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Tracking ussstable orbits in chaos using dissipative feedback control
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Using a form of linear feedback we call dissipative feedback control, we show how to use external forc-
ing to control a chaotic dynamical system to a fixed point or an unstable periodic orbit when the location
of the fixed point or unstable periodic orbit may change slowly with time. The ability to follow a desired
state of the system by an external control even when that state is slowly varying in time we call tracking.
This slow "drift" of states is the usual situation in actual experimental realizations of chaotic systems in
nonlinear circuits and other physical manifestations, and this drift can be accounted for by providing a
slow dynamics for the location of the fixed point or periodic orbit. We discuss the theoretical aspects of
this idea and show its feasibility in some experiments with nonlinear circuits with chaotic behavior.

PACS number(s): 47.20.Ky, 47.27.Te, 64.90.+b

I. IN IRODUCTION

In the investigation of means of controlling chaotic
dynamical systems many suggestions have been made
[1-4] which employ difFerent strategies for efFecting the
control. The method of Ott, Grebogi, and Yorke [1]
focuses on the variation of an accessible parameter of the
dynamical system to stabilize the motion to one of the
unstable fixed points or unstable periodic orbits which
abound within the strange attractor visited by the chaotic
orbit. If system noise is small, then the main advantage
of the parameter variation method is that using essential-
ly any accessible parameter one may move the orbits to
one of these formerly unstable orbitals with very small
perturbations and can achieve this without knowledge of
the governing equations of the system. A disadvantage of
the method is that it requires that the small perturbations
be computed at each step and thus the control becomes
infeasible for high frequency motions. Of course, since
the method requires the use of the local stable and unsta-
ble manifolds of the unstable fixed point or periodic orbit,
noise can drive one away from the convenient operating
region and break the control. Further, if the local
Lyapunov exponents of the system being controlled are
large, the ability to achieve control with only small per-
turbations may be jeopardized.

In this paper we investigate a somewhat di8'erent ap-
proach to control based on variation of one or a few of the
dynamical variables of the system in an appropriate way.
This method in application to the stabilization of unsta-
ble periodic orbits of chaotic dynamical systems was first
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suggested and illustrated numerically by Pyragas [4]. We
call this principle "dissipative feedback control" and will
illustrate it below. The general technique has been used
in control theory for some years and is known as
"closed-loop state feedback control" [5]. The central
idea is to measure some physical dynamical variable x(t)
and then find a way to drive x(t} towards the desired
value xD(t) by adding a term proportional to x(t) —xD(t)
in the equations of motion for x(t) in such a way that the
motion "dissipatively" moves x(t)~xD(t). If xD(t} is an
existing but unstable orbit of the initial dynamical sys-
tem, then, after an initial transient, stabilization to this
now stable orbit can be achieved with very small "energy
expenditure" required in the control process. Even if
xD(t) does not correspond to a stationary state of the sys-
tem, stabilization still can be achieved, but with finite en-

ergy losses. To a certain extent, this method is similar to
the method of occasional proportional feedback control
which was employed for stabilizing periodic orbits [3]
and recently for synchronization of chaotic circuits [6].
The main advantage of this scheme is in its simplicity-
one can provide control without computing parameter
perturbations and by using analog hardware only.
Another advantage is that this method can in principle
provide global stability and therefore be much less sensi-
tive to noise than the parameter perturbation techniques.
Although it may seem dificult to find an appropriate way
to introduce dissipative feedback into the unknown sys-
tem, we envision a large number of situations when this is
possible. For example, in a thermo6uid setting, if one
measures temperature variations, then the heat supply to
the location of measurements would provide a natural
dissipative feedback. Dissipative feedback to light inten-
sity in chaotic laser experiments can be achieved by vary-
ing the quality factor Q of the resonator. Of course,
when one works with chaotic electronic circuits, the dis-
sipative coupling is usually quite easy to implexnent as a
current injected through a resistive coupling. Finally, in
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controlling fiuid turbulence in a boundary layer on spatial
scales where coherent structures are the dominant dy-
namics [7], control would be established by a pressure
feedback of the sort discussed here.

The goal of this paper is to demonstrate how one can
use the method of dissipative feedback for tracking unsta-
ble fixed points and unstable periodic orbits throughout
the chaotic domain of the bifurcation diagram for a sys-
tem. We suggest an algorithm with which one can start
control at the value of control parameter when the fixed
point or periodic orbit is stable, and then as one slowly
changes a control parameter and enters a chaotic state
through a sequence of bifurcation still have the system
remain near the selected but now unstable periodic orbit
or fixed point. Unlike tracking schemes using parameter
control [8], it is not necessary to know the eigenvalues
and eigenvectors of the unstable fixed point or periodic
orbit throughout the range of parameter variation. In
most cases it is only necessary to choose the sign of one
or a few parameters appropriately.

