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Conditions on the existence of localized excitations in nonlinear discrete systems
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We use recent results that localized excitations in nonlinear Hamiltonian lattices can bc viewed

and described as multiple-frequency excitations. Their dynamics in phase space takes place oil
tori of corresponding dimension. For a one-dimensional Hamiltonian lattice with nearest neighbor
interaction we transform the problem of solving the coupled differential equations of motion into '1

certain mapping Mi+i -——F(Mi, Mi i), where Mi for every l (lattice site) is a function defined on an
in6nite discrete space of the same dimension as the torus. We consider this mapping in the "tails'
of the localized excitation, i.e. , for I --. ~-.m. For a generic Hamiltonian lattice the thus-linearized

mapping is analyzed. We find conditions of existence of periodic (one-frequency) localized excitations
as well as of multiple-frequency excitations. The symmetries of the solutions are obtained. A~;I
result we find that the existence of localized excitations can be a generic property of nonlinear
Hamiltonian lattices in contrast to nonlinear Hamiltonian fields.

PACS number(s): 03.20.+i, 63.20.Pw. 63.20.Ry

I. INTRODUCTION

Localization phenomena are of interest, in nearly arg
branch of physics. In this paper we will deal with transla-
tionally invariant systems. In that spirit we deal with lo-
calization phenomena which appear due to intrinsic prop-
erties of the underlying system instead of due to extrins~'r
sources (e.g. , defects). There has been considerable suc-
cess in the demonstration of the occurrence of localized
vibrations in Hamiltonian lattices [1—6]. The pure fact of
the possibility of vibrational localization is astonishing
because of the translational invariancy of the underlying
lattice (i.e. , no defects of any kind are necessary). The
necessary localization condition has to be the nonlinear-
ity of the lattice, since in the case of a linear lattice the
problem is integrable and only extended degrees of free-
dom can be found.

Most of the knowledge about vibrational localization i~

restricted to simple one-dimensional lattices, usually wit, h
one degree of freedom per unit cell and nearest neighbor
interaction. These systems belong to the class of Fermi-
Pasta-Ulam (FPU) models (see, e.g. . [7]). If one adds
an external potential (field) which is periodic with the
periodicity of the FPU system. one enters the world of
Klein-Gordon lattices. The import, ant property of vibra-
tional localization in all these systems is that it is not
of topological origin, i.e. , we can consider a system with
only one minimum in the potential energy function (the
ground state) and will find vibrational localization. If
the potential energy function has several minima one can
construct static kink solutions, i.e. , static configurations
of the system which link different ground states (minima)
of the model. Those static kink solutions can be either
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ininirina or saddle points in the potential energy functioil.
The concept of vibrational localization. is then extendablf-.
to those mininia (kinks). One simply considers excit;i-
tions of the lattice above this (kink) mininiuni. Becausi
the static kink itself breaks the translational invarianr~
of the underlying lattice, a linearization and diagoril, l-

izatiou of the fIuctuations around kinks usually yields
several eigenmodes which correspond to localized vibr i-

tions [8-11]. The rest of the eigenmodes are deforinnj
phononlike extended degrees of freedom. Here we fir&f. I

a difference wi h the nontopological vibrational localiza-
tion — — namely, localization in the linear limit. Of ~ ourse
it only becomes possible because the statir. kink already
broke the translational symmetry. It is worthwhile t.o»no-

tice that the topological-induced vibrational localizatiori
is comparable to the well-known vibrational localizati~in
in a linear lattice with defects [12].

Recently we were able to achieve progress in the under-
standing of non-topological vibrational localization I13.
14]. First we noticed that it is possible to find iionlinear
localized excitations (NLEs) which are essentially locate&1

on a very few particles. By analyzing the dynamics of the
lattice or& finite time scales we found that in gerieral t, lie

NLE is a many-frequency excitation. where the number
of frequencies n is equal to the nuruber of partirles whir[i
are essentially involved in the excitation. By studyirrg
a reduced system which is given by the dynamics of. the
part of the lattice where the NLE is located (with prop-
ei ly defined boundary conditions) wi' showed that thi'

NLEs in the original lattice correspond t, o regular &rlo-

tions of the reduced system on n-dimensional tori iii its
phase space. Moreover, the NI E solution of the origirial
lattice evolves on nearly the same torus. Thus it becorrres
possible to systematically study the NLE properties by
checking the phase space structure of the reduced sys-
tem. As a result we found that chaotic motion in the
reduced system does not yield NLEs, as well as certairi
regular islands in its phase space which are mell separated
(by separatrices) from the NLE-regular islands. We were
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also able to attack the problem of movability of NLEs by
considering a certain separatrix in the phase space [15].
Still the question remains whether NLEs can be exact
solutions of the lattice equations of motion.

