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%e study inelastic interactions I,internal friction) between two solitons in a system described by a

near-integrable generalized nonhnear Schrodinger equation. An analytic method for calculating the ra-

diation intensity and the rates of amplitude changes of two interacting solitons is proposed. This method

shows that, in the limit of zero angle of collision, the amplitude of the smaller soliton decays so that it is

inversely proportional to the cube root of the propagation distance. The radiation losses associated with

the internal friction of two solitons occur at the expense of the smaller soliton. Half of the energy lost

from the smaller soliton is radiated and half goes to the larger soliton. The results obtained by use of our

analytic method are in excellent agreement with numerical simulations.

PACS number(s): 42.81.Dp, 02.30.Jr, 03.40.Kf, 42.50.Rh

I. INTRODUCTION

The nonlinear Schrodinger equation (NLSE) plays an
important role in many physical problems [1,2]. It arises
in various fields (e.g. , in optics [3,4], theory of waves on
deep water [5], quantum field theory [6], and so on). One
of the main features of the NLSE is the existence of a spe-
cial class of localized solutions, solitons, which are robust
against perturbations and demonstrate a particlelike
behavior. These unique features of solitons can be used
in various physical applications. For example, in optics
solitons are expected to be suitable information carriers
in optical communication systems [3].

The NLSE is integrable by the inverse scattering tech-
nique [7]. The inverse scattering technique shows that
the radiative and soliton parts of any solution of the
NLSE are noninteracting. They may form a nonlinear
superposition, but they do not exchange the energy and
do not transform into each other. Solitons themselves
can also form a nonlinear superposition, but do not mix
their energies. In general, the interactions of solitons in

any integrable system (e.g. , those described by the
Korteveg —de Vries [2] or the NLSE equations) are elas-
tic. This means that the interaction (collision) leaves the
shapes of solitons unaltered (it only creates phase shifts).
The interaction is elastic due to the fact that the associat-
ed equations possess an infinite number of conserved
quantities (this is often used as a definition of integrabili-
ty). In contrast, it has been shown numerically in a num-
ber of papers [8—10] that the interaction of solitons in

systems described by nonintegrable equations leads to ad-
ditional radiation being emitted from the impact area of
the soliton interaction. An analytical study of the inelas-
tic interaction for the Peregrine-Benjamin equation kas
been made by Kodama [11]. Reconstruction of two-
soliton solutions of the generalized NLSE has been con-
sidered in [12]. However, the rate of radiation and the
details of the interaction between the solitonlike solutions
in nonintegrable systems is still an open question.

In this paper we consider two-soliton interactions in a

particular system (a "near-Kerr" system) described by an
equation which is close to the NLSE. We will formulate
and solve an optical problem, but due to various possible
applications of the NLSE, our results can be extended to
other fields of physics.

The remainder of the paper is organized as follows. 1n

Sec. II we discuss the subject of our analysis (i.e. , give a
definition of a near-Kerr system) and formulate the prob-
lem. In Sec. III we develop a method for calculating the
radiation intensity and derive an asymptotic analytic ex-
pression for amplitude changes versus propagation dis-
tance of two copropagating solitons in a near-Kerr sys-
tern. In Sec. IV we present numerical results and corn-
pare them with our analytic results. We also compare
our results qualitatively with the results obtained recently
for the breather interactions in nonlinear lattices [13]and
show the generality of these new phenomena. Section V
contains conclusions and a discussion of possible applica-
tions.

II. STATEMENT OF THE PROBLEM

The generalized equation, describing picosecond pulse
propagation in nonlinear optical fiber, is [3]

i +—,+f (
~

U'
,
') U =- 0,

where U(g, r) is the slowly varying electric field envelope„

g is the normalized longitudinal coordinate, r is the nor-
malized retarded time, and the form of the function
f( ~ Ul ) depends on the nonlinearity of the fiber material
refractive index. In this paper we consider the case
f (

I
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where o. is the normalized fifth-order nonlinear suscepti-
bility. The Kerr-law nonlinearity occurs when o:=0. In
this case we have the conventional NLSE, which is inte-
grable by means of an inverse scattering transform. If we
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want to investigate the system which is close to NLSE,
then we require the condition ~a~

~
U~ &(1 to be satisfied.

