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One of the main experimental tools in probing the interactions between neurons has been the
measurement of the correlations in their activity. In general, however the interpretation of the
observed correlations is difBcult since the correlation between a pair of neurons is in6uenced not only
by the direct interaction between them but also by the dynamic state of the entire network to which
they belong. Thus a comparison between the observed correlations and the predictions from speci6c
model networks is needed. In this paper we develop a theory of neuronal correlation functions in
large networks comprising several highly connected subpopulations and obeying stochastic dynamic
rules. When the networks are in asynchronous states, the cross correlations are relatively weak,
i.e., their amplitude relative to that of the autocorrelations is of order of 1/N, N being the size of
the interacting populations. Using the weakness of the cross correlations, general equations that
express the matrix of cross correlations in terms of the mean neuronal activities and the effective
in, temction matrix are presented. The effective interactions are the synaptic efBcacies multiplied by
the gain of the postsynaptic neurons. The time-delayed cross-correlation matrix can be expressed as
a sum of exponentially decaying modes that correspond to the (nonorthogonal) eigenvectors of the
efFective interaction matrix. The theory is extended to networks with random connectivity, such as
randomly dilute networks. This allows for a comparison between the contribution from the internal
common input and that &om the direct interactions to the correlations of monosynaptically coupled
pairs. A closely related quantity is the linear response of the neurons to external time-dependent
perturbations. We derive the form of the dynamic linear response function of neurons in the above
architecture in terms of the eigenmodes of the effective interaction matrix. The behavior of the
correlations and the linear response when the system is near a bifurcation point is analyzed. Near
a saddle-node bifurcation, the correlation matrix is dominated by a single slowly decaying critical
mode. Near a Hopf bifurcation the correlations exhibit weakly damped sinusoidal oscillations.
The general theory is applied to the case of a randomly dilute network consisting of excitatory
and inhibitory subpopulations, using parameters that mimic the local circuit of 1 mm of the rat
neocortex. Both the effect of dilution as well as the influence of a nearby bifurcation to an oscillatory
state are demonstrated.

PACS number(s): 87.10.+e

I. INTRODUCTION

Cross-correlation (CC) measurements are among the
major experimental tools for studying the synaptic inter-
actions between neurons. For a review of the experimen-
tal methods and results see Refs. [1,2]. Time-delayed CCs
between proximal neurons often exhibit a pronounced de-
lay and are usually interpreted as resulting &om a direct
interaction between the correlated pair. The majority
of CCs between distal neurons in cortex exhibit a "cen-
tral peak. " This has been taken as an indication of the
presence of a "common input" to both neurons, which
synchronizes their activity. The origin of this input is
in general not known. While in some cases it may orig-
inate &om other brain areas, it is reasonable to expect
that synaptic currents &om the local circuits to which the
two correlated neurons belong contribute significantly to
their correlations. Thus the correlations may be an im-

portant tool in studying the cooperative dynamics of the
local circuits in the cortex and other neuronal systems.

Neuronal correlations serve as a convenient measure
of the texnporal synchrony of the activities of neurons.
This synchrony may have important implications on the
function of the network. First, it afFects the utility of us-
ing population codes to overcome the noise in the neural
responses to external stimuli [3,4]. Moreover, the syn-
chrony may be utilized to encode or transmit informa-
tion, as suggested by recent studies of spatiotemporal
patterns of neuronal responses in olfactory [5,6], visual
[7—10], and association areas [2,11] in cortex. Final, un-
derstanding of the correlations in neuronal activity is ixn-
portant for uncovering some of the mechanisms underly-
ing plasticity and learning [12]. Unfortunately, very lit-
tle is known theoretically about the properties of CCs in
large networks. Hence the interpretation of the observed
features of the CCs rexnains an open challenge and is the
topic of this paper.
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Another potentially important probe of the interac-
tions in a neuronal network is the linear response func-
tion, namely, the change in the average firing rates due to
a su%ciently weak externally applied perturbation. Here
again, the magnitude as well as the temporal evolution of
the response depend on the state of the network. Hence
it is important to understand the properties of linear re-
sponse functions in large networks.

Most of the theoretical studies of neural network mod-
els consider only average Gring rates, where the averaging
is over time, over the stochastic noise, or over a popu-
lation of neurons. In many highly connected networks
these averages obey relatively simple mean-field equa-
tions. However, to account for the fluctuations about
these averages, one must go beyond the mean-Geld equa-
tions. In this work we develop the theory of the fluc-
tuations in the neuronal activities and their correlations
in large stochastic networks. We focus on network ar-
chitectures that allow a mean-Geld description of their
average activities. Specifically, we assume that the net-
work comprises several large, homogeneous subpopula-
tions, each consists of a significant fraction of the total
number of neurons K. Each neuron is coupled to or-
der N neighbors; hence the individual synaptic efIicacies
are weak, i.e. , of order 1/N. Other important restric-
tions of the present work are concerned with the dynarn-
ics. We assume that the network obeys stochastic dy-
namic equations and that it is in an asynchronous state.
Under the above conditions we derive equations for the
dynamic linear response and time-dependent correlation
functions. These expressions reveal the relationship be-
tween the correlations and the linear response functions
on one hand and the network connectivity and dynami-
cal state on the other. These results are extended to the
case of networks with randomness in the connections. We

apply the general theory to a network composed of two
subpopulations: excitatory neurons and inhibitory ones.
We calculate the time-delayed autocorrelation (AC) and
CC functions using parameters that represent the gross
features of the local connectivity and the rest activity
levels in the rat neocortex. The efI'ect of a proximity of
a bifurcation to a synchronized oscillatory state as well

as the effect of random dilution of the connections are
elucidated.

The outline of the paper is as follows. In Sec. II we de-
fine asynchronous and synchronous states in large neural
networks and discuss their implications. In Sec. III, we

define the stochastic dynamics of the networks, describe
the neuronal correlation functions, and present some of
their general properties. We then define the mean-field
architecture which will be assumed in most of this work.
The mean-Geld equations for the noise- or population-
averaged activities are derived in Sec. IV. In Sec. V we de-
rive the linear response of the average activities to a small
change in the external stimulus. In Sec. VI explicit equa-
tions for the equal-time and time-delayed correlations in
these networks are derived. We also discuss briefly the
decomposition of an observed CC matrix. The critical
behavior of correlations and linear response near a bifur-
cation point is discussed in Sec. VII. Section VIII extends
the theory to include random connections. In Sec. IX we

II. ASYNCHRONOUS STATES
IN LARGE NETWORKS

In most of the interesting neural networks, the de-
gree of connectivity is such that the overwhelming ma-
jority of the neurons are interacting at least indirectly
and. the temporal fluctuations in their activity will al-
ways be at least partially correlated. Nevertheless. iil

large networks there is a clear distinction between syn-
chronous and asynchronous dynamic states, according to
the degree of synchrony in the network. To make this
distinction precise, one has to consider the behavior of
the correlations as a function of the size of the network.
In a synchronous state, the CCs between a finite fractiori
of the neurons in the network remain Gnite even in the
limit of X ~ oc, X being the size of the network. In a~~

asynchronous state, the CCs between most of the pairs
vanish in the limit of large ¹ Note that the CCs are
defined so that they vanish for a pair of random uncor-
related variables; see Eq. (3.5) below.

The amplitude of the CCs, in the asynchronous state.
depends on the pattern of connectivity. In networks with
short-range interactions the CCs between neighboring
pairs will be typically of order 1 even for large ¹

How-

ever, the magnitude of the CCs will fall ofI' with the dis-
tance between the pair. In the most common cases this
fall off has a characteristic microscopic length (, beyond
which the correlations decay exponentially as

C(R,~) oc exp( R,~/() . R—,~ )& ( . (2.1)

where R,-~ is the distance between the neurons i and j.
The correlation length is much smaller than the linear
size of the system I, implying that the CCs between
most of the pairs, which are separated by order I, are
exponentially small in 1. In certain stochastic models,
the generic falloff of |(R) is only algebraic in R ~. Even
in these cases, the CCs between neurons separated by
R = I are vanishingly small as I ~ ~.

In this work we consider highly connected networks. ,

meaning that each neuron is connected directly to a fi-

nite fraction of all the neurons in the network. In this
case, the connections are weak, typically of order 1/N
Otherwise, the total synaptic input to a neuron will drive
it well into saturation. The asynchronous states in such
networks are characterized by CCs which are not expo-
nentially small but still vanish for large X. The generic
scaling is

(2.2)

Note that even in the asynchronous state, the CCs have
significant or even dominant contributions fram indirect
pathways between pairs. Still the scaling of all these
contributions with .V is the same as that of the direct

apply the general theory to a randomly diluted network
composed of excitatory and inhibitory populations. The
results of the paper are discussed in Sec. X. Preliminary
results of part of the work have been reported in Ref.
[13].
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connections. There are special circumstances in which
the correlations are larger than that of Eq. (2.2), even
in asynchronous states. An example is the case where
there is a precise balance between positive and negative
connections in the networks. Such is the case in infinite-
range spin glasses [14] or in the Hopfieid model of asso-
ciative memory near saturation [15]. In these cases, the
connections and the CCs scale as

1
t oc, Nmoo.

N
(2.3)

However, the mean-6eld theory of these networks, even
for the average activities, is complicated and is outside
the scope of the present work.