Much less is known about more complicated models.
First we notice that the above cited approach in the
simplest one-dimensional systems is easily extended to
higher dimensions or to more than one degree of freedom
per unit cell. Indeed recent reports confirm the existence
of NLEs in diatomic chains [16—18] as well as in two-
dimensional FPU systems [3, 6]. A systematic analysis
of the NLE properties in two-dimensional Klein-Gordon
lattices is carried out in [19]. Thus there is no doubt that
by studying one-dimensional nontopological NLEs we are
not restricting ourselves to exotic cases. The more com-
plex reality will be covered. This is fundamentally dif-
ferent from the topological kink solutions. The reason
is that the NLE solutions are not topologically induced.
The only source of their existence is the nonlinearity of
the underlying lattice.

All presently known theoretical approaches to describe
NLEs make the assumption that the NLEs exist. Then
one can proceed in the description of their properties. In
this paper we want to present an approach to the prob-
lem of the existence of NLEs. We will study the simplest
one-dimensional cases. As we have shown, this restric-
tion is of no fundamental significance. We will prove
several conditions when NLEs cannot exist. Thus the
remaining cases are the ones one has to choose if (pos-
sibly) NLEs exist. We will use the knowledge about the
interpetation of NLEs in terms of actions and angles and
consider a general ansatz. Then we reduce the prob-
lem of solving coupled ordinary difFerential equations to
a (still highly complicated) set of coupled algebraic equa-
tions. The variables are certain Fourier components. We
will consider these algebraic equations as a mapping of
a function defined on an n-dimensional lattice. By the
definition of a NLE we show that the algebraic equations
decouple in the tails of the supposed existing NLE so-
lution. Then we analyze the decoupled mapping in the
tails and calculate the eigenvalues of the linear map. We
observe cases when periodic NLEs (n = 1) cannot exist.
We prove that strictly speaking there exist no solutions
for n & 2, which implies that many-frequency NLEs are
unstable. Still this bare fact allows for no strict con-
clusion about the typical decay time of many-frequency
NLEs. We relate our studies to previous work on stability
analysis of NLEs.

II. FORMULATION OF THE PROBLEM

Here P~ and X~ are canonically conjugated momentum
and displacement of the lth particle, and V(z) and C (z)
are the potentials of the external field and nearest neigh-
bor interaction, respectively. We do not consider incom-
mensurabilities between these two potentials, thus we as-
sume that there exists at least one ground state of Eq. (1)
(minimum of the potential energy) such that without loss
of generality X~ ——0 for this ground state. We specify the
potential terms in Eq. (1) in the form of an expansion
around this ground state:

. 1
V(z) = ) —,vkz",

k=2

"-1
e (z) = ) —Pkz"

The NLE solution is in its general form assumed to be
given by the motion of the phase space trajectory of
Eq. (1) on an n-dimensional torus [13,14]. Consequently
the solution has to have the form

+oo

Xi(t) = )
k1,k2, ",k„=—oo

2(kl tk 1+k2&2+'' +krL(sin )C (4)
The localization property of Eq. (4) is defined by the
boundary condition

flkgkg. ..k„

fl g kg.k. . „k]lmkoo~ O

Here we are excluding &om the definition of a NLE local-
ized pulses on carrier waves where the carrier wave does
not decay far away from the center of the pulse. Since
Eq. (4) is by assumption a solution of the equations of
motion

OH
X) ——PI, ——— (6)

we can insert Eq. (4) into Eq. (6) and try to solve for the
Fourier coeKcients on the right-hand side of 4. Using

We will consider the dynamics of a simple one-
dimensional Hamiltonian lattice with the following
Hamiltonian:

, +v(x, )+e(x, —x, ,) ~

. (1
(2

Xi(t) =—
k1,k2, ...,k„=—oo

~ (k 1~1+k 2 ~2 + ' +k n lrP n )C

)

yk (~) = (ki Lui + kz(d2 + . . + k„~„)
k = (ki, k2, ..., k„), 2 = (uri, (u2, ..., ~„)

(8)

(9)

we get Fourier series on the left- and right-hand sides
of Eq. (6). The only possiblity of satisfying the obtained
equation is to collect terms with equal exponents on both
sides and to set the prefactors equal to each other. Then

I

we obtain a highly complicated coupled set of algebraic
equations for the Fourier coeKcients and the &equencies.
Because we consider nearest neighbor interaction (1) we
can formally write down the resulting set of equations:
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M, , k
= F((M, „-,), (M, , k-„})

Here we introduced a function M& &
which is defined on

l

a discrete n-dimensional lattice. The lattice is given by
all combinations of ski, k2, . .. , k„) where each integer k

varies from —oo to +oo. We have

~l, k flk, k. .k„

The mapping formally derived in Eq. (10) reminds
us of the well-known two-dimensional mappings which
were used in order to study static kink properties,
commensurate-incommensurate transitions, and break-
ing of analyticity [20]. We can view Eq. (10) as a first
step of implementing the fruitful ideas for static topolog-
ically induced structures in the dynamical problems of
nontopological NLEs in Hamiltonian lattices.