The single solitonlike solution of Eq. (2) can be ob-
tained for any value of a:

U(g, ~)= 2r/exp(ig g)
[1+cosh(2gr)(1+ —", ag )

' ]' (3)

where g is the soliton parameter (we assume that 7/ & 0
without loss of generality). In the limit a=O, the solu-
tion (3) reduces to the NLSE soliton
U(g, r) =&2r/sech(r/w)exp(ir/ g)

The pulse energy Q = f "„~U
~

d r carried by a soliton-

like solution (3) is

2v'3 &16aq—arctan
+3+3+16'/ a

in the case of a & 0 and

(4)

&3 &3+V 3+ 167/2a+ V —16g2a
1n&—a &3++3+16g2a —V —16'/ a

in the case of —3/16'/ &a &0. In each case the result
for ~a~r/'« I is

This expression reduces to Q =4g (the result for NLSE)
when a=0 and shows explicitly the small parameter of
our problem. This parameter

gives a quantitative definition of a near-Kerr system [we
call the system (2) a near-Kerr system if

~ y ~
&& 1]. Below

we will analyze two-soliton interactions described by the
near-Kerr Eq. (2).

The system described by the near-Kerr Eq. (2) belongs
to a specific class of systems which are close to integrable.
In optics this system is important from a practical point
of view, since soliton propagation in real nonlinear opti-
cal fibers can be described by equations which are close
to, but not exactly, integrable. To understand the pro-
cesses which are occurring in the impact area of a two-
soliton collision in more detail, we start our analysis with
the case of the zero angle of collision (i.e., copropagation
of two solitons). The main attention will be paid to the ra-
diation which is emitted from the area of interaction.

III. TWO (COPROPAGATING SOLITONS
IN A NEAR-KERR SYSTEM

Q=4r/ 1 — +4ag
3

(6)
For the NLSE [Eq. (2) with a=O], two-soliton (TS)

solutions are well known [14]:

2&2(gi —
r/z) [ i/2cosh(r/is)+ g, cosh( r/2r)exp[i(r/i —r/z)g] ]exp(i r/Q)'

U~s(g, r)=
2 2 2

(r/i —
r/z) cosh[(pi+a/2)r]+(pi+a/2) cosh[(r/i —g2)r]+47/ir/2cos[(r/i /r)g2]

(8)

[A particular case of the solution (8) with r/i=1 and
r/2=3 has been found by Satsuma and Yajima [15).] The
solution (8) is the result of the nonlinear interference of
two NLSE solitons

&2r/, exp(i r/, g) &2r/2exp(ii/g')
U)= U2= (9)

cosh( r/, r) '
cosh(r/2~)

with the amplitudes A, =&2i/, and Az=&2r/2. The
center of each soliton is located at r=0. When aAO in
Eq. (2), formally the solution (8) no longer holds. Howev-
er, we can assume that the solution of a near-Kerr prob-
lern still can be represented, to good accuracy, as the
beats of two solitons of the NLSE [i.e., by the solution
(8)]. Due to non-integrability, there is also radiation from
the interaction area. Thus the form of the generalized
two-soliton solution of Eq. (2) (with aAO) is the

U(g, r) = Urs(g, r)+f„d(g,r), (10)

where Urs(g, r) is the two-soliton solution (8) of the con-
ventional NLSE and f„d is the radiation part. Two in-

teracting solitons are located in a finite area around the
origin of the ~-coordinate axis, so that asymptotically
(i.e., in the limits ~~ oo ) the radiation can be represent-
ed as a superposition of linear plane waves:

l( cd„(kg —c0„7)
f„d(g,r~+ oo )= ga„e

where co„(co„(0)and a„are, respectively, the frequen-
cies in g and amplitudes of the radiation waves.

To determine the energy How from the two-soliton
solution, we consider the invariants of Eq. (2). For our
case, the two most important of them are

Q= I /U/'di (12)

(the energy) and

J [U [2
OO

—a dt
3

(13)

(the Hamiltonian). These invariants follow from the
more general continuity equations

a a. a a.
where p&

=
) U( and pH =

( U, )

—
) U) /2 —a(( U( /3) are

the energy and the Hamiltonian densities and
j&=i[(BU'IB~)U (BUIBr)U*] —and j = —[(BU*I
Br)(BUIBg)+(BUIBr)(BU /Bg') ] are the energy and the
Hamiltonian flows, respectively. Integration of Eqs. (14)
over the interval ( —r0, r0), which includes the two-
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soliton part of the general solution (10) (see Fig. 1), gives
the equations for the conservation of energy and the
Hamiltonian in the integral form

a
BX

~Ts = ~&H(~o) JH—( —~0) ~

where HTs and QTs are defined by the integrals (13) and
(12), but with the limits replaced by —~0 and ro (i.e., HTs
and QTs are the Hamiltonian and the energy of the two-
soliton-like part of the solution). Equations (15) deter-
mine the rate of change of HTs and QTs in terms of the
energy and Hamiltonian Bows in the points outside of the
two-soliton solution where only the radiation part of the
solution (10) exists. This radiation part can be presented
as a Fourier series of linear waves (11). Substituting ex-
pression (11) into (15) and taking into account only waves
which are moving away from the two-soliton part of the
solution finally gives