In Sec. II we will present a general formulation of the
method and discuss when dissipative feedback tracking
will work. In Sec. III we will consider an important par-
ticular case when a chaotic system can be controlled by a
scalar dissipative feedback. In Sec. IV we will present re-
sults from actual experiments with the electronic circuit
illustrating possibility of tracking an unstable fixed point
using dissipative feedback control. The last section con-
tains our conclusions.

II. GENERAL FORMULATION

A. Fixed points

We begin with a dynamical system

where F( } is a vector valued function of
x=(x„xz,. . . , xz} in d dimensions. The dissipative
feedback control scheme can be expressed in the follow-
ing form:

dx(t) =F(x(r))+g[xD(r) —*(r)] . (2)

Here xD(t) is a given stable or unstable periodic orbit or
fixed point of the original system (1}. xn(t} is the desired
state of the system to which we wish to drive it by our ad-
ditional control. g is a-d Xd diagonal matrix with ele-
ments g;1 =g;5;-;g; &0;i,j=1,2, . . . , d. It is easy to see
that for any dynamical system (1) one can find a go &0
such that, if all g; &go, the trajectory x~(t) becomes
stable. This simply says that if one drives the orbit
strongly enough in a dissipative fashion near x~(T), it
will go there stably. Although the go accomplishing this
goal is not small in general, as it is of the order of the
largest Lyapunov exponent of the particular unstable
periodic orbit xn(t },the driving becomes in fact arbitrari-
ly small as soon as the system approaches the chosen or-
bit, since we then have g[xD(t) —x{t}]~0.

This control method is generic in the sense that all con-

dx(t}
dt

=F(x(t))+g[x (t)—x(t)],D

dxn(t) =pP[x(t) —xD( t)],

(3)

(4)

where p « 1, and P is a d Xd matrix to be specified. The
particular choice of P depends on the properties of the
unstable fixed point we will try to stabilize. The idea here
is that the system goes to the surface F(x}+g(xD—x }=0
on a rapid time scale which is of order unity, and then on
a time scale of order p ' adjusts the value of xD so that
x(t),xn(t) +x; F(x~ }—=0.

With the small parameter p the system (3) and (4) ex-
hibits motions on two time scales as noted. In the limit

p —+0 the hypersurface on which slow motion, that is, the

trol schemes change the dynamical system with which
one works by adding an "external" forcing to the system
designed to drive the augmented system to a specified lo-
cation in state space. In our examples we have chosen to
drive the original system to a "desired state" xn(t} which
was an unstable state of the original system. We do this
because the unstable fixed points and unstable periodic
orbits of the dynamics dx(t)/dt =F(x(t) ) are characteris-
tic of the system [9] and there are methods for establish-
ing these without knowledge of F{ ) from observed orbits
x(t) alone.

In many physically interesting cases dissipation can
only be applied to one or a few components of the vector
x(t) of dynamical variables. This means only a few en-
tries of g are nonzero. In order to stabilize the familiar
Lorenz system, for example, only the x component may
be "dissipated, "as the other subsystems arising when one
tries to dissipate either the y or z components of the
Lorenz system are unstable. Usually the number of
dynamical variables to be controlled by dissipation coin-
cides with the number of positive Lyapunov exponents in
the uncontrolled system. In some cases it can be fewer.
The particular choice of dynamical variables to which the
dissipative feedback should be applied is not always obvi-
ous, although physical intuition can often help to choose
the "most unstable" variables. The suScient condition
for the right choice is that the equation for the remaining
variables form a stable subsystem with all negative condi-
tional Lyapunov exponents [10] {see Sec. III for more de-
tails). For noisy systems the driving magnitude remains
finite, as in the parameter control schemes; however, in
the present method we can be sure that fairly large fiuc-
tuations do not throw the system out of control for an
indefinitely long time. For example, if go is larger than
the largest Lyapunov exponent of the uncontrolled chaot-
ic attractor, the orbit we chose with xn(t) becomes a glo-
bal attractor.