Let us study Eq. (10) in the tails of the NLE, i.e. ,

for I +ho-o where Eq. (5) holds by assumption. In
the generic case v2 and P2 from Eqs. (2) and (3) will

be nonzero. Then we can write down the mapping (10)
explicitly. We will do it without loss of generality for
t ~ +oo. The corresponding formula for large negative j
can be obtained by substituting l' = —/. We find

M, , k
= [Kk(9) + 2]M, k

—M,

We can consider three cases:

(b) rk(ur) ( —4:—1 ( A+ ( 0. ('-'2}

i.e. , A+ is real. Especially A+[tck(d) ~ —ooj —+ 0 and
A+[r.k(kl) m —4] l —1.

(c) —4 ( ~„-(~) (0: ~A, i
= iA i

= 1, (23}

i.e. , A~ are complex conjugated numbers on the unit, cir-
cle. Consequently in cases (a) and (b) the fixed point
of the mapping is a saddle point, i.e. , there exists ex-
actly one direction (eigenvector) in which the fixed point
can be asymptotically reached after an infinite number
of steps. In case (c) the fixed point is a marginally stable
elliptic point, i.e. , starting from any direction the fixed
point can never be reached after an infinite number of
steps, instead the mapping will produce a (deformed}
circle around the fixed point. Thus we find that case (c}.
(23), contradicts the localization condition (5).

(a} l.k(~) )0: 0(A (1,
i.e. , A is real. Especially A [Kk(~) l 0] —l 1 and

[Kk(d) m oo] l 0.

Here we have introduced another function on the
dimensional discrete space which is given by

v2 —yk(d)
rk(d) =

Equation (12) is linear and thus every component of M in
the n-dimensional discrete space decouples in this equa-
tion from all other components. Introducing

Mi, ~ M~ i, ~

we finally arrive at a two-dimensional mapping for every
component of M& &

which reads

III. SINCLE-FREQUENCY
LOCALIZED EXCITATIONS

Let us consider n = 1. Then the NLE solution is peri-
odic [cf. Eq. (4)]. Equation (13) can be simplified to

v2 —ki (di
2 2

Kk (d)

The frequencies wq for small-amplitude phonons around
the considered ground state of Eq. (1) (where q is the
wave number) are related to the parameters v2 and @2

hy

Ml+i k- = "k-(~)W k-+ Gi k-+ W k-

Gi+ i,k ~k (~)Mt, k + Gi, k

(15)

(16)

v~ (M (vz+4P22

Then it follows that case (c) given in Eq. (23) is identical
with

det(A) = 1

Thus the mapping (15), (16) is symplectic and volume
preserving. For the eigenvalues of A we find

rk(d)
A~ ——]. +

2

r.k-(d) )1+ — —1
2 j

Let us stress that under the assumption of an existing
NLE solution the linearization of the map in the tails of
the NLE is arbitrarily correct, if the distance from the
NLE center is large enough. This mapping has a fixed
point for M& &

——0 and G& &
——0. It is characterized by

l l

the matrix A:

l 1 rk(u))

El 1+ r.k(cu) )
We have

2 2 2(c} k, cu, = ~-

We find that a single-frequency NLE (periodic localized
solution) cannot exist if any multiple of its fundamental
frequency equals any phonon frequency. The reason is
that we cannot satisfy Eqs. (26) and (5) simultaneously
because of (23).

In [13,14] we have shown that under the assumption o&

the existence of a single-frequency NLE its stability with
respect to small-amplitude phonon perturbations will de-

pend on the fundamental NLE frequency. We found that
if w~/~i —n/2, n = 0, 1, 2, ... then the small perturba-
tion will grow. Consequently the NLE would collapse.
Here now we find that if n = 2ki (even n) then the NLE
itself could not exist. If n = 2ki + 1 (odd n) then the
NLE could exist, but would be unstable against phonon
perturbations.