As stated above, synchronous states are characterized
by CCs that remain of order 1 even in the limit of large
¹ These strong correlations reBect the appearance of
globally synchronized temporal patterns. Note that the
same system can switch &om an asynchronous state to a
synchronous one by changing the value of one of its pa-
rameters. Synchronous states can appear in both short-
range and long-Tange systems. However, in large short-
range systems, stable synchronous states are in most
cases periodic or quasiperiodic; stable chaotic synchro-
nized states are rare [16,17]. On the other hand, systems
with long-range interactions can have periodic or chaotic
synchronous states. The nature of the correlations in syn-
chronous states in fully connected networks is discussed
elsewhere [18].

The above characterization of asynchronous states is
dificult to check in experimental systems since it requires
reliable estimates of such parameters as the size of the
network and the strength of connections. An alternative
characterization is based on the behavior of population
averages. Let us denote by z;(t) a local observable, e.g. ,
the instantaneous rate of the ith neuron. Let us suppose
that we can measure the mean of this quantity over a
subpopulation of size K, where K (& N, yielding

K

&Ic(t) —=
K ).&'(t) . (2.4)

Asynchronous states can be distinguished &om syn-
chronous states according to the K dependence of the
variance of X,

A{K) oc —,1 « K .
1

(2.6)

(2.5)

where ( ) denotes averaging over time. In asynchronous
states the local variables are weakly correlated; hence

in cases where destructive interference between diferent
types of neurons, which Quctuate out of phase &om each
other, is likely to occur.

III. MODEL

A. Stochastic dynamics

The network consists of N model neurons, each of
which can be in one of two states, denoted by S = 0, 1.
These states correspond to the instantaneous 6ring rate
of the neuron, de6ned by short-time averaging of its spik-
ing activity. Although the rates are in general analog
vanables, we assume here for simplicity that they take
two discrete values: a quiescent state (S = 0) and a sat-
uration rate (S = 1). The neurons are assumed to be
exposed to local noise resulting in stochastic dynamics
of their states. This dynamics is specified by transition
probabilities per unit time (transition rates) between the
0 and 1 states. The transition rates are functions of the
local field and the stochastic noise. The transition rates
for the ith neuron takes the form

N

I;(t) = ) J,,S, (t) —g;, (3.2)

where J;z denotes the synaptic efBcacy between the jth
presynaptic neuron and the ith postsynaptic one and 8;
represents the local threshold. Throughout the work we
will assume that there is no self-coupling, i.e. J;~ = 0.

The above transition rates de6ne a first-order Markov
process [19]. It can be described by the following master
equation for the probability to 6nd the system in a state
(Si, . . . , S~) at time t

d

dt
P(Si, . . . Sm—t)

1
(S; M (1 —S;)) = (1 —(2S; —1)[2g(h;) —I]),270

(3 1)

where g(h) is a sigmoidal function of the local field h: it
is monotonically increasing, differentiable function obey-
ing g( —oo) = 0 and g(+oo) = 1. The constant Tp is a
microscopic characteristic time, presumably ranging be-
tween 5 and 10 msec. The local Geld acting upon the ith
neuron at time t is

On the other hand, in synchronous states E(K) ~ 1 even
for large K. The advantage of this critenon is that it does
not rely on the absolute scale of 4, but on its dependence
on K which, unlike N, can be varied experimentally. The
limitation of this criterion is that the sampling of the
x s and the value of K should be such that the sums are
not dominated by unusually strongly correlated variables.
Also, the choice of the variable x; must be done with care

N

= —) ip(S; m (1 —S;))P(Si, . . . , S~, t)

+) ip((1 —S;) m S;)

x P(Si, . . . , 1 —S;, . . . , S~, t) . (3 3)
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B. General equations for averages and correlations

Using the above master equation, a hierarchy of equa-
tions for the time evolution of moments of (S,) can be
derived in a manner similar to that used in models with
thermal equilibrium [20,21]. Here we present the equa. —

tions for the first and second moments. For derivation of
these equations see Appendix A. The noise averages of
the neuronal state variables obey

(3 4)

tecture for which these equations can be solved exactly
in the limit of large networks, as we will show in Sec. VI.
It is instructive, however, to consider the simple case of
two coupled neurons.

C. Correlations induced by a single connection

We consider the case of an isolated pair of neurons.
say, 1 and 2. that are coupled by a connection J2i
J from neuron 1 to neuron 2. The connection in the
reverse direction Jq2 is assumed to be zero. Thus the
instantaneous local fields of the two neurons are

The correlation between the activities of two neurons is
defined as

hl(t) = —Ol .. {3.11 I

C,, (t, t+r) —= (8S,(t)bs, (t+r)), r & O, {3.5) 62(t) = JS,(t) —O, . {3.12}

where bs, (t) = S,(t) —(S,(t)). The equal-time (v. = 0)
correlations obey

We consider here only the equilibrium limit. The average
activities are

T0 —C'&(t, t) = —2C, (t, t) + (bs, (t)bg(h. (t)))

+ (8S, (t)bg(h, (t))), t & o . {3.6)

(Sl) = g( —Ol)

(S2) = (Sl)Ag2+ g(J —O2) .

(3.13)

(3.14)
The time-delayed correlations obey

r0 —Cq(t, t+7) = —C, (t, t+ r)
d7

+ (~s'(t)4(" (t+ r))) .

r & 0 . (3.7)

The equilibrium value of moments that depend on a
single time variable is defined by taking the t m m limit,
which is equivalent to calculating moments of the equilib-
rium distribution P((s), oo). Thus the average activities
obey at equilibrium

{3.8)

where the angular brackets mean the average with the
equilibrium distribution. I ikewise, the equilibrium value
of the equal-time correlations, denoted as C,~(0), obey

where Ag2 = g( J—O2) —g( —O2). In deriving these results,
we have used Eq. (3.8) and the fact that,

g{JS —O) = Sg(J —O) + {1—S)g( —O) .

The equal-time ACs C;, (0) = ((Ss,) ) are simply

C„(o)= (S,)(1 —(S,)) .

(3.15)

(3.16)

C12 {0)= —Cll (0)Ag2 (3.17)

The factor Cll(0) measures the fluctuations in the activ-
ity of neuron 1. The factor Ag2 measures the response
of neuron 2 to these Buctuations.

The time-delayed equations reduce to

Both Eqs. (3.15) and (3.16) are a direct consequence of
the fact that S = 0, 1. From Eq. (3.9) one obtains, for
the equal-time CCs,

2C,, (0) = (hs, bg(h, )) + (hs, kg(h;)) .

The equilibrium value of the time-delayed correlations is
defined by taking the limit t m cx:, keeping the delay
time r finite. Thus C;~(r) = limq~ C,~(t, t+ r) obeys

d
T0 Cll {+) ~'ll{+)

d7

C21(r) = —C21(r) 1 r & 0
d'T

r0 C22(+) C22(r) + +g2C21{+) (3.20)

r & 0, (3.10)

which needs to be solved together with the initial condi-
tion given by C,~(0).

In general, the above equations cannot be solved ex-
actly since their right-hand side involves arbitrarily high
order moments. Below we will specify a network archi-

r0 C12(r) C12(+) + +g2Cll (r)
O'T

Solutions of these equations yield

C»(r) = C»(0) exp{—~r~/r0) . (3.22)
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C21 (~) = C&2 (0) exp(-~/«) (3.23)

C»(~) = [C»(0) + &g2C»(0) lrl/«)1 exp( —lrl/«)
(3.24)

These decays characterize the effect of the local stochastic
noise, assumed in our model. In addition,

memory in the Quctuations of S1. Thus, contrary to the
common assumption, cross correlations induced by a sin-
gle synapse are not necessarily "one sided. " This is a
manifestation of the fact that, unlike response functions,
correlation functions are not causal.

D. Network architecture

Ct2(r) = Cg2(0)(1 + 27 /«) exp( —r/«), 7 ) 0 .

(3.23)

0.25
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(a) 12----
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Note that Cq2(7) = C2q( —7). Here the time dependence
is affected by the interaction J. The results are shown
in Fig. 1 for the cases of g( —gq) = 1/2, g( —82) = 0, and
g(J —82) = 1. As seen in Fig. 1(a), the decay of the AC
of neuron 2 is slower than that of neuron 1, due to the ex-
citatory inBuence of the latter. However, this effect is not
large. The asymmetric shape of Cq2(r), seen in Fig. 1(b),
is, of course, a manifestation of the unidirectional nature
of the interaction between the two neurons. It should be
noted, however, that despite the absence of Jq2, Cqq(T)
does not vanish at negative ~, because of the temporal

We study the correlations in fully connected recur-
rent networks, divided into K subpopulations such that
K (( N. The kth population consists of NI, neurons and
Np &) 1. These populations represent naturally cortical
columns, but also may correspond to different neuronal
types (e.g. , excitatory and inhibitory) within a column.
We will denote the coordinate of each neuron by a su-

perscript denoting its group index and a subscript de-
noting its index within the group. Thus the state of the
ith neuron in the kth population is denoted as S& and
the connection between this neuron and the jth (presy-
naptic) neuron in the lth population is J&~&. Note that
&om now on, subscripts will denote population indices
and superscripts intrapopulation indices, unless other-
wise specified. An important assumption is that all the
connections between presynaptic neurons in the lth group
and postsynaptic ones in the kth group are all equal, i.e.,
JI',

&

——Js~/N~, except for the self-coupling J&&, which is
zero. The scaling of the interactions by the number of
neurons in the presynaptic group is required in order to
make sure that the total synaptic input &om each group
is of the order of the local noise (or equivalently of the
order of the difference between the resting and thresh-
old potentials). This implies that the individual synap-
tic efBcacies are weak. We will assume that the cellular
properties of neurons within a group are uniform, so that
except for local stochastic noise the response properties
of all the neurons in a group are equal.