From now on we will concentrate on the case when the
desired orbit xn(t) =x' which is an unstable fixed point
of the original system, F(x') =0. In real experiments the
exact position of the desired fixed point is usually un-
known, especially if the parameters of the system vary
slowly in time. In this case we can generalize the dissipa-
tive feedback control scheme (2) by allowing the value of
xD to change slowly under the influence of the system:
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variation of xn(t), occurs is described by

F(x)=g(x —xn ),
and the fast motion is along the one parameter family of
hyperplanes xz =const. Fixed points of the original sys-
tem (1) lie on intersections of the surface of slow motion
and the surface x=xD. Following Eq. (3) brings x onto a
surface of slow motion (5) with xD =xn(0). During the
subsequent slow evolution x and xz change, preserving
the relation {5)and in accordance with Eq. (4). To assure
that xz moves towards the fixed point x* of the original
system one needs to make a special choice of the matrix
P. Near the fixed point x=x~ =x' we can take a local
linear approximation for F(x),

F(x}=F(x')+DF(x')(x—x')

when the system has just one "active" variable and can
be stabilized by a scalar dissipative feedback.

B. Unstable periodic orbits

If we wish to stabihze an unstable periodic orbit of the
system, we apply the method just outlined to a sequence
of Poincare sections. On these Poincare sections the Sow
becomes a discrete time map with the "time" label n indi-
cating the sequence of crossings of the section. The
vectors in the section are (d —1)-dimensional
x(n);n =1,2, . . . ,¹ From the flow we make the finite
time map

x(n +1)=x(n)+ f(x(n)),

and with dissipative feedback control this becomes
=DF(x' )(x—x' ) (6) x(n +1)=x(n)+ f{x(n)}+g[xD(n)—x(n)] . (13)

or

x—x'= —[DF(x')—g] 'g(xD —x') .

We are assuming that the matrix DF(x') —g is nonsingu-
lar and all its eigenvalues are negative. All of this gives
an equation for xD(t) —x':
d [xn(t) —x']

dt
= —pP[(DF —g) 'g+i][x (t)—x" ] .

(9)

Now suppose C is a unitary matrix such that
A=C[(DF—g) 'g+I]C ' is triangular. If all diagonal
elements A;; of A are nonzero, we can choose

P=C-'GC, (10)

where G is, for example, a diagonal matrix with elements
G;;= —sgnA, , }. Then all eigenvalues of the system (9)
will be negative:

[DF(x') is the d Xd Jacobian matrix of the original sys-
tem evaluated at the fixed point x'] and rewrite (5) as

DF(x')(x —x') =g(x —xD )

=g[(x—x' ) —(xD —x' ) ]

As above we are seeking a fixed point in the Poincare sec-
tion at x" with f(x') =0.

We would, in practice, seek to move the orbit in a se-
quence of sections x, (n) to a sequence of fixed points x,'.
The spacing of the sequence of sections must be chosen so
that the features of the unstable periodic orbit which
crosses the sections at the points x,' are properly cap-
tured. To assure this we should place the sections within
a half wavelength or less of each variation about the or-
bit. Where the orbit is smooth, fewer sections are re-
quired. Where the orbit has substantial curvature, more
sections will be needed. On each section we perform the
operations now to be described for a given section.

First we augment the dissipative feedback evolution
with an equation operating on a slow time scale for the
variation of xa ..

xD(n +1)=xD(n)+pP[x(n) —xD(n)] (14)

as above; p &(1, so there are again slow motions
governed by this last equation and rapid motions
governed by the original dynamics. The orbits x(n) rap-
idly move onto the hyper surface

f(x(n))+g[xD(n) —x(n)]=0 .

Assuming we start near the fixed point x', we can write

f(x)= f(x')+Df(x')(x —x'), (16)

If A is singular, we can always add nondiagonal parts to
G to make the corresponding eigenvalues of (9) negative.

In the general formulation presented here the tech-
nique of dissipative feedback control may appear not
easier to implement than parameter variation methods.
However, in many cases the general procedure may be
greatly simplified. Indeed, if the system can be separated
into "active" and "stable" subsystems, the dissipative
feedback need only be applied to the "active" dynamical
variables. Once these variables are determined (which
often can be done purely on experimental grounds}, the
dissipative feedback can actually be provided without
knowledge of the underlying dynamical equations of
motion. In Sec. III we consider a particularly simple case

and note f(x') =0. Following the development above we
write

[x(n)—x']Df(x') =g[x(n) —x~(n)]
=g[x( n )—x' ]+g[x' —xD ( n ) ] (17)

or

[Df(x*}—g][x(n) —x']= —g[x~(n) —x'] .