One can interpret (26) as a definition of nonexistence
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bands on the uq-&equency axis for different kq. Introduc-
ing a normalized frequency ~q ——~q/vrv2 and normalized

interaction P2
——P2/v2 (only if v2 g 0) those bands are

given by

1+4P,
k2 — i — k2

1 1
(27)

IV. MANY-FREQUENCY
LOCALIZED EXCITATIONS

Let us consider n = 2. Then in analogy to (26) case
(c) in (23) applies if

v2 & (kl~l + k2~2) & v2 + 442 (28)

Now it is possible to show that there exists an infinite

For any finite P2 and small enough uq the nonexistence
bands (27) will start to overlap. Consequently there will
always be a lower bound on allowed NLE &equencies.
Still some existence windows are possible in the phonon
gap (uq & 1). However, with increasing P2 more nonexis-
tence bands will overlap and at the critical value Pz

——3/4
all nonexistence bands (27) overlap. For all values of

P2 & 0 and any value of ~, & 1+ 4P, condition (27) is
not satisfied. That means that independent of the val-
ues of the parameters v2 & 0 and P2 & 0 periodic NLE
solutions are allowed with &equencies above the phonon
band. From the above results it follows that model (1) al-
ways allows for periodic NLEs with &equencies above the
phonon band. But if the model has a nonvanishing lower
phonon band edge (v2 & 0) then periodic NLEs with
&equencies in the phonon gap are allowed if the phonon
bandwidth is small enough compared to the lower phonon
band edge.

Now let us make some statements about symmetries of
periodic NLEs if they exist. If the &equency of the NLE
is above the phonon band then it follows that leg(ur) & —4
for all kq. This corresponds to case (b) in (22). Then we
have —1 & A+ & 0. Consequently —1 & M& z g/M& &

& 0
for all l in the tail of the NLE. Thus we find a coher-
ent out-of-phase type of the motion of neighboring par-
ticles in the tails of the NI,E solution because of Eq. (4):
—1 & X~+q(t)/X~(t) & 0 if defined. If the frequency of
the periodic NLE is in the phonon gap (v2 & 0) things
become more complicated. Namely, there will always ex-
ist a certain finite integer k, such that for kq ( k, it
follows that rg (2) & 0, which corresponds to case (a) in
(21). The corresponding Fourier components (ll) would
yield in-phase type of motion in the tails of the NLE
solution. However, for all kq & k, the case (b) in (22)
applies. Those Fourier components would yield out-of-
phase motion. Numerical findings indicate that usually
the Fourier components decay very fast with increasing
kq [5]. Then we could expect overall in-phase type of
motion. However, if the &equency uq becomes smaller
then it is well known that the decay in the Fourier com-
ponents with increasing kq slows down. Thus we have
to expect a complicated mixture of in- and out-of-phase
type of motion.

number of pairs of the integers (kq, k2) such that (28)
is satisfied if the ratio uq/u2 is irrational and v2 & 0
and rp2 & 0 (cf. Appendix). Thus strictly speaking
there exist no exact two-&equency NLEs. The proof for
n & 3 is then straightforward and yields the same re-
sult. Of course this fact does not tell anything about
decay times of many-&equency NLEs. It only states that
many-frequency NLEs cannot exist for infinite times. It
seems to be logical to assume that the decay times are
sensitive to the pair of the lowest integers (kq, k2) for
which (28) holds in the case n = 2. Indeed numerical
simulations [13, 14] show extremely weak decay of two-
&equency NLEs in Klein-Gordon chains, i.e. , the charac-
teristic decay time is several orders of magnitude larger
than internal oscillation times.

V. TIME-SPACE SEPARABILITY

Recently there were reports in the literature where for
systems of type (1) periodic NLE solutions with a prop-
erty of time-space separability were proposed to exist
[21]. In more detail this property implies the existence
of a master function G(t) in time such that the NLE
solution can be given by

X)(t) = A(G(t), A( ])~y -+ 0 .

Without loss of generality one can set max(A~) = 1. In
terms of the Fourier components introduced in (4) ansatz
(29) imposes a rather strong symmetry on the Fourier
components —namely, they have to be equal to each other
at different lattice sites up to a universal scaling number.
If we insert (29) into the equations of motion (6) we find

G(t) = —) qr, G" '(t) (30)

gI,
——eIA, , k&3

From (32) it would follow that A~ ——1 for all / in con-
tradiction to (29). Thus we would have to conclude that
either no NLEs exist in Klein-Gordon lattices or that
they do not obey separability property (29). The exis-
tence of periodic NLEs in various Klein-Gordon systems

With (2) and (3) we can specify the constants r/I, .