With the above assumptions, the local Gelds of all the
neurons in a given population are equal. The local Geld
in, say, the kth population is

(3.26)

0.14—

0.12

where S~ is the population-averaged activities of the lth
group:

(0
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Q)

O
O
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1VI

S~(t) = —) Si(t) .
l i=1

IV. AVERAGE FIRING RATES

(3.27)

0.02

0 I I

-10 -8 -6 -4 -2 0
delay

4 6 8 10

FIG. 1. Correlation functions for an isolated pair of neu-
rons with a unidirectional connection from neuron (1) to neu-
ron (2). (a) Autocorrelations. (b) Cross correlation.

The quantities of interest are the dynamics of the
population averaged activities S~(t) We can s. eparate
these quantities to noise averages (Sg(t)) and fluctuations
bS~ = S~(t) —(S~(t)). In a large population hS~ is small,

i.e. , of the order of N& . Thus to leading order in 1/N
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the population activities evolve according to the follow
ing equations (see Appendix A):

d(s„)» " ——(Sk) + g ) Jk((S() —Ok
dt

k = 1, . . . , K . {4.1)

V. DYNAMIC LINEAR RESPONSE

We first use Eq. {4.1) to calculate the linear response
of the neurons to an external source. Assume that a small
time-dependent source bhk(t) is added to the local field
acting on the neuron i in the kth population. To compute
the changes in the noise-averaged firing rates iI»duces by
this source we write

We refer to these equations as the mean-field equations
of the system. Equations of this form have been stud-
ied extensively. Depending on the various parameters,
the stable solutions of these equations are either fixed
points or limit cycles. The fixed-point solutions rep-
resent an asynchronous state of the network in which
the population-averaged activities are almost constant in
time. The limit-cycle solutions represent a synchronous
state in which there is a coherent oscillatory activity. Ob-
viously in the latter case there are strong oscillatory cor-
relations among the neurons. Here we study the behavior
of asynchronous networks where correlations are the re-
sults of irregular Quctuations in activities rather than a
globally synchronized dynamical state. The fixed points
of the network are described by

Sk = g(hk), k = 1, . . . , K, (4 2)

where

K

hk = ) Jk(s( —gk

l=i
(4.3)

The fixed point values SI, has two physical meaning. It
represents the value of the population-averaged activity

—1/2of the kth group, up to corrections of the order of N&
It is also equal to the time average of the activity of any
individual neuron in the group. The equivalence of pop-
ulation average and time average is one of the character-
istics of asynchronous stochastic homogeneous networks.

The stability of the fixed points is determined by
studying the dynamics of a small perturbation about the
fixed point. I inearization of the dynamical equations of
the perturbations about the fixed point yields

» bSk(t) = bsk—(t) + ) Jk—(bs'((t), (4.4)

where bSk(t) = Sk(t) —Sk. The matrix Jk( is

Jkl = gIc~kl ~ (4.5)

where gk —g'(hk) and g'(h) = dg/dh. Thus the effective
connection Jl, l is the direct connection between a pair
of neurons multiplied by the gain of the postsynaptic
neuron. Note that the gain itself depends on the state
of the whole system since, in general, it is a function of
the the local field hk. From Eq. (4.4) it follows that the
fixed-point solution is stable as long as the real part of
the eigenvalues of J and Al„is less than 1.

(S;(t)) = S.+).g
] j=l

+O(bh'),

dt'X, k, ({t —t'') bh', (t')

where SI, is the fixed-point solution for bh = 0. The
matrix X(t) is the linear response matrix. It is defined as

(t t )
~(sk(t))
Oh'((t'

In the present architecture, y can be written as

Xk((&) X(k&)b kb(ij + Xk((7)(1 bk(b(j) I 5.;3 3

The first term is the local response. The second tern»
is the nonlocal response within a population (Xkk) and
across different populations (Xk(, k + I). Adding bh'k(t)
to the argument of g on the right-hand side of Eq. (4.1)
and linearizing with respect to bh one obtains, for the
local response.

Xk{r) =- r, , 'gk exp{ r/7O) . —

up to corrections of O(1/X). To derive the value of the
nonlocal response matrix, we Fourier transform (in tiriie)
the linearized equations, yielding, for the Fourier trans-
form of Xk((t), the result

Xk((~) = ([(1—i~»)& —J]k(' —(1 —i~») 'bk(}N; 'J((

) R„"L," = bk( {5.6)

and can be chosen to obey also the biorthogonality con-
dition

The subtraction of the last term is due to the fact that gl, l

represents only the nonlocal part of the full response ma-
trix. Note that the interaction matrix appearing in this
equation is not the full X x N connection matrix, but is
the reduced K x K matrix corresponding to the efI'ective
interactions between the populations. To solve Eq. (5.5)
it is useful to introduce the K right eigenvectors (R"}
and left eigenvectors (L"}of J, corresponding to the set
of K eigenvalues of (A„}of J. Throughout this work we

assume that the matrix 3 is diagonalizable, so that tht.
K right as well as left eigenvectors form a comp1ete set,
Thus they satisfy the completeness condition
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R".L" = b„„. (5.7) CI,&(t, t+r) = (bSI, (t)bS, (t+r)), i, k p j, l . (6.2)

The response matrix can be decomposed into

K

xat(~) = ) .Ra% (~), (5.8)

Note that the homogeneity of the groups implies that the
correlations do not depend on i and j. The equilibrium
value of the correlation-functions is defined as

where

C, ( ) = h (bs„'(t)bS;(t+ )), (6.3)

(5.9)

Using Eq. (5.5) to solve for y~&(u) one obtains

f 1 1
xu(~) = gIN,

' ).CL& I( 1 —A& —xldrp 1 xldrp )

Cq~(r) =—lim (bS„*(t)bS,'(t + r)), i, k g j, l . (6.4)

In the long-time limit the noise averaged correlations are
equal to the correlations defined by averaging over the
absolute time t. Here we will focus on equilibrium values.

We first discuss the value of the AC functions. Using
the general result Eq. (3.16), the equal-time ACs are, to
zeroth order in 1/N,

(5.10) Ci (0) = Sx(1 —Se) . (6.5)

or

K

p&f(r) = rp g~'N& ') RI L&" exp[ —r(1 —A„)/rp]
p,=1

rp 'g)N, —bI, ) exp( —r/rp), r ) 0 . (5.11)
rp —Cg(r) = CI,(r)—

d7.
(6.6)

Using the master equations, Eqs. (3.3), and the net-
work architecture, it can be shown (Appendix B) that,
to leading order in 1/N the time-delayed ACs obey the
same differential equation

&(S ( ))
Xkl ( ) —

gI
(5.12)

It is straightforward to show that

XI &(~) = gI ).1 p 0
(5.13)

and the time dependence is simply

K

gpss(r) = rp g~ ) R~L) exp[—r(1 —A„)/rp], r ) 0 .

The static response is obtained by integrating Eq. (5.11)
over all r ) 0 which equals y(~ = 0).

Suppose the source is spatially distributed so that it
has the same amplitude bh~(t) at all the sites in the 1th
population. We define the population linear response
matrix as the linear response of the kth population to
h((t), i.e.,

as in the noninteracting case, yielding

C/, (r) = SI,(1 —Sg) exp( —~r~/rp) . (6.7)

2C(0) = C(0)J + JC(0) +A(0) + A (0), (6.8)

where J is the effective interaction matrix Eq. (4.5) and
the superscript T stands for the transpose of a matrix.
The matrix A(r) is defined by

Thus, to leading order the decay of the ACs is domi-
nated purely by the local noise and is unaffected by the
interactions. The O(1/N) correction to the ACs will be
evaluated below.

Next, we consider the equal-time CCs. The differential
equation for the nonequilibrium CC, C(t, t), is described
in Appendix B. Here we focus on the values of the equal-
time CCs at equilibrium, i.e. , C(r = 0). This matrix
obeys the linear equation

(5.14) Ag) (r) —= N„'Cg(r) J(g, (6.9)

VI. CORRELATION FUNCTIONS

where CI, (r) are given by Eq. (6.7). Note that the ACs
act like a "source" for the CCs.

Equation (6.8) can be solved efficiently using the eigen-
vectors of J. We define

The time-delayed autocorrelation of a neuron in the
kth group is C„„=L" C(0)L" (6.10)

C (t t+ ) —= (bS (t)bS (t+ )) (6.1) and similarly

where as before bS& ——Sl, —(S&) and the angular brackets
denote averaging over the stochastic noise. Similarly, the
time-delayed CC between neurons in groups k and t is

A„=L" A(0)L",

where Eq. (6.9) implies

(6.11)
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K

A„—A ) L„L„N„ci,(0)
k=1

(6.12) rp —CA,. (r) = —Cg(~) + [C(r)J ]i,g + O(1/N ),

By multiplying Eq. (6.8) both from the right and the left
by left eigenvectors one obtains

& 0 . (6.22)

Thus the solution for the ACs up to order 1/N is

A„+A
„

pv (6.13)

K

Ci,i(0) = ) R„"R,"C„~.
p, ,v=1

(6.14)

The time-delayed CC matrix C(r) obeys (Appendix
B) the first-order linear differential equation

Av T
Tp —C(r) = —C(r)(I —J ) + A(r), t + 0 . (6.15)

This equation, together with its initial condition given by
the equal-time correlation matrix Eq. (6.8), completely

specifies the time-delayed correlations. %e define

The full equal-time CC matrix is expressed in terms of
these coefBcients via the expansion

Cy(T) = Cg(0) [1 —ltl Jieg/(roN )] exp( I'r—/r j

+ Q [C„(0)+ N„'C&(0')L"„]
v=1

x exp( lrl/&p) [exp(l rl~ ) ll (6 28)

Since the CCs are of order O(l/N), they add a correction
of this order to the ACs. This correction is negligible ex-
cept near a bifurcation point as will be shown in Sec. VII.

