~)'.

To determine p~ we require that v,' be conserved. We find

gii = 3 v /l& --- 2.

In summary, if ~v&, /v'~ & 1/3 then the electrons ai'~

3e'
redistributed usiiig f (p) = —(1+ „",* p, ) over the full range
of polar angles. Otherwise they are redistributed using

f(p) = 2(y, —pt)/(I —p~) in a limited range of polar
angles. Both cases conserve electron number and v,'.

As mentioned above a simplified version, which exactly
conserves particles and energy on the mesh, of this full

elastic scattering operator can be constructed [2,5].

Unlike elastic electron-neutral a,tom collisions, differ-
ential cross sections are not readily available for inelastif-
electron-neutral atom collisions. The lack of this infor-
mation led us to introduce a, parameter 6 which is the
fraction of the maximum possible = nionientum of th~

electron(s) which is conserved in inelastic collisioiis (in-
cluding ionizing collisions) .

Again. we start by considering electrons whose initial
velocity makes an angle 0, with respect to the - axis. Th(.
average final velocity component along the = axis for this
set of scattered electrons is given by

v' = 6cosO; l. (A2)

where 6 is a constant that represents the fraction of the
available linear momentum of electron(s) that is con-
served during inelastic collisions.
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