Using this relation in the slow evolution equation for
xn{n),

xD(n +1)=xi, (n)+pP[x(n) —xD(n}],

we arrive at
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xD(n+1) —x =xn(n) —x +juP[x(n}—x +x —xD(n)]

=xz(n) —x~ —pP{xn(n) —x'+[Df(x )—g] 'g[xn(n) —x ]]
= [I+M][xD(n)—x'], (20)

with

M= —pP{I+[Df(x')—g] 'g j . (21)

dxn(t)
=pE[x(t) —xn(t)] . (24)

III. SCALAR TRACKING OF UNSTABLE FIXED POINTS

In this section we separate the dynamical system (1}
into an equation for an "active" scalar dynamical vari-
able x (t) and d —1 equations for the rest of the dynami-
cal variables y(t). The y(t) are taken to be a stable sub-
system. The evolution equations then split into the pair

x(t) =h(x (t),y(t)),
dt

dy(t) =S(x (t),y(t)) .
(22)

The stability of the subsystem y(t) for a given trajectory
{x(t),y(t)J is determined by the conditional Lyapunov
exponents [10]which are calculated by iterating the "par-
tial" Jacobian DS(x(t),y(t))= {M;(x(t),y(t))/By, ]
along that orbit. When all these exponents A,

„

a =1,2, . . . , d —1, are negative, y(t) is said to form the
stable subsystem [10]. We note in passing that this stabil-
ity can be local (near a particular orbit or a Sxed point},
or global if conditional Lyapunov exponents are negative
for any orbit of the system.

Now we assume that y(t) forms a stable subsystem
near the unstable axed point. It is easy to see then that
the scalar dissipative feedback control for the dynamical
variable x (t}

dx (t) =h(x(t), y(t))+g [xn —x(t)],

dy(t) =S(x (t),y(t)),
dt

(23)

will stabilize the unstable Sxed point xz of (22) in some
range of g. For example, when g~~, variable x be-
comes Sxed (x~xn), and the Lyapunov spectrum ap-
proaches {A,„.. . , A,d „—g] where A,, are conditional
Lyapunov exponents of the stable subsystem y, which are
all negative by definition.

To provide self-adjustment and tracking of this unsta-
ble fixed point we add an equation for xz in the form

The stability of the approach xn(n}~x' is determined

by the eigenvalues of the matrix M as before.
So the extension of the methods outlined above for

moving a system to a fixed point and allowing the control
algorithm to adjust to slow variations in the location of
the fixed point can be extended to controlling the orbits
of the chaotic system to periodic orbits by making adjust-
ments along the orbit in a sequence of Poincare sections.

Here again p && 1 is small, and the matrix g now reduces
to a constant K=+1.

The notation may be somewhat confusing here and ear-
lier. %e speak of xz both as a fixed point, thus indepen-
dent of time, and as slowly varying in time. The idea is
that the original dynamics on its own time scale has fixed
points independent of time on that "fast" time scale.
However, there are drifts in the system which operate on
a time scale of order p ', and it is on that long time scale
that x~ acquires time dependence. The tracking method
discussed throughout this paper focuses on capturing and
controlling the slow time scale.

The surface of slow motions is now a line

xn =x ——h (x,H(x) ),1

g
where y=H(x) is a solution of

(25)

S(x,y}=0 . (26)

M. STABILIZATION OF FIXED POINTS
IN A CHAOTIC KLECaaIC CIRCUIT

A. Description of the circuit

To demonstrate our method in an experiment we built
an electronic circuit with chaotic behavior [11]. The
block diagram of the circuit is shown in Fig. 1. The
chaotic circuit consists of a nonlinear amplifier which

H(x) can be multivalued, and all branches have to be
considered. For large enough g this line is an attractor
for fast motions, although for smaller g this may be not
the case. See the next section for an example. Fixed
points x' of the original system (22} lie on the intersec-
tion of (25} and the line x —xn =0. The stability of the
x' with respect to slow motions is determined by the
structure of the Jacobian and the sign of E. Indeed,
linearizing as before near a Sxed point x =xn =x ' yields

dxn(t) tt,g
dt g

{[1—g 'h (x', H(x'})] ' —1]

X[xn(t) —x'] .

Thus, if h, (x',H(x')) is positive, one needs X=1 to as-
sure stability of the fixed point x', and vice versa. The
value of h„(x',H(x ') ) is simply related to the elements
of the Jacobian of the original system (1)

h~(x, H(x'))=DF))+ g DF„DF,, (28)
i=2
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x(2)

e f(x)

%Y
z(t)

xg =z~ = —xL = —zL —=V (a—1)/a .