Finally, it should be noted that the above theory pre-
dicts a marked diff'erence between the short-time prop-
erties of the ACs and the CCs. According to Eq. (6.23)
the ACs have a cusp at ~ = 0, whereas the CCs which
integrate the ACs' time dependence [see Eq. (6.15)] do
not have a cusp at any r, i.e. , CA,.i(r) is continuous. In
particular, the diagonal element Cyy is an even function
of r; hence Ci, g(0) = 0. This difference is illustrated in
the example presented in Sec. IX.

K

Cgi(T) = ) Cf (r)R,",
p, =1

(6.16)

where

Similarly

E=l
(6.17)

Aqi(r) = ) A"„(r)R,", (6.18)

where according to Eq. (6.9)

A"„(r) = A„N„'Ci,(r )L~ . (6.19)

K

Cki(r) = ) [Cf(0) + N„'Ci,(0)L„]R,"
v=1
x exp[ —T(l —A )/rp]
—6i,iN„'Cg(0)exp( —~/~p), 0 (6.20)

The quantity C&(0) is given by Eq.
which, by Eq. (6.14), equals

K

C„(0)=) R„"C„..

(6.17) at ~ = 0,

(6.21)

Having calculated the CCs we can evaluate the O(1/N)
corrections to the ACs. It can be shown (Appendix B)
that

Equation (6.15) yields rpdc&/dr + (1 —A„)c& ——A&,
which leads to

A. Decomposition of an observed correlation matrix

Cgi(v-) = +c~l, l exp( —v.~ ) (6.24)

Note that C&E can be complex if cu is complex. Then

according to Eq. (6.20) the matrix C&& is expected

to be of the form CE,E
= CI, B) + qI, E

where CI,

C&(0) + N& C~(0)L& and the second term represents
some noise, e.g. , &om imprecise measurements of the cor-
relations. An estimate of the vector R can be computed

So far we have discussed the form of the correlations
and linear response functions assuming that the inter-
actions between the different populations (and the gain
parameters) are known. In many cases the converse situ-
ation exists. One would like to infer about the underlying
connectivity from experimentally measured correlations
or responses. We will briefIy discuss the decomposition
of the correlation matrix. Similar considerations apply
for the response functions.

In general, the equal-time correlation matrix as well

as the average rates and gains do not contain sufBcient
information for the unique determination of the interac-
tion matrix J. However, in principle one can use the
time dependence of C to decompose it to the underlying
fundamental nonorthogonal modes. According to the re-
sult of Eq. (6.20), the decay of the correlation can be
decomposed to up to K+ 1 terms, each of which is de-

caying as a single exponential. Let us order the eigenval-
ues in a decreasing order of their real values A„',so that
A 1 + AQ + A3 & - - and define Ao = 0, representing the
last term in Eq. (6.20). Suppose we can decompose the
experimentally measured Ci, i (r) into
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by minimizing

K

(6.25)

with respect to the pair of vectors R" and C" subject to
appropriate normalization convention. The optimal esti-
mate for R" is given by the eigenvector with the largest
eigenvalue of the (Hermitian) matrix C~ l+C~ l', where
the asterisk stands for the complex conjugate. The corre-
sponding eigenvalue of the matrix J is given by the decay
constant u„through A„ocwp

—~„.In practice, this de-
composition is feasible only if there are few dominant
exponential decays. In particular, if there is a significant
gap between the slowest decay rate ~q and the rest, then
by considering the long-time part of C~~(r) one should
be able to identify the eigenvector of J with the smallest
(real part of) eigenvalue.

In practice, the approximations of Eqs. (7.1) and (7.2)
may not be good at short times because of the contribu-
tions of many noncritical modes, which may be significant
if e is not too small. On the other hand, because these
modes decay fast, the above approximations will be good
for the intermediate- or long-time behavior of C.

In any finite system the pairwise CCs cannot diverge
since they are averages of finite quantities. Hence the
implication of the above predictions for a large but finite
system needs to be clarified. Since the above analysis
was confined to the leading [i.e., O(l/N)] contributions
to the CCs, the divergence of the theoretical expressions
for the CCs means that near the bifurcation, the CCs are
not of order 1/N but are much larger than that. The ac-
tual magnitude of the equal-time CCs at the bifurcation
point depends on the nature of the bifurcation. On the
basis of finite-size scaling arguments [23,24] it is expected
that at a saddle-node bifurcation or a supercritical Hopf
bifurcation the correlations grow to

VII. AMPLIFICATION OF FLUCTUATIONS
NEAR A BIFURCATION POINT

One of the main consequences of the above results is
concerned with the behavior of the correlations near a bi-
furcation point. This occurs when the parameters of the
system are such that the real part of one of the eigen-
values of J becomes close to 1. Our analysis shows that
in this case, the system will exhibit anomalously large
fluctuations about the (stable) fixed point and the fluc-
tuations will have an anomalously long correlation time.

Let us suppose that the system is near a saddle-node
bifurcation, which is characterized by a single critical
mode [22]. In this case, at the bifurcation point, Aq

——1
while A'„(1 for v & 1. According to Eqs. (6.10)—
(6.14), as the bifurcation point is approached, both the
amplitude and the decay time of Cqq(r) will diverge as

where e = 1 —Az. Thus, if the system is sufficiently
close to the bifurcation point, we can approximate the
correlation matrix by

Cg((r) oc " ' exp( re/rp)—, r & 0.
¹

(7.1)

Another common bifurcation point is a Hopf bifurca-
tion where there is a pair of complex conjugate eigen-
values Aq and A2 such that Aq

——1 —e + iuqvp and
A2 ——1 —e —iuq~p, and warp ) 0 at the bifurcation
point where ~ —+ 0. Near such a point, the dominant
contribution to C comes from t q2 and C2q, as follows
&om Eq. (6.13). Taking into account this contribution,
the correlations will exhibit weakly damped oscillations
of the form

[R'RP
iCg~(r) oc " cos(eqr + Pg~) exp( —re/rp), r & 0,

¹

(7.2)

where Pg~ = ct + Pp, —ct~ and Pg and P~ are the phases of
R& and Rl, respectively.

C(0) 1, e --0 (7.3)

On the other hand, it is expected that a subcritical Hopf
bifurcation, the correlations grow only to

C(0) 1/v N, e -- 0 (7.4)

The instability at the bifurcation point will also show
up in the nonlocal linear response. Near a saddle-node
bifurcation, the response at long time is, according to Eq.
(5.11),

»)(r) rpg(N( R~L( exp( —rc/rp) re/rp & 1 (7.5)

and the static response is

~l l A: l
QAl ~ (7.6)

Likewise, near a Hopf bifurcation the long-time behavior
ofyis

»~(r) = rp 'aN~ 'IR~Li
I
cos(~~r + &~~)

x exp( —rE/rp), re/rp & 1 . (7 7)

Note that in the case of a Hopf bifurcation, the static
response matrix is not dominated by the critical mode.
Instead, the critical mode will show up as a resonance in
the frequency-dependent y at u = k~q, i.e.,

l l k l
g'N R'L2

Xat(~) =
6 —2 (d —

COy 7p
(7.8)

and similarly for u ——~q.

VIII. NETWORKS WITH RANDOM
CONNECTIONS

So far we have assumed that the network is micro-
scopically homogeneous, meaning that the properties of
neurons within each populations are the same and that
the interactions between pairs of neurons depend only
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on the identity of their populations. Since realistic neu-
ral networks contain a significant level of inhomogeneity,
it is important to extend our results to inhomogeneous
networks. Here we will consider only inhomogeneity gen-
erated by randomizing the connections. Specifically, we
assume that the connections J&& are independent random
variables, of the order of I/N~, with means JI,~/N~, which
can also be defined via

(8.1)

Except for this randomness the network has the same
architecture as before and in particular the local param-
eters, such as thresholds, are homogeneous within a pop-
ulation. Under the above conditions, the local field act-
ing upon Sl', is still given by li& ——P& i Jl,~(S~) — 0~.
Thus the noise-averaged firing rates of single neurons are
equal to the population-averaged firing rates. Both obey
the homogeneous dynamics, given by Eq. (4.1). In par-
ticular, the average rates in the asynchronous states Eq.
(4.2) as well as the ACs, Eq. (6.5) will be the same as
those of a homogeneous network with the same Jy~. This
is because the inhomogeneity is only in the connections
and not in the local properties.