1
~. = —[»A& '+O.{(Ai —A~-i)" '

—(A(+g —At)" ')]
If r/& in Eq. (31) depended on / then the differential
equation for the master function G(t) in Eq. (30) would
yield different solutions for different lattice sites (cf., e.g. ,
[22]). Then we contradict the original ansatz (29). Thus
we have to assume that gq in (31) is independent of /.
Hence we generate a set of two-dimensional mappings
for the vector (A~, A~ q) in Eq. (31) for different k.

Let us show that generically we cannot satisfy all those
mappings. For that we consider a Klein-Gordon lattice,
i.e. , P~ ——0 for k & 3, at least one vt, is nonzero for k & 3.
Then we consider Eq. (31) for that specific k:
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is verified numerically with very high probability (i.e. ,
currently periodic NLEs can be generated without any
measurable energy loss over 10 time periods of the in-
ternal NLE oscillation, cf. Sec. VI). Consequently the
ansatz (29) is restricted to a certain subclass of systems
which excludes the Klein-Gordon systems. Now let us
consider any system such that for only (or at least) one
integer k we have vi, ——Pi, ——0. Let us assume that.
we have periodic NLE solutions which satisfy Eq. (29).
Perturbing this system with any small but finite vi, P 0
we can again consider the mapping for that k and yield
(32). Consequently no NLE solution would be allowed.
Thus the separability ansatz (29) becomes a real exotic
property.

There is one case when we can at least expect that Eq.
(29) holds. Namely, when we have to satisfy only one

mapping of the type (31). This can happen, e.g. , if vk = 0
for all k and P~, g 0 for kp ( 4 and ko even and Pi, ——0
for all k g ko. One can prove that if Eq. (31) is rewritten
for that specific case in terms of a mapping of the two-
component vector (Ai, Ai —Ai i) then the mapping will

be nonconservative (it does not preserve phase volume).
A numerical test for ko ——4 yields that a periodic NLE
solution can be found for gI„——9.5843773776314. . . .
The amplitudes for that solution read
0.004795, —0.165 7879, 1, —1, 0.165 7879, —0.004 795, . . . .

First we notice that indeed for such special systems it can
be possible to generate a NLE solution with time-space
separability property (29). However, our result also in-

dicates that even for such a highly nonlinear model (no
linear dispersion) the NLE if it exists has no compact
structure, i.e., the amplitudes A~ are not exactly zero
outside a finite volume of the solution. That fact can
also be observed by looking at (31). If outside of a finite
volume of a solution all amplitudes would be equal to
zero, by inverting the mapping we would generate zeros
for all amplitudes in the excluded finite volume, thus con-
tradicting the ansatz that at least one amplitude is equal
to 1. As a consequence the claimed compacton structure
of a periodic NLE solution in [21] is wrong and based on
a simple calculation error.

VI. THE DECAY
OF SINGLE-FREQUENCY NLES IN THE TAILS

Let us consider an existing periodic NLE for system (1)
with v» 0, P» 0. Then in the tail of the NLE (with-
out restriction for large positive I) every Fourier com-
ponent obeys a two-dimensional mapping given in (15),
(16). The eigenvalue describing the decay is given by

(19), (24). Then the decay of every Fourier component
will be governed by an exponential law [sgn(A)]'ei" ~"~'.

The absolute value of A will depend on the number k

of the Fourier component. For t ~ ao only the Fourier
component with

~

A
~

closest to one will be present, i.e. ,

all other Fourier components will decrease exponentially
fast compared to the remaining one. The answer to the
question which Fourier component "survives" depends on
the frequency ~i and on the parameters v2 and P2. Only
if wi is above the phonon band then can we state that
the "surviving" Fourier component is that with k = 1.

100

10

10

tl

tl

4

,o

10
1495 1497 1499 1501

PARTICLE NUMBER 1

1503 1505

I"IG. 1. Amplitude distribution for a localized state in the
4' chain {cf. text). Open squares —numerical result. Dashed
line —predicted decay law {cf. text).

In the following we will formulate two predictions for
single-&equency NLEs in order to test them in a given
realization. The first prediction was already formulated
above if an assumed periodic NLE (characterized by its
fundamental frequency ~i) exists, the amplitude decay iii
the tails of the NLE (i.e. , where the nonlinear terms iii
the equations of motion can be neglected) is governed by
an exponential law with exponent InjA~. Let us consider
the case of a P chain, i.e. , V(z) = =' —z + 0.25 and
4(z) = 0.5Cz . Consequently we have v2

—2, P2
—C.