The fixed points OL and Oz are globally stable in the pa-
rameter region

(5+y)(1+o +5y)
1 &a &aH ——1+

2y

FIG. 1. Block diagram of the chaotic circuit. R =3.38 kQ,
I.= 145 mH, r =347 0, C =343 nF, and C' =225 nF.

dy (t) =—x —5y +z,
dt

dz (t)
dt

=y[af (x)—z] cry —.

(29)

x(t) is the voltage across the capacitor C and
y(t)= vL/Ci(t) with i(t) the current through the in-

ductor L. z(t) is the voltage across the capacitor C'.
Time has been scaled by 1/&LC.

The parameters of this system have the following
dependence on the physical values of the circuit elements:

' 1/2
LC

5
C C

(30)RC' ' L C'

The nonlinearity f (x) can be approximated by

0.528 if x + —1.2,

f(x)= x(1—x ) if —1.—2&x &1.2
—0.528 if x ~1.2.

(31)

The control parameter a characterizes the gain of the
nonlinear amplifier around x =0. In the experiments the
parameters of the circuit corresponded to the following
values for the coefBcients in the dilerential equations
(29): y=0. 294, a=1.52, and 5=0.534.

If a is less than 1, all trajectories in the phase space of
this system approach the stable fixed point at the origin
x~ =00(0,0,0}. When a becomes larger than unity, the
fixed point 00 is no longer stable, and two additional
fixed points OL (xt,O, zL ) and Oz (xs, O, zz ) appear in the
phase space of the circuit. The coordinates of these fixed
points are given by

transforms input voltage x(t) into the output af(x(t)).
Details of this circuit are found in the paper by Rulkov
et cl. [12]. The output is then applied to the input of the
nonlinear amplifier through the low-pass filter RC' and
the resonant circuit rLC which can be seen in Fig. 1. The
dynamics of the circuit is described by

dx (t)

The transition through the critical value aH is accom-
panied by a supercritical Andronov-Hopf bifurcation
from the fixed points OL and Oz. The bifurcation gives
rise to stable limit cycles PL and Pz. Note that due to
the symmetry of the system any asymmetric limit set
coexists with another one which is topologically similar.
These can be realized through the transformation
x ~—x,y —+ —y, z~ —z.

For larger values of a the dynamics of the circuit has
been explored both experimentally [11]and in numerical
simulations [12]. For small enough values of y, when a
increases, a period doubling bifurcation sequence from
PL and Pz leads to the appearance of two chaotic attrac-
tors SAL and SA&. Then SAL and SAz merge into a
single symmetric strange attractor SA when a is higher
than some critical value. Figure 2 shows the projections
of SAL, SA+, and SA onto the x-z plane as measured in
the experiment.

B. Experimental dynamics of dissipative feedback control

In order to alter the chaotic dynamics of the circuit by
controlling the state of the circuit in the vicinity of an un-
stable fixed point, we introduce the dissipative feedback
by applying the external voltage v(t) (see Fig. 3}. The
idea of dissipative coupling was considered earlier by one
of us (N.F.R.) [12—14] for the purpose of synchronizing
two chaotic osciHators.

The dynamics of the circuit with the driving is de-
scribed by

dx (t)
dt

=y(t) —g [x(t)—U(t)],

dy (t) = —x (t)—5y (t)+z (t),
dt

dz (t)
dt

=y[af(x(t)) —z(t)]—cry(t),

(32)

where g =(1/R~„&&)&L/C is the parameter of dissipa-
tive coupling of the circuit with the voltage U (t).

%e begin by controlling the circuit near the unstable
stationary state Oz when u) aH. In this case we apply
v =x~ which is the voltage x at the unstable fixed point.
This is what we called xL, in our general discussion
above. The in6uence of the driving voltage does not
change the coordinates of the fixed point Oz. The
strength of the coupling which is needed for the stabiliza-
tion of the stationary state O~ of the system (32) can easi-

ly be found analytically by means of the Routh-Hurwitz
criteria, and this is given by

—[(5+y ) + 1]+Q[(5+y } + 1] +8y(5+ y )(a—
an't )

2(5+y) (33)
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Local stability of the fixed point Oz is achieved by choos-
ing g &g„.At g„the fixed point Oz loses stability via a
supercritical Hopf bifurcation. Using the Lyapunov
function

V= —,'[(x —xz) +y +(z —xa) ]

the global stability of the fixed point (32) follows, if

y(0.528a —xa )
g&

4cr(1.2—xa )

Due to the symmetry of the system (29), the stability con-
ditions of the Sxed point Oz with the dissipative driving
u =xl are the same as for 0&.