The randomness of the connections will clearly afFect
the CCs because the CC between a pair of neurons has
also a contribution from the direct connection between
them. Although this contribution is small in absolute
terms, it is of the same order as the contribution of their
common synaptic input; hence it cannot be neglected.
We define the full matrix of equal-time CCs by

C„",(0) = (bS„'(t)AS((t)), i, k g j, l . (8.2)

Using the general result of Appendix B [Eq. (B8)] we

obtain, in our case,

2C„',(0) = ) Cq (0)J~ + ) Jq C ~(0)

+A~'i(0) + AQ(0) (8.3)

where Cg~(0) = ~ ~ g, ' P '
C&&(0) are the popula-

tion averaged CCs, JI, ——g& Jy~ are the average effective
connections [see Eq. (8.1] and

A'„',(r) = C„(r)y,'J,'„*. (8.4)

hei(0) = - jhAI.'i(0) + hAl~(0)] (8.5)

By averaging over the kth and lth populations, we obtain
for Cgi(0) the same equation as in the homogeneous case
Eq. (6.8). In order to evaluate the contribution from the
direct interaction, we define bC&&(r) = C&&(r) —Cki(&).
By subtracting Eq. (6.8) from Eq. (8.3) we find

Similarly, the population-averaged time-delayed CCs
obey the same equation as Eq. (6.15). By subtracting
this equation from that of the unaveraged CCs, we find

ro —bC„",(r) = b—C„",(r) + hA*„',(r), r & 0

Solving this equation yields

jl + (7/ro)P„*',] exp( —r/ro),
r & 0 (8.8)

bC„*',(r) = hC„*',(0) x (

, x exp( lrl/ro) r ("
(8 0)

2bA'„',(0)
bA*„',(0) + hA', „'(0)

(8.10)

Note that all terms in the above equations ar~ f&f

0(1/N), implying that the Huctuations in the CCs are.

of the same order as their averages. The quantities

P&& and P&&' measure the relative efFective strengths of

the two direct connections J&& and J&&, respectively.

If P&& g 1, hC&& (r) exhibits an asymmetric shape
about the origin. Its shape depends on the value of
P&~&, as will be demonstrated in the example below. If

P&t
——1, then bC&&(7) is symmetric about the origiri

and except for an overall amplitude is independent of
the value of the direct reciprocal connection between the
neurons.

As a concrete example of the above results we consider
the important case of randomly diluted connectivity ma-

trix. We assume that a connection from the ith neuron
in the kth population onto the jth neuron of the /th pop-
ulation exists with a probability 0 ( fy~ ( l. All nonzero
connections between neurons of a given pair of popula-
tions have the same strength. We can therefore denote
the coupling between arbitrary pairs as

Lj
ij Jkl OAl

%f1' ' (8.11!

where g&& are independent random variables which are 1

with probabilities fI,~ and 0 otherwise.
For simplicity, we consider the case of a pair of neurons

within the kth population, say, S&, S&, i g j. The value

of the CC between them depends on whether there are
direct connections between them. In the following we

present the results for the diH'erence between their CC
and the population averaged value CI, i,(r) The popula-.
tion subscript k will be suppressed.

Reciprocally connected pair: J'~ = J~' = N iJ g 0.
In this case, bA*i(0) = hA~'(0) = bC'i(0), where

hC" (0) = N 'C'*(0)J(f ' —1) (8.12)

where Hence

hA~'i(&) = C~(&)&((J~'~ —N~
'
J~~) (8 6) hC" ( ) = hC*'(0)(1+

I I/ o) p( —
I I/ !
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bC*'(O) = —N-'C*'(O) J (8.14)

and the time dependence is the same as in Eq. (8.13).
Unidirectional connection: J~' g 0 but J'~ = 0.

Here bA'~(0) = N C"(0)J(f —1) and bA~'(0)
—N ~C"(0)J, yielding

Hence

2(1 —f); 2f—
1 —2f '

1 —2f
(8.15)

and

bC" (o) =
N (2f

(8.16)

Disconnected pair: J'~ = J~' = 0. In this case,
bA'~(0) = bA~'(0) = bC'~(0), where

CO

t2
CO

L0
CO
CO
O
V

I

/
/

/
/

/
/

I
/

/
/

I
/

l
/

/

I
l \

0
d

that at f = 1/2, the positive effect of the presence of
J~' is identical in magnitude to the negative effect of the
absence of J'~. Finally, it should be emphasized that the
full CCs will depend on bC'& as well as on the popula-
tion average of the CCs, and thus may depend on the

bC*~(r) = bC*'(0)
~

1+
t' 2(1 —f) r)—

~

exp(-r/rp),
1 —2f rp)

r & 0 (8.17)

-2 0
delay

bC' (—r) = bC'~(0) 1 — —
~
exp( —~r[/rp),

2f
1 —2f rp)

U

d

r ( 0 . (8.18)

Let us assume for concreteness that the population is
excitatory one. Then, the CC is enhanced relative to the
average value in the reciprocally connected case and sup-
pressed in the disconnected case. The most interesting
case is the unidirectionally connected pair. The nature
of bC'~ depends on the value of f: if f (& 1 and in
particular on whether f is smaller or larger than 1/2. If
f ( 1/2, bC'~ (r) has a positive value and a positive slope
at the origin. It has a maximum at r = rp/[2(1 —f)j and
a minimum at r = 7p/(2f) A—n examp. le is shown in
Fig. 2(a), where all three types of bC'i are presented
for f = 0.3. As can be seen, the unidirectional bC'i is
positive at w & 0, reflecting the contribution of the exci-
tatory connection J~'. On the other hand, it is negative
for large negative w, reflecting the effect of the missing
connection J'~. The negative part is, however, relatively
small in magnitude. This is because when f ( 1/2, the
existing connection has a stronger effect than the miss-
ing one. For the same reason, bC'~ is positive also for
negative 7. near 0. Likewise, the magnitude of the posi-
tive bC'~ in the reciprocally connected case is larger than
that of the negative one for the disconnected case.

The converse is true for f ) 1/2. In fact, the above
equations imply, for the unidirectional case,

bC'i(r, f) oc —bC'~( —r, 1 —f) . (8.19)

CO
C0
(D

O

Ch
CO0
O

CO
C

O
CO
CO
O
C3

(c)

-2

-2

0
delay

0
delay

bC" (r) = -b'C" (-r), (8.2o)

as shown in Fig. 2(c). This property reHects the fact

An example is shown in Fig. 2(b). Finally, in the uni-
directional case with f = 1/2 we have, according to the
above results,

FIG. 2. The cross correlations of a pair of excitatory neu-
rons in a randomly diluted network, with a connection prob-
ability f The populat. ion-averaged cross correlations have
been subtracted. The vertical scale is arbitrary. Recipro-
cally connected (r), unidirectionally connected (u), and dis-
connected (d) pairs are shown. (a) f = 0.3. (b) f = 0.7. (c)
f = 0.5.
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network architecture and dynamics. This will be dis-
cussed in the following section in the context of a specific
network model.

IX. NETWORK OF EXCITATORY
AND INHIBITORY POPULATIONS

A. Model

g(h) = —[1+tanh(Ph)],
1

(9 1)

where the local field is the sum over all synaptic inputs
as defined in Eq. (3.26) and P is the local noise.

Networks similar to the present one have been studied
previously, mainly in the context of the possible genera-
tion of coherent oscillations [25,26,6,10]. Here we focus
on the case of a stable fixed point with low rates. There
are two population-averaged activities S@,SI for exci-
tatory and inhibitory populations, respectively. On the
basis of the equations for the population averages, which
were derived earlier for the general case [Eq. (4.1)]. we

find that the equations describing the fixed points of the
population-averaged activities in this case are

In order to demonstrate in detail the general theory, we
study a recurrent network that is comprised only of two
different populations. One population consists of %~ ex-
citatory neurons, denoted by S&, j = 1. . . . , N~ . The
second population consists of XI inhibitory neurons, de-
noted by SI, j = 1, . . . , NI . The network is randomly
diluted. The mean excitatory connection between the ex-
citatory neurons equals Jzz/Nz. The mean excitatory
connection from the excitatory neurons to the inhibitory
neurons is Jrz/Nz. Similar definitions hold for the in-
hibitory connections Jrr/Nr and Jzr/Nr, both of which
are negative. A diagram of this network is shown in Fig.
3. Each of the neurons is exposed to local noise, which
results in stochastic dynamics that is expressed in terms
of transition probabilities between the possible states of
the neuron, as earlier described in Eq. (3.1). The explicit
gain function g(h) is chosen to be a sigmoidal function of
the local field

1
Sr = —,(1+tanhP[JizSz+ Jrrsr —6]} . I 9.3)

d (iSz(t))
dt lI bS (t) /l

1 —J~~
—JIE

-- Jzr riSz(t j
1 —Jrr ~Sr(t)

where

Jzz = 2Sz(1 —Sz)j9Jzz .

Jrr = 2Sr(1 —Sr)PJri .

Jzi =- 2Sz (1 —Sz )PJzr

Jrz = 2Sr(1 —Sr)PJrz

The eigenvalues of the matrix J are

JEE + JII
2

r)

(Jzz Jrr ) + 4Jzr Jrz
2

(9 9)

and the perturbations will decay as long as the real parts
of A~ do not exceed 1. The right and the left eigenvectors
of this matrix are, respectively,

1
(9.10)

Jzr Jrz + (&+ —Jzz)'

( A~ —J~~z Jzr + (~+ Jzz)
(9.11)

In general, we are interested in locally stable hx»d
points, which correspond to an asynchronous state of th»
network. Starting at a fixed point, stability of the net-
work imphes that under a small perturbation bSk(t) =

Sy(t) —Si, the network will return to its original fixed
point. The dynamics of these small perturbations is de-
scribed by

JEE

xcitatory
Population

inhibitory
Population

Sz = —(1+ tanhP[JzzSz + JzrSr —0]},
2

(9.2) The projection of a general perturbation on the two
left eigenvectors I+ decay exponentially with (complex)
rates A+/Tp, respectively.