Periodic NLEs were investigated in [13,14] on finite time
scales for the case C = 0.1. We use a particular real-
ization with energy E = 0.256 (for details on the nu-

merics the reader should consult the original work [13,
14]). The initial conditions on the lattice (3000 parti-
cles) are found from analyzing the elliptic fixed point of
a reduced problem [14]. The frequency of the periodic
localized object is found to be wi ——1.177 (cf. Fig. 10
in [14]). After a waiting time of T = 3 x 10s the en-

ergy stored in five particles around the excitation center
is still E(T) = 0.256. There is absolutely no drift (ra-
diation) observable. The symmetric amplitude distribii-
tion in this assumed NLE solution is shown in Fig. 1

in a semilogarithmic plot (open squares). An evaluation
of the eigenvalues corresponding to the different Fourier
components [cf. Eqs. (19)—(24)] reveals in this case that
the eigenvalue with absolute value closest to one is given
for k = 1 and reads A = 0.12465 (s i = 6.1467). Con-
sequently in the tail of the solution (where the nonlin-
ear terms in the equations of motion can be neglected)
we find an exponential amplitude decay with exponent
logio~A~ = —0.904. The dashed line is this prediction of
the exponential decay. Note that in the semilogarithmic
plot in Fig. 1 this decay law appears as a straight line.
This line fits the measured amplitude decay down to am-

plitudes of 10 . The deviations for smaller amplitudes
(farther away in the tail) are due to the fact that the nu-

merical realization of the NLE solution is always accom-
panied by the existence of phonons. The phonons with
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nearly zero group velocities (wave numbers close to band
edges) are practically not moving. These small phonon
contributions increase (additively, as has to be expected
in a linearizable tail of a NLE) the amplitudes of the par-
ticles in the NLE solution. We have no knowledge of any
result in the literature, where &om the measurement of
the frequency of an assumed NLE solution the amplitude
decay in the NLE tails was successfully predicted.

The second prediction we wish to formulate is, that if
the NLE &equency uq is restricted to be in the nonzero

gap of the phonon spectrum, then there exists a nonzero

value of uz such that the exponential decay in the NLE
tails will be weaker for all other frequencies uq (still be-
longing to the gap). Let us explain why this statement
follows out of the previous considerations. First the &e-

quency ~z has to be larger than the phonon bandwidth—
otherwise one (or more) multiple of uq will always lie in
the phonon band. Secondly, if ~~ is slightly below the
lower phonon band edge, then the decay will be very
weak. Lowering the uq we increase the decay exponent,
but since 2cuq is coming closer to the upper phonon band
edge, there will be a certain &equency when the decay
in the tails will be governed by the second harmonic
rather than the first harmonic of u~. Let us calculate
min[1 —~A(tcI, )~] with ~A(eI, )] & 1 and the parameters
of the above introduced P4 chain for difFerent uq. The
result is shown in Fig. 2. We see indeed that there is
a maximum in the decay exponent in this given exam-

ple for uy = 0 938 As it can be observed &om Fig.
10 in [14], there are two NLE energies Eq ——0.336 and

E2 ——0.85 which correspond to this particular &equency

uz™.The prediction is thus that by varying the energy
of the periodic NLEs, in a simulation one should observe
maximum amplitude localization at these two energies

Eq, E2. From the numerical runs reported in [14] we can
calculate a normalized amplitude entropy u which mea-
sures the amplitude distribution of the solution. It is

0, 0.4-
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FIG. 3. Normalized amplitude entropy 0 versus NLE en-

ergy for a 4 chain (cf. text). Filled triangles —numerical re-

sult. Solid line connects the triangles and serves as a guide to
the eye. Dashed vertical lines —predicted positions of minima
of o (cf. text).

10

10

defined in analogy to the energy entropy which is defined
in [14]: o = —1/[in(N)] PI aIlnaI with aI = AI/PI AI.
Here A~ is the amplitude of particle l. Prom the defini-
tion we have 0 & 0 ( 1. Maximum localization corre-
sponds to a minimum of the normalized entropy. 0 as
a function of the NLE energy is shown in Fig. 3 (filled
triangles and solid line). The predicted positions of the
minima of o (E) at Eq, E2 are given by vertical dashed
lines. The predicted positions of the minima agree with
the measured ones within the energy grid of the numeri-
cal experiment.
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FIG. 2. Minimum of the distance of the absolute value
of eigenvalue A from 1 as a function of the fundamental fre-
quency ~q Here ~A~ ( 1, m.inimization is obtained with re-
spect to all Fourier components for a 4 chain with parame-
ters given in the text.