When the state of the system approaches the fixed

y(~-i)
g +gem= (34)

At g =g,~ the fixed point 00 loses stability and two addi-

point Oa, the current I„„,=R „~,[x (t)—v] through the
resistor R „p& goes to zero. Figure 4 shows the experi-
mentally measured time series of x (t), z(t), and I „&(t)
during the transition from chaotic oscillations of the un-
controlled circuit, corresponding to R „&= 00 and SW1
switched ofF, to motion at the stable fixed point Oz
achieved with the dissipative coupling turned on and
R ~upi =650

For local stabilization of the Sxed point 00=(0,0,0)
with the dissipative driving v =0, the value of the cou-
pling parameter should be chosen in the region

3.0 4.0

(b)
2.0

2.0

I 'n

tT I

I L

1.0

0 0.0-
N

-1.0

-2.0

-2.0

-3.0
-2.0 -1.0

I

0.0
x (V)

I

1.0 2.0
-4.0

-2.0
I

-1.0
I

0.0
x (V)

I

1.0 2.0

4.0

2.0-

) 0.0
N

-2.0— il LL. L

a

-4.0
-2.0 -1.0

I

0.0
x (V)

I

1.0 2.0

FIG. 2. Chaotic attractors generated by the circuit. The time series x (t) and z(t) are measured with the sampling period r, =40
@sec and plotted in the (x,z) plane. (a) SA& and SAL generated with a=15.6. (b) SA with a=17.9. (c) SA with a=21.1.
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B11

R
coupl

I
coupl

x(t}
Chaotic

circuit

2.0

O. D —

y )I
, k

-2.0
Q.O 10.0

I

20.0 30
FIG. 3. Block diagram of the experiment with dissipative

feedback driving. The voltage U is generated by stabilized
source B11. SW1 is a switch.

tional stable fixed points appear as a result of a pitch-
fork bifurcation. Using the Lyapunov function
V =

—,
' [x +y +z ] one can again prove global stability of

Oo when g )a y/4cr.
Experimentally measured time series of x (t},z(t}, and

I 0 p&
during the transition from chaotic oscillation with

R p] to the fixed point 00 stabilized with
R 0 p] 190 0 are shown in Fig. 5 .

Figure 6 shows the dynamics of the circuit with dissi-
pative feedback control in the experiment with different
regimes of driving. When the driving is switched off, the
time series x(t} and z(t} clearly display intervals of
chaotic oscillations. When the driving is switched on, the
pulses of the current I „&mark the transition to the
desired fixed point.

The results of experimental studies of the stability of
the fixed points are shown in Fig. 7(a}. The boundaries
of stability are presented on the parameter plane of cou-
pling g and the slope of the nonlinear function

4.0

z.o )
III I

II&, ~Ig ~I

-4.0
0.0

1.0
I

0.5-
E

o.o—

I

10.0
I

20.0 30.0

-0.5
0.0

I

10.0
Time (msec)

I

20.0 30.0

4.0
I

2.0
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FIG. 6. Time series x (t), z(t), and I„p)(t)demonstrating the
switching of the circuit from chaotic oscillations generated
without dissipative feedback control to a contro11ed Sxed
point stabilized by the dissipative feedback control U. a=21.1,

g =3.42, and v, = 100@sec.
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FIG. 7. (a) The stability boundaries g„andg,~ and the line
of heteroclinicity gz in the (a,g) plane. a=S(x0),S(x& ) is the
slope of nonlinear function af(x) at the fixed point xs mea-
sured from the circuit. The theoretical boundaries are shown

by solid lines. (b) I „»versus the detuning of the driving v from
the coordinate x of the Sxed point measured in the experiment
with a=17.9. Circles show I „»versus Do=(v —x0) with

g =3.42; squares show I„„»versus D~ =(v —x~ ) with g = 1.