There are two types of autocorrelations Cz(r) and

Cr(r) for the excitatory and inhibitory neurons, respec:—

tively. The equal-time autocorrelations are, to leading
order, Cz(0) = Sz(1 —Sz) for the excitatory neurons
and Cr(0) = Sr(1 —Sr) for the inhibitory neurons. To
leading order of 1/N, the time-delayed autocorrelations
are

Cz (r ) = Sz (1 —Sz) exp( —
f
r

l /ro ), (9.12)

J )E

FIG. 3. Schematic connectivity diagram of a network with
excitatory and inhibitory populations.

Cr(r) = Sr(1 —Sr) exp( —lrl/r. )

We denote by Czz(0) the equal-time CCs between two
excitatory neurons and similarly for Crr(0) and Czr(0) =-
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CIE(0). Using Eq. (6.8), these quantities obey the linear
equations

(1 —JEE)CEE(0) —JEI CIE(0) = CE(0), (9.14)
Ng

exponentials, corresponding to local Huctuations (with
decay time rp) and a collective, spatially uniform fluc-
tuation [with decay time rp/(1 —JEE)]. Similar results
hold, of course, for an inhibitory population.

(1 JII)CII(0) JIECIE(0) — CI(0) (9.15)

and

I
' —-(JzE+ JII)

l
CIz(0)

r2

1- 1-——JzICzz (0) — JIz—Czz (0)
2 2

1 1
JIECE(0) + JEICI(0) .

2N@ I
(9.16)

These equations can be solved directly or by using the
general result Eq. (6.14); see Appendix C.

On the basis of Eq. (6.20), we find the solution to the
time-delayed CCs which is of the form

t' ~(1 —A+) &

Ck&(&) ukl exp
I

rp

~(1 —A )) p
+okl exp

I

—
I
+ oui exp

I

4 ~p )
& ) 0 . (9.17)

JEECE(0)
CEE 0

NE(1 —JEE)
(9.1S)

This expression is a generalization of the well known re-
sult for the correlations in an infinite-ranged Ising ferro-
magnet. For the time dependence, one obtains

CEE(r) = CZE(0) exp( —r/rp)
CE(0)

(exP [—(1 —Jzz) r/rp]
Ng

—exp( —r/rp) ) . (9.19)

In this case, the time dependence consists of two pure

Expressions for the coeKcients a~~ are given in Appendix
C. When Ay are real, there are three decaying expo-
nents in the time-delayed CCs, corresponding to two
cooperative time constants 'Tp/[1 —Re(A~)) and one lo-
cal time constant ro. The coefBcients a&& will diverge
when a saddle-node bifurcation will be reached, i.e., when
Re(Ay) m 1. When Ay are complex, the cross correla-
tions will exhibit damped oscillations, with &equency of
Im(A~)/rp. In this case, for each C~i, both coefficients
a t diverge when a Hopf bifurcation is approached.

Before we discuss in detail the solution of the above
equations we present the simple case of a single homoge-
neous population, which can be considered as a special
case of the present model in which the two populations
are not interacting, i.e., J~i ——JIE ——0. The equal-time
CC is simply

B. Choice of parameters

Si, (t) = —(1+tanh[p(JgESE(t) + JI,ISI(t) —8)]) .
2

(9.20)

Since the population average firing rates S@,SI are di-
mensionless quantities, when 8 is given in mV units, the
couplings should be given in mV units too, representing
the total input voltage. Since in the model the couplings
are equal to the total synaptic input divided by the aver-
age firing rate of the neurons in the network, the coupling
constant J@E can be estimated according to

Jzg = p ) f V~~ ~ (v)dr,
2

(9.21)

where VE stands for the excitatory postsynaptic po-
tential EPSP induced by the jth presynaptic neuron.
Similar expressions apply to the other coupling constants.
Equation (9.21) represents the excitatory synaptic po-
tential generated at the soma of an excitatory neuron
if the presynaptic neurons fire (asynchronously) at their
maximal rate pm . The integral over time can be ap-

In order to calculate the correlation functions we have
to determine the network parameters. Here we use the
excitatory-inhibitory network as a crude model for lo-
cal circuits in the cortex. Since we have not specified
any interesting external input, our model corresponds to
the background activity of cortical neurons. To be con-
crete we will determine the parameters on the basis of the
available anatomical and physiological estimates on rat
cortex. The population-averaged activities in the model
represent the ratio between the average Bring rate of the
physiological neurons and their maximal firing rate. The
average background Bring rate of cortical neurons in the
rat, denoted by p, is in the range of 5—10 Hz, while their
maximal firing rate, denoted by p „,is estimated as 500
Hz. The inhibitory neurons are presumed to have higher
rates than the excitatory ones. We therefore choose the
average firing rates in the model to be (Sz) = 0.01 and
(SI) = 0.03. We set the number of the excitatory neu-
rons in the network to N@ ——100000 and the number of
inhibitory neurons in the network to Nl ——10000, values
that correspond to 1 mm of the rat cortex. The degree of
connectivity is estimated to be roughly 10%%uo [27,2). Hence
we set fi,i ——0.1 for all kl. The model neurons have two
possible states 0 or 1, corresponding to a quiet state and
an active one, respectively. The probability to be in each
state is determineu by a sigmoidal function of the local
field, where the local field is equal to the total synaptic
input to the neuron at a given time less the threshold, so
that when equilibrium is reached
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proximated by the peak value of V, which is in the
range of 0.1—0.5 mV, times the typical synaptic integra-
tion time, which we take to be approximately 10 msec
[27]. Since one neuron receives about 5000 excitatory
synapses [2], J~~ and Jla should lie in the range of 1000—
5000 mV. Although the number of inhibitory synapses
is approximately 0.1 of that of the excitatory synapses,
their V is larger than V . We will therefore as-
sume that Jl@ is of the same order but slightly smaller
than the excitatory ones, i.e., in the range of 500—2000
mV. The actual synaptic input from the excitatory pop-
ulation is J@@(p@/p „)or JI@(p~/p „)Th.ey fall in
the range of 10 —50 mV. The synaptic input from the in-
hibitory population J~l(pl/p „)or JII(pl/p „)is of
order 15—40 mV. For the threshold 8 we choose a bio-
logically plausible value of 20 mV, which is of the same
order as the synaptic inputs. The amplitudes of the lo-
cal noise I/P@, and 1/Pl, which represent fluctuations in
the membrane potential, are expected to be of the same
order as the threshold values, i.e., P = 0.1 mV . The
exact amplitude of the local noise will be determined by
requiring that the model neurons maintain their low fir-

ing rates assigned above.

C. Numerical results

Cai(0)

JCI, (0)C)(0)
' (9 23)

which are the correlation eoeQcients of the variables Sl„.
and S~. In the present case these coefBcients are —7/X,
in agreement with the general expectation.

The above results correspond to the population aver-

0.03

0.025—
(a)

which is of the order as the local time constant. They
oscillate in a frequency of 0.5/ro Hz. Note that the inter-
population CCs are not symmetrical because the pop»-
lations are coupled with each other via asymmetric cow-

plings: Jl@ & 0, while J@1 & 0. In fact, there is an
average delay between the activities of the two popula-
tions which equals 0.3&o and the ratio between the peak
value and C~l(0) is 1.6. The amplitude of the CCs
can be judged by their value at equal times, which are
0.07/N, 0.13/X, and 0.2/X for C@@(0), Cl~(0), and
Cyl(0), respectively. A useful way to normalize these
amplitudes is to consider

First we study the behavior of the network when it is
far from any bifurcation. point, as we expect this to be the
common case. Later we will present numerical results for
a network which is in the neighborhood of a bifurcation
point, a Hopf bifurcation in our case.

0.02
0
65

0.015—0
O

0.01

Outside a bifurcation regime 0.005—

For illustrating the behavior far from a bifurcation
point, we choose the following set of couplings:

-8

0.03

0.025- (b)

-6 -4 -2 0
delay

EI----

= 1230, 1840, —500, —400 mV, respectively .

(9.22)

The corresponding noise amplitudes at this point are
P~, Pl = 0.1, 0.13 rnV, respectively These p. arameters
set the system in a stable fixed point. The eigenvalues of
J are A~ ———0.26 6 3i. This eigenvalue is considerably
far &om any bifurcation since in general the bifurcations
are characterized by eigenvalues with real part that are
close to 1.

Since to leading order the equal-time ACs depend only
on the average Bring rates, which we keep fixed, they
are, in our case, equal to C~(0) = S~(l —S~) = 0.01
and Cr(0) = SI(l —SI) = 0.03 for the excitatory and
inhibitory, respectively. The time-dependent ACs are
shown in Fig. 4(a). They decay exponentially with the
local time-constant ~0.