FIG. 4. Numerical solution for the Fourier components of
the periodic NLE of a system with v2 ——1, v4 ———1, III& ——0.1,
N = 100, cuq ——0.8 (cf. text). The absolute values of the com-
ponents Ag~ are shown as functions of the lattice site l in a
window of 30 lattice sites around the NLE center. The open
squares are the actual results. The lines are guides to the eye
and connect components with same Fourier order k. k in-
creases from top to bottom as k = 1,3, 5, 7, ..., 23, 25. Fourier
components for even k are zero because of the symmetry of
the potential.
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FIG. 5. Slopes of the lines in Fig. 4 as a function of k

(correspond to the exponents of the decay of the correspond-
ing Fourier components, cf. text) are shown as open squares.
The solid line connects the points of the theoretical prediction
using the eigenvalues of the linearized map (cf. text).

In order to demonstrate the usefulness of the above
considered spatial decay laws, we have implemented a
numerical method in order to solve the full nonlinear
equations for the Fourier coefficients (10) for a periodic
NLE (n = 1) on a finite lattice. We have chosen vz ——1,
v4 ———1, vi, ~z 4 ——0, Pz —0.1, Pi, ~z

——0, and a system
size of 100 particles with periodic boundary conditions.
The NLE frequency was chosen to be below the phonon
band: wi ——0.8. The resulting Fourier coeKcients were
computed on every lattice site with a maximum multiple
of the fundamental frequency ~k~ „=30 and a numer-
ical error of 10 . The result is shown in Fig. 4 for
30 lattice sites around the NLE center in a serniloga-
rithmic plot. Clearly a k-dependent exponential decay of
every Fourier component is found. Moreover in Fig, 5 we

plot the measured exponents (slopes) as found from the
numerical solution and compare them to the theoretical
prediction. The agreement is very good.

What happens if v2 ——0 and P2
—0? We can give a

particular answer for the special case P4 P 0 and all other
coefficients in (2), (3) being zero. This case was already
discussed in the preceding section. If we know that a pe-
riodic NLE exists we can consider the mapping (31). We
linearize the map near the saddle Axed point and find in
leading order a decay of the amplitudes according to the
law e '" ' where c and b are positive numbers which
depend on the parameters of the model Hamiltonian.

VII. CONCLUSIGN

Nonlinear localized excitations might exist in nonlin-
ear lattices for infinite times (i.e. , they can be exact so-
lutions of the equations of motion) if they are periodic in
time and all multiples of the fundamental frequency are
outside the phonon band. This is only possible because
of the discreteness of the underlying lattice. A contin-
uum system would have no upper phonon band edge,

thus resonance would always be possible. Exceptions are
classes of nongeneric systems where the resonance con-
dition holds but the coupling between the NLE and the
phonons is exactly zero.

Let us note that we have not shown that periodic. NLEs
mid exist on a given nonlinear lattice. We have restricted
the possibilities of NLE solutions to time-periodic NLEs.

If the NLE solution is described by two or more fun-
damental frequencies then there will always be resonanc~
with phonons and thus those solutions cannot exist for in-

finite times, i.e. , they are not exact solutions of the equa-
tions of motion. Nothing can be said up to now about the
lifetimes of such solutions. Numerical testing shows that
lifetimes can be very large compared to internal oscilla-
tion times. If one considers nongeneric lattices without
linear dispersion (phonons) then many-frequency NLEs
might be exact solutions of the equations of motion.

Space-time separability in the NLE solution can ap-
pear only in very nongeneric cases. The construction. of
Inappings for Fourier coeScients in higher-dimensional
Hamiltonian lattices seems to be more complicated but
this is a technical question. The construction of the ex-
istence conditions for NLEs indicates that one can geIi-
eralize them for higher dimensions too.

Let us make some comments on the results represented
in this paper. First we have assumed that the NLE solu-
tion (if it exists) is given by a regular motion on a torus in
the phase space of the system (discrete spectrum). It is

very hard to believe that NLE solutions can exist if the
corresponding orbit belongs to a stochastic part of the
system's phase space (continuous spectrum). Assuming
the NLE solutions we search for are regular, all the sub-
sequent steps in the presented analysis are free from any
simplifications, approximations, or conjectures. We have
formulated the leading order amplitude decay of an as-
sumed NLE solution in its tails. We were thus able to
formulate two nontrivial predictions and test theni by
comparing to numerical experiments.

Recently it was shown by using the properties of niap
(10) that the existence of NLE solutions is equivaleiit to
hnding a common point of two separatrix rnanifolds of
the nonlinear map [27]. It was argued that the

corres-

pondingg task is not overdetermined and should lead to
a discrete set of solutions. Moreover in the case of an
anharmonic Fermi-Pasta-Ulam chain with homogeneous
potential v~ = 0, Pz ——1, Pi, &z,„=- 0 (where i» i~

any positive integer with I ) 2) the existence of tiine-
periodic NLEs could be strictly proved [27].