S(x;)=adf(x)idx~„„atthe fixed point 0;. In the

model of the circuit with the nonlinearity given by the ex-
pression (31) the slopes have the values S(0)=a and
S(xtt )=3—2a. Figure 7(b) shows the dependence of the
current I „p1on the detuning of the voltage v from the
value xz used in the feedback control of Oz add from the
value xo used for 00. It follows from the experimental
data presented in Figs. 4-7 that in the regime where the
fixed points are stabilized with proper coupling strength,
the current through the resistor R„„»goes to zero when
the external voltage u is adjusted to the value of the inter-
nal voltage x corresponding to the fixed point. This
demonstrates that fixed points of a chaotic system may be
controlled with small applied external perturbations.
Strong driving of the system may be required initially but
only during the transition to the region of the fixed point
immediately after switching on the control. In order to
reduce high current through the resistor R „»at the be-
ginning of control, one may choose to switch on the cou-
pling at a time when the chaotic trajectory of the circuit
comes close to the desired fixed point.

dv(t}
dt

=@K[x (t) v—(t)], (35)

where p&LC lr and r is given by the internal charac-
teristics of the integrator B12. In the experiment we use
@=0.015. The parameter K is controlled by the switch
SW2; K=+1 when SW2 is in the position + and
K = —1 when SW2 is in the position —.In this case the
feedback matrix g of Sec. II is simply a scalar K. Recall
our remarks about v being both time independent on the
fast time scale of the circuit and time dependent on the
slow time scale of this tracking feedback.

Consider now the dynamics of the chaotic circuit (32)
with the feedback control (35) at p«1. In this case
motion in the four-dimensional phase space has both fast
and slow features. The slow motions are located in vicin-
ity of the manifold 8',&,„givenby

y —g (x —v}=0,
—x —5y+z =0,
y[af (x) z) cry—=0—.

(36)

The projection of this one-dimensional manifold 8',&,„

onto the (x, v) plane is

v =x r
(o+5y) [af (x}—x] . (37)

The direction of motion along the manifold can easily be
found from (35). Fast motions of the system are located
near the three-dimensional hyperplanes v =const and are
described by (32). Figure 9 shows qualitatively the slow
and fast motions of the system in projection on the plane
(x,v}. The intersections of the manifold and the three-
dimensional hyperplane u =x correspond to the fixed
points of the system (32), (35). The projections of these
fixed points onto (x,y, z) are the fixed points of the system
(29).

It is easy to see from Figs. 9(a) and 9(b) that the fixed
points Oz and OL are attractors with K &0 and g &g„

just the voltage v in the experiment we added to our cir-
cuit a self-adjusting feedback. The block diagram of this
experiment is shown in Fig. 8. This feedback changes the
voltage v as discussed above,

C. Dynamics of control with parameter tracking
4E 4Eir

i coup1

sw1

Chaotic

circuit

To minimize I,p p1 during the transition period one can
start the control of the system with the circuit parame-
ters set to correspond to stability of the desired fixed
point. Then one moves the circuit parameters into the
region of chaotic dynamics, meanwhile controlling the
system near this now unstable fixed point. This pro-
cedure is called tracking in the literature [8,15]. For the
case of dissipative feedback control the value of the sta-
bilizing voltage u has to follow the change of position of
the fixed point as the parameters change. In order to ad-

b

sw2

FIG. 8. Block diagram of the experiment with self-adjusting
driving v. B11 is a subtractor which produces the output
U& =a —b. B12 is an integrator.
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FIG. 9. Manifolds of fast and slow motions in projection
onto the (x, v ) plane with K = + 1. (a) g )g,. {b)g (g,.

FIG. 11. Manifolds of fast and slow motions in the projection
onto the (x,v) plane with E = —1. (a) g & g,+. The basin of at-
traction for the stable fixed point 00 is bounded by the stable
manifolds W& and WL of the fixed points 0& and OL. (b)

g &g,. The limit cycle Po is shown by a dashed line.

as in (33). Depending on initial conditions the system
will go to Oz or to OL. The basins of attraction of the
fixed points are separated by the stable manifold W0 of
the unstable fixed point00. At the point g =g„the fixed
points lose stability via a supercritical Hopf bifurcation,
and two stable limit cycles appear in the three-
dimensional hyperplane of fast motions.

Figure 10 presents the observed time series of x (r) and
I p] which show the process of self-adjusting measured
in the experiment where the parameter a switches be-
tween two values. In this experiment the coordinates of
the controlled fixed point Oz change along with the value
of a.