The time-delayed CCs are shown in Fig. 5(a). The
dominant time constant of the decay of the CCs is 0.870,

0.02

0
(0 0.015I
O

001
C5

0.005

0 r

-0.005
-50 -40 -30 -20 -10 0 10 20 30 40 50

delay

FIG. 4. Population-averaged time-delayed autocorrelations
of excitatory (E) and inhibitory (I) neurons. (a) Interaction
parameters are the same as in Eq. (9.22), which is outside the
bifurcation regime; see text. (b) Parameters are the same as
in Eq. (9.25) with bifurcation parameter o. =- 0.05, which is
close to the bifurcation point. Note the change in the scale f!f
time.
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2. The bifurcation mgirne

We present numerical solutions of the equations for
the correlation functions for parameters which are in the
neighborhood of the Hopf bifurcation which occurs at

0 0 0 0
JEE& JIE& JEI & JII

= 1730, 1540, —500, —400 mV, respectively .

(9.24)

The noise amplitudes at the bifurcation are P~, PI
0.13,0.10 mV, respectively. All other parameters are
set to values that were previously presented. We vary
the values of the couplings by choosing them to be equal
to the bifurcation point up to an overall constant, i.e. ,

(9.25)

This is because near the bifurcation the CC is dominated
by the critical mode, which, in this case, peaks at zero
delay.

Our last numerical example corresponds to the case
where the system is further away from the bifurcation,
but is still afFected by it. This is the case of o. = 0.5.
The local noises P~ and Pl are computed to be 0.12 and
0.09 mV, respectively. In this case, A~ = 0.49+ 0.65'.
The ACs decay exponentially, similarly to the case of
Fig. 4(a). The time-delayed CCs for this case are shown
in Fig. 7(c). The correlation coefficients are 70/X.
indicating that the system is still a8'ected by the bifur-
cation point. On the other hand, the dominant time
constant of the decay of the CCs is small —2.070. The
frequency of the damped oscillations is 0.1/r0 Hz. Note
that although the frequency is not a critical quantity, it
is aH'ected by the increase in o. , as a comparison with the
case of a = 0.05 reveals. The decrease in the frequency is
due to the fact that decreasing the couplings simultane-

The parameter o. indicates the proximity to the bifur-
cation point and can be called the control parameter of
our system. When o. = 0 the system is at the bifurca-
tion point, whereas 0 ( o. ( 1 corresponds to the regime
where the system has a stable fixed point (with low firing
rates). The range a ( 0 corresponds to the regime where
the low rate fixed point becomes unstable.

The Hopf bifurcation at Eq. (9.24) is a supercritical
Hopf bifurcation [22], meaning that the stable fixed point
is surrounded by an unstable limit cycle that collapses
onto the fixed point as o. decreases to 0. This is shown
in Fig. 7, where we plot the unstable limit cycle that
surrounds the fixed point, for o. = 0.05 and 0.03. As we

approach the bifurcation point, the network is expected
to demonstrate a critical behavior in which the leading
term in the equal-time CCs is much larger than 1/K and
can be even of order 1, as discussed earlier [Eq. (7.3)],
and the dominant decay constant diverges. This is shown
in Fig. 8, where the equal-time CCs and the largest time
constant are plotted as functions of o.. These results are
reliable only for o. not too close to 0. When the system
is very close to the bifurcation, the theory by which the
CCs are computed is inapplicable since it relied on the
smallness of the Huctuations in the synaptic fields.

We illustrate the behavior close to the bifurcation point
by taking o' = 0.05, i.e. , JEE, JEI, JIE, and JII
1644, 1463, 475, and 380 mV, respectively. The corre-
sponding noise amplitudes are P@,Pl = 0.13,0.11 mV
respectively. In this case, A~ = 0.95+ 1.4i. In Fig. 4(b),
we present the time-delayed ACs C~(r) and Cl(r) as
functions of the delay. In this figure we have incorporated
the O(1/%) corrections, Eq. (6.22). As can be seen, near
the bifurcation and for the values of NE and NI that we
have chosen above, the cooperative contributions to the
ACs are no longer small and give rise to a pronounced
damped oscillations in the ACs. The time-delayed CCs
are shown in Fig. 5(b). Their value at zero delay, the
equal-time CCs, is much larger than 1/% = 10 5. The
time-delayed CCs decay with time constant of 2070 os-
cillating with frequency of 0.22/ro. Note that the ratio
of the peak to the zero-delay value of CEI is close to 1.
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0.04
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0.02 I I l l

0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
firing rate of excitatory neurons

FIC. 7. Unstable limit cycle around the stable fixed point
for network parameters Eq. (9.25) for two values of o: (a)
o = 0.05 and (b) a = 0.03.
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FIG. 8. Critical behavior of the cross correlations
near a bifurcation. (a) Equal-time cross correlations
of population-averaged excitatory-excitatory [E —E(0)],
inhibitory-inhibitory [I —I(0)], and excitatory-inhibitory
[E —I(0)] pairs as a function of n. (b) Dependence of the
largest time constant on a.

ously ixnplies a decrease of the imaginary part of Ay by a
similar factor (1 —a) as long as the local noise does not
change signi6cantly. The average delay between the ac-
tivities of the two populations equals 0.6&0 and the ratio
between the peak value and CEI(0) is 1.06. In Fig. 6(b)
we present C@~&(7) for the individual pairs. The efFects
of inhomogeneity are significant, but are less proxninent
than in the case where the system was far from a bi-
furcation. This is due to the fact that the net addition
of inhomogeneity is almost unchanged, while the size of
the average CCs is now one magnitude larger. In the
reciprocal case the CCs peak value is 1.2 times the peak
value of the averaged CCs. In the unidirectional case, the
addition to C@@(0) is such that C&&(0)/C@@(0) = 1.3
and C@g(7 ) exhibits a delay of 0.22vo in the peak value,
with a peak to zero-delay ratio of 1.05. In the discon-
nected case, the correlations are slightly smaller than the
average, where the maximal decrease in the correlations,
which is obtained at zero delay, is 2'%%uo of the peak value
of the averaged cross correlations.

X. DISCUSSION

We have presented a theory of the correlation functions
and linear response in large stochastic networks with high
degree of connectivity. Our theory is an extension of
the mean-Geld theory of the kinetic Ising xnodels near
thermal equilibrium [21,20,28]. The systems studied here
do not obey the detailed-balance conditions; hence their
statistics are not described by thermal equilibrium. In
order for detailed balance to hold the connections must
be symmetric J'~ = J~' and there are constraints on the
form of the transfer function in the transition rates Eq.
(3.1) [20,28]. These conditions result in a significant sim-
pli6cation of the theory. The fundamental eigenmodes
of the fluctuations are orthogonal and their eigenvalues
are real. Thus the resultant time dependence of the cor-
relation and response functions is relatively simple, as
they are composed of a sum of pure, exponentially de-

caying orthogonal modes. In addition, systems with de-
tailed balance obey the fluctuation dissipation theorem
[29], which establishes a direct relationship between the
time-dependent response and the correlations.

In contrast, in the present work, symmetry of the con-
nection matrix has not been assumed, nor have we re-
stricted the detailed form of the sigmoidal transfer func-
tion. As a result, the fundaxnental modes of the response
and fluctuations are not orthogonal and their eigenval-
ues are in general complex. Also, there is no simple
relationship between response and fluctuations. These
factors significantly complicate the theoretical calcula-
tions as well as the identification of the modes &om mea-
surements. In addition, the resultant time dependence
is richer and may include in general damped oscillatory
modes. Furthermore, although each mode is decaying ex-
ponentially at a11 times the response to certain sxnall per-
turbations may initially grow in time. This phenomenon
may lead to a substantial transient axnpli6cation of cer-
tain perturbations, although at long times the total re-
sponse will decay exponentially [30]. Such a behavior
cannot occur if the eigenmodes are orthogonal, as is the
case with systems at thermodynamic equilibrium.

Despite these di8'erences, there are some important
similarities between the equilibrium case and the xnore
general case considered here. Even in the absence of
detailed balance, the response and the correlations are
governed by the same fundamental modes. In both
cases, these modes are directly related to the interac-
tions through the efFective interaction matrix Eq. (4.5).
One of the main results of the present work is the critical
behavior at a bifurcation point, which has been discussed
in Sec. VIII. This behavior is similar in many respects to
the mean-field phase transition that occurs in analogous
systems at therxnal equilibrium.

The results of the present theory can be applied to
study the correlations in a variety of biologically inter-
esting network models. A simple example is the case of
excitatory-inhibitory network studied in Sec. IX. This ar-
chitecture is commonly used in modeling local neuronal
circuits in the brain. Our theory can be used to calcu-
late the neuronal correlations in recurrent, associative-
memory networks modeling hippocampal [31) or extra-
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striatal visual areas [32]. Provided that the number of
embedded memories is far below the capacity [33], these
networks have a connectivity patterns that falls within
the &amework of this work. Another potential area of
application is in the study of sensory or motor cortical
systems, where the gross organization of the intrinsic con-
nections is known.

Is the predicted critical behavior of the correlations
and response functions at a bifurcation point relevant
to biological systems? In general, one has to fine-tune
the parameters of the system to bring it close to a bi-
furcation point. Such a fine-tuning may seem unlikely
in many realistic situations. However, there are inter-
esting cases where symmetry considerations dictate that
the system is near a bifurcation point. Examples are sys-
tems that code for orientation or direction of sensory or
motor signals [34]. In addition, in some cases operating
near a bifurcation point may be functionally important,
such as in the case of olfaction [6] or the vestibuocular
system [35]. A learning mechanism may be responsible
for maintaining these systems near the bifurcation point
[35,36]. The above theory can then be used to predict
the behavior of the dominant mode of Buctuations.