Since the presented analysis was carried out, in the tail~
of the NLE solution (where the corresponding mappiiigs
can be linearized) the legitimate question arises of why w»

do not have NLE solutions in a purely harmonic lattice.
The reason for the nonexistence of a localized solution in
such a linear lattice is that the two separatrix manifolds
of the saddle fixed point never cross, because the eigen-
vectors of the fixed point uniquely define the positions
of the two separatrix manifolds. In a nonlinear system.
inverting the discrete map (i.e., starting in the tail of an
assumed existing NLE and iterating towards the center
of the NLE) the increase of the amplitudes (or Fourier
coefficients} will increase the contributions coming from
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the nonlinearity. These nonlinearities will be the reason
for the crossing of the separatrix manifolds. We wish to
emphasize that still these arguments cannot be consid-
ered as a proof of the existence of NLEs. They provide
the possible source of the NLE existence in the frame-
work of the presented approach. The aim of the present
work was to analyze the NLE properties in the tails as-
suming the NLE existence. The results obtained restrict
possible NLE solutions to time-periodic solutions.

Recently MacKay and Aubry have carried out a proof
of existence of time-periodic NLEs for Hamiltonian net-
works of weakly coupled oscillators [28]. This strict proof
remarkably incorporates Hamiltonian lattices with and
without disorder. Consequently one can see that (at least
in the limit of weak coupling) the NLEs in a nonlinear lat-
tice are continuously connected with localized modes of,
say, a harmonic lattice with defects. These results should
once and forever make it clear that a harmonic lattice
without defects is a very isolated system, and one should
never use it as a reference system in order to judge re-
sults of nonlinear theories. In the present work the proof
of MacKay and Aubry corresponds to the case v~ P 0,
Pp « v2. According to [28] the spatial decay of NLEs is
at least exponential, which can be speci6ed to be strictly
exponential in the present work without the requirement
of weak coupling. Together with the strict proof of NLE
existence in the mentioned anharmonic FPU chain [27]
we thus have an analytical basis of the existence of NLEs
in a broad class of systems.

We were able to construct a mapping for the NLE so-
lutions because of our knowledge about their proposed
dynamical behaviour. This knowledge comes from the
interpretation of the NLE solutions as motion of phase
space points on tori in the phase space. The resulting
mapping is an algebraic problem and can be considered
as a task for itself. Here we meet numerous results for
approximate NLE solutions which use the rotating wave
approximation (RWA) [1,23, 24, 5, 18]. Within the RWA
all Fourier components higher than a certain hand-chosen
order are set to zero. The resulting algebraic equations
can be either solved self-consistently or by means of useful
iteration procedures. Only periodic NLEs were consid-
ered up to now.

It is interesting to note that recently a combination of
the lowest RWA order (taking into account only the low-
est Fourier component) was reformulated into a mapping
[25]. It would correspond to the mapping for the ampli-
tudes of the NLE solution in the present work under the
assumption of time-space separability.

The fact that the existence of NLEs seems to be a
generic property of (nonlinear) Hamiltonian lattices im-
plies that either experimental realizations of NLEs can
be found with probability 1 or that the considered model
classes are useless in describing reality. This promises
some intriguing questions for the future.

publication, R. S. MacKay and B. Birnir for interesting
discussions, and M. Raykin for helpful hints. This work
was supported by the Deutsche Forschungsgemeinschaft
(Grant No. F1200/1-1).

APPENDIX

Let us prove that if a and b are two real numbers such
that

0&a&b (Al)

and ~q and ~2 are two real numbers such that

0&uq &u2 (A2)

Let us introduce

aa=-
422

bb=-
QJ2

(A4)

Then (A3) is equivalent to

+k

Let us choose the numbers c and d such that

(A5)

a & c & b, d = min((c —a), (b —c)) (A6)

We can consider an arbitrary integer N such that

1N) =
nd

(A7)

where n = 1, 2, 3, ... and is 6xed. Then it follows that
there exists at least one pair of integers (k~, k2) with
1 & ky & N such that

0 & p & —,p, =~ k, (+k2
~

(cf. [26]). If we denote by m the integral part of a/p, :

a
m = (A9)

we Gnd

a & (m + n') p, & b, 1 & n' & n (A10)

Thus our condition (A3) can always be fullfilled if we
choose

and the ratio ~q/u2 is irrational, then there always exists
an infinite number of pairs of integers (kq, k2) such that

a &~ kl~l + k2~2
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