The fixed point Oo with S(0)) 1 can be an attractor of
the system only if K (0 and g )g,~ [see Fig. 11(a)]. The
basin of the fixed point is restricted by the three-
dimensional hyperplanes Wz and WL. If g &g„,the hy-
perplanes are the stable manifolds of the unstable fixed
points Oz and OL. When the parameter g becomes less
than g,~, the fixed point 00 loses stability and gives rise
to the limit cycle Po as seen in Fig. 11(b). When g crosses
the value gz, the limit cycle transforms into a heteroclinic
loop formed by the stable and unstable manifolds of the
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FIG. 10. Time series of x(t) and I„„~&(t)in an experiment
where a switches between the values 25.4 and 12.9.
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FIG. 12. Limit cycle Po measured in the experiment with
a=10.4, g =0.6, and ~, =20 @sec. (a) Projection onto {x,v). (b)
Projection onto (x,z).
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back which dissipates the dynamical variables toward a
desired state xD(t)—the unstable fixed point or the un-

stable periodic orbit —and at the same time to add a
"slow" dynamics for the unstable orbit to allow for its
drift as parameters of the system slowly vary. We de-
scribed in detail how to achieve this mixed slow and fast
dynamics for fixed points, initially unstable and then sta-
bilized, for a differential equation
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FIG. 13. Experimental data for x(t) and I„„»(t)verses a.
(a) x (t) without control, (b) x (t) with the self-adjusting dissipa-
tive contro1 (I(:=+1), and (c) I„„»(t)measured during the
tracking.
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V. CONCLUSIONS

In this paper we have discussed a general formulation
of a method for tracking and stabilizing unstable fixed
points and unstable periodic orbits of a chaotic system.
The general idea is to add to the system dynamics a feed-

fixed points Oz and OL . In the model equations this hap-
pens when the maximum of W,&,„

touches the manifold

Wz or the minimum of W,&,„

touches Wz. This is seen
in Fig. 11(b). Using the approximate nonlinear function

f (x) one finds that gl, =g,~ /4. The values of the param-
eters (a,g} corresponding to the heteroclinic loop in the
system phase space (32), (36) located at the curve marked
by gl, are seen in Fig. 7(a). The crosses in Fig. 7(a) show
the parameter values corresponding to the heteroclinicity
found in the experiment. Two experimentally measured
projections of the limit cycle Po onto the planes (x,z) and
(x, U) with the parameters of the circuit taken to be close
to the heteroclinicity are shown in Figs. 12(a) and 12(b).

To demonstrate the tracking of a fixed point in the ex-
periment we slowly varied the parameter a. One can see
from Fig. 13(a) that without control the circuit has a
stable fixed point OL only in the parameter region
a & 8.6. Using the self-adjusting control with g =2 pro-
vides stabilization of Oz in the whole range of variation
of the parameter a. This is shown in Fig. 13(b). During
tracking the values of the current I„„&stayed within the
interval ~I~„»~

(4.5 pA as seen in the time series of Fig.
13(c). In the regime of chaotic oscillations the current
through the inductor L can approach values up to 1.2
mA, so the control current remains at most 0.5 lo of the
level of the currents fiowing in the circuit.

of quite general form. Then we discussed how to stabilize
a limit cycle through the same operations used to stabi-
lize fixed points by looking at the sequence of intersec-
tions of the limit cycle with Poincare sections where its
appearance is that of a fixed point. The only change re-
quired was to cast the operation in terms of a discrete
time map on the Poincare section rather than as a con-
tinuous time Qow of the original equation.

The idea was demonstrated in detail using a nonlinear
circuit which had been extensively studied earlier for oth-
er purposes. Both the stabilization of a fixed point and
then the stabilization and tracking of the fixed point were
shown in this circuit.

The method we have described here is in some sense
both less powerful and more practical than the parameter
variation technique of Ott, Grebogi, and Yorke [1]. To
use that method one must be able to manipulate a param-
eter of the original system through external forcing.
Often one cannot do this either easily or at all. The ex-
ample noted in the Introduction of controlling a tur-
bulent Quid Qow near a wall by varying pressure at the
wall serves to illustrate this. The only "parameters" one
could vary in such a problem would be the viscosity of
the fluid, presumably by heating or cooling the fluid
upstream of where one wants to apply control, or possi-
bly by controlling the mean Qow by some means unclear
to us. Control of pressure at the wall is both feasible and
within the scope of the methods discussed here.

The parameter variation technique works best when
the region of phase space where the control is to be ap-
plied is "targeted" by initial action on the orbit; then the
changes in parameter required to maintain the orbit near
the previously unstable fixed point or periodic orbit are
small because the method takes advantage of the ex-
ponentially rapid movement of orbits along the stable
manifold of the unstable orbit to which one controls. In
the present method basically the same phenomenon al-
lows small external forces to control the system once we
have approached the region of the desired state xi'(t}.
We do not yet have a way to "target" these states using
external forcing. However, once we have arrived at the
desired region of phase space, we can remain there even
as the system drifts slowly using our tracking methods.
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