To apply the theory to realistic situations, several ex-
tensions have to be made. First, one has to consider inho-

mogeneity in the local parameters, e.g. , the local thresh-
olds or time constants. This type of inhomogeneity is
more dificult to treat than random inhomogeneity in the
interactions, studied in Sec. VIII. In addition, it is im-

portant to consider a more general dynamic model, which
will incorporate refractoriness as well as synaptic delays.
Although dynamics with delays is non-Markovian, it may
still be possible to study the correlations in networks with
mean-field architecture.

The present theory is limited to asynchronous states in
networks with a high degree of connectivity. The assump-
tion of high connectivity is realistic in many brain struc-
tures, and although the probability of connections may
fall off with distance, such a dependence may be incor-
porated within our &amework. However, the biological
plausibility of the assumption asynchronicity of the dy-
namic state is questionable. In fact, our theory may pro-
vide means of testing this assumption. The asynchronous
states are characterized by CCs with amplitudes of the
order of 1/N and by the fact that the contribution to
the CCs of a pair of neurons &om the direct connections
between them is in general of the same order of magni-
tude as the total CCs. In contrast, synchronous states
are characterized by CCs which are of order 1 even if
the system is a large, fully connected network, so that
the contribution &om a given direct connection is still
of order 1/N'. This implies that in synchronous states,
the CCs are dominated by the coherent dynamics of the
system and will be much less sensitive to the value of the
direct connection between a given pair.

Unfortunately, comparison with experimental data is
complicated by the need to find an appropriate normal-
ization of cross correlograms of experimentally measured
spike trains. This issue is discussed in detail elsewhere

[37]. However, insight may be gained by analyzing the
observed temporal behavior of the correlation functions.

For instance, according to our theory, the ACs are dom-
inated by the local noise, whereas the CCs are strongly
affected by the cooperative Quctuations which may have
relatively long decay times. Thus comparing the time
dependence of the ACs and the CCs may give an impor-
tant clue on this issue. In addition, it may be possible
to measure the effect of perturbing the synaptic connec-
tions between a pair of neurons on their CCs within the
network. Finally, although we have focused here only
on asynchronous states, analytic calculation of the cor-
relation functions in certain synchronous states may be
possible. An example is the case of stochastic phase os-
cillators studied in Refs. [9,10]. Thus generalizing the
present approach to calculate the correlation functions
of weakly synchronized states in systems with mean-field
architecture is an important challenge for future research.
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APPENDIX A

In this appendix we derive the equations for averages
and correlation functions for a general network with the
stochastic dynamics defined in Sec. III. In this appendix
we do not assume any specific connection architecture
and will therefore use the notation where subscripts de-

note neuronal indices. Our derivation is similar to that
given in Ref. [21] for an Ising system with transition rates
that obey detailed balance.

The equation for the average activities is given by

—„(S;(t))= ) S,—„P((Sj,t) .
(s}

where g&s& represents summation over all possible con-

figurations (Sj = (S, . . . . , S~). Substituting Eq. (3.3)
into Eq. (Al) yields:

—„",(S.«» = -).).S.-(S»«Sj, t)
(s) l=1

) ) S,vu(l —S()P((Sj', t),
$s) l=l

(A2)

where m(S~) stands for m(S~ -+ (1—S~)), m(l —S~) stands
for m((l —S~) ~ S~), and (Sj = (Sq, . . . , 1 Sl, . . . , Sw). —
Since the above summations are over all possible con-

figurations, each configuration in which S~ —— 1 has
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+(1 —S;)ur(S;) P((S},t) . (A3)

The terms in the first summation, for which l P i, are
canceled by the corresponding terms in the second sum-
mation and we are left with

g, (S*(t)) = ),(1 —2S*) (S*)P((S}t)
(S)

which is equivalent to

d, (S*(t)) = ((1 —2S') (S')) .

(A4)

Here and in the following, the angular brackets stand for
an averaging with respect to P at time t. Using the form
of the transition probabilities Eq. (3.1) and the fact that
S; = 0, 1, one obtains the result of Eq. (3.4). A similar
derivation yields, for the second-order moments,

&o
dt

(S'(t)S (t)) = —2(S*S ) + (S'g(h )) + (S g("*)) .
d

(A6)

Using Eq. (A5) we obtain the result of Eq. (3.6) for the
equal-time correlation functions.

So far, we have evaluated quantities that depend on a
single time t. To calculate time-delayed correlations we
have to average quantities that depend on two diferent
times t and t + v, v & 0. This is done by averaging
over t, weighted by the initial probabilities P((Sj, t), and
over configurations at the later time t + r, weighted by
the conditional probabilities P((uj, t + ~i(S},t). This
quantity is the probability of finding the system at state
{0j at time t+7., given that it was in the state (Sj at time
t. The equations for the "two-time" second moments are
then

a complementary configuration in which S~ ——0 and
vice versa. We can therefore replace the expressions
S;m(l —S))P((S}') by S;m(S))P((S}) for i g l and
S;~(1 —S;)P((S}')by (1 —S;)m(S;)P((S}). We thus
rewrite Eq. (A2) as

N N—(S,(t)) = ) —) S;w(Si) + ) S;m(S()
(s} l=x

l gi

A similar derivation for a system at thermal equilibrium
is presented in [21]. Using Eqs. (A8) and (3.4) one ob-
tains the result of Eq. (3.7).

APPENDIX B

(g(h*)) =g((h'))+-g"((h'))). J' J' C' (o) . (B2)

Taking into account that Czs are of order 1/N for all j P
k and the strength of the connections it is readily seen
that the last term is of order 1/N. Hence, to leading order
one obtains, for the dynamics of the average activities,

—„(S'(t))= —(S') + ((h*))

(B4)

which corresponds to Eqs. (4.1) and (4.2).
To approximate the CCs, we expand the quantities

(~S'( ) (h ( + ))) = (~S'( )b (h ( + ))) (B5)

in powers of bh~. The leading order contribution to Eq.
(B5) is

(bS;(t)bg, (t+r)) = ) J,„(t+r)C,,(t, t+ ~), (B6)

In this appendix we derive approximations of the re-
sults of Appendix A which are exact for highly connected
networks in the limit of large networks. Specifically, we
will assume that each neuron is connected to a number
of neurons of order N with connections J;z that are all
of order 1/N. Implicitly, we assume that the large N
limit is well defined by keeping the population architec-
ture specified in Sec. II. However, we will use the general
notation of Appendix A, denoting by subscripts neuronal
indices, and will not explicitly refer to population indices.

First we consider Eq. (3.4) for the average activities.
We write

h; = (h;) ybh;,
where (h;) = P. J;~(Sz) and hh; = g. J;~bS~. We then
obtain

( S'(t)S (t + ))
d

= ) ) S~,—P((~j, t+ri(S},t)
(S) (cr)

xP((S},t), r )0. (A7)

where J~(t) = g'((h;(t))) J;z. Each of the terms with
k j i are of order 1/N2 The term wi.th k = i involves
the ACs and is therefore of order 1/N. The total con-
tribution from both sources is of order 1/N. Thus Eq.
(3.6) reduces to

The conditional probabilities obey the same master equa-
tion as in Eq. (3.3). Using Eq. (Al), we obtain

d.—(S'(t)S,(t+ )) = —(S.(t)S,(t+.))dr
+(S'(t) (h. (t+ )))

dr,—„C;,-(t, t) = —2(hS;bS, ) + (bS;g(h, ))

+ (hS~g(h;)) . (B7)

~) 0. (A8)
Equation (3.9) for the equal-time CCs at equilibrium re-
duces to
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N N

C's (o) = ).~2~C'~ (0) + ) .J'~CD~ (o)
I =x k=1

+J,,C,-, (0) + J,C,,(0), i g j . (BS)

r ( rr ~)[Jz N —lC

+(&, —Jzz)(&. —Jzz)N, 'Cr(0)],

Similarly, the equation for the equilibrium time-delayed
CCs reduces to

where

ro C,—, (7.) = —C,, (r) + ) J,r, C, r, (r ) + J, C,, (r ) .

i g j. (B9)

Equations (B8) and (B9) are equivalent to the matrix
equations (6.8) and (6.15). A similar derivation holds for
the I/N corrections to the time-delayed autocorrelations
Eq. (6.22).

APPENDIX C

In this appendix we provide the full solution of the
CCs in the two-population network described in Sec. VI.
The three equal-time CCs Czz(0), CII(0), and Czr(0) =
CIz(0) obey Eq. (6.14) with C„,v, is, = 6 defined in Eq.
(6.10). In our case, the eigenvalues and eigenvectors are
given in Eqs. (9.9)—(9.11). The matrix C„equals

and C~ and CI are the ACs of the two populations.
Note that C„„is symmetric with respect to p and v.
From these expressions it is clear that the CCs will di-

verge whenever the denominator of C„getsclose to zero.
When a saddle-node bifurcation is approached, A~ are
both real and C++ will diverge while other C„„willre-
main 6nite. When a Hopf bifurcation is approached, A~
are complex and C+ and C + will diverge. At both bi-
furcations all equal-time CCs will diverge since they all
depend on all the terms of C„.

Using the general equation derived for the time-delayed
CCs [Eq. (6.20)], we find the time-dependent CCs, for the
two populations network Eq. [(9.17)], where the coeffi-
cients a&& are given by

a„,= C„,(0)L,+ + Cr, z(0)L + "~"
A L„

a„,= Cyi(0)L, + Cg2(0)Lz + ~l l A L„
= @AN„'Ca(0) .
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