To solve the system (16), one has to express all un-
known quantities in terms of two basic variables. The
most convenient variables are the parameters of the two
partial solitons g& and g2. %e assume that they are
changing adiabatically in g. Hence, for a near-Kerr sys-

tern, the energy QTs and the Hamiltonian HTs can be ex-
pressed approximately in terms of g, and q2 in the same
form as the two-soliton solution (8) of NLSE:

Q s=4(ni+&)' HTs= l—(@i+&)')-

Now we need to find co„(q&,gz) and a„c,q, , g2), To dc
this, we use some simplifying assumptions. %e assume
the existence of two small parameters

j j ' && I 81lcl

c=g2/q, && 1. Thus, in addition to the near-Kerr condi-
tion, we assume that the amplitude A, of one (the first)
partial soliton is much bigger than the amplitude A2 of
the other (the second) partial soliton.

According to expression (11), the frequencies co„of ra-
diation are determined by the negatiUe frequencies of a
source of radiation, i.e., by the negative frequencies in,"-

of the two-soliton solution (8). These frequencies are
given by

~n Rz "(Ri '9z)

where n =1,2, 3,4, . . . . Expanding the solution (8) in a
Fourier series in g we find that the component at the
lowest frequency cu, = —(i), —27)z) has the largest ampli-
tude. It is possible to conclude that most of the radiation
is emitted at this lowest frequency. Indeed, we have
found numerically that if c=g2/v~~ &1/4, then the last
statement is correct and the radiation at all higher fre-
quencies (co„) can be ignored. Therefore, henceforth we
take into account only radiative waves at the co, frequen-
cy.

The amplitudes a„of the plane radiation waves can be
obtained approximately using the existence of the small
parameters y and E (perturbation approach). The radia-
tion appears because of the last term in Eq. (2), which is
proportional to y. Therefore, in the linear approxima-
tion, the amplitudes of the radiation waves must also be
proportional to y. Substituting the general solution (10)
into Eq. (2), and keeping only terms which are linear in ),
we obtain the equation

i —+ +F(g, r)f„d+G(g, - )f;1

P Q

radiation: :two interacting solitons', radiation

=-=- --- a (PF„.)-
where F(g, i) =2~ UTs~', G(g, r) = U rs, P(i;, r)

UTs, and f;,d is the complex conjugate of f,„
Due to adiabaticity of g& and gz changes, each of the
functions F((,r), G(g, r), and P(g, r) can be considered
to be periodic in g and can be presented in the form of an
infinite Fourier series

FIG. 1. Schematic plot of the solution (10), which shows the
two-soliton part and radiation emitted from it. The points
7 = 70 and ~0 are the boundaries separating the interacting sol-
itons from the radiation. The soliton part of the solution (10}is
formed by a dynamic superposition of two partial solitons,
which are shown by dashed curves.

2 x'

G(g, v. ) =e ' g G„(r)e

P(g, r)=e ' g P„(r)e

We also expand f„,d($, 7 ) in a Fourier series in ~~, where
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f„~(g,r)=e "' g g„(r)e "' "' (20b)

we only retain negative frequencies co„, which correspond
to radiation:

of our perturbation approach.
Equations (16), after neglecting radiation at frequencies

difFerent from to, and substituting expressions (17), (18),
and (23), have the form

gn
00 00

to—„g„+ Q F„J(r)g/(r)+ g 6„+/(r)gj'(r)
i=& j=1

aP„—(r), (21)

n=1

After substituting Eqs. (20) into Eq. (19) and collecting

the terms in front of the factors e'"' e ' ', one can
get an infinite set of equations

a2b 2 Qn 2 2~2~2~4

3a2b 2
( Qr}2 2r}2)3i}27}4

27},(g)+rt2(g) =E,

i}(q,+ i}2)

a(~', +q,')
ag

Equations (24) have the first integral

(24)

(25)

a] =Qgpg]bo2 (23)

up to the first order in y and up to the second order in c.

2-

where 1 n & 00. This infinite set of ordinary diff'erential

equations (21}defines the radiation at various frequencies
co„. The terms on the right-hand side of Eq. (21) can be
considered as source terms. As we explained above, we
are interested in radiation at the frequency co&, and thus
need to find only g, (r). It is possible to separate the
equation for g, (r) from all the others using our perturba-
tion approach. Making the substitutiongi(r)=as rtib(t)
(where t =rrtt) in Eq. (21) (with n =1) and keeping terms

up to order yc, , one can obtain the following equation for
b(t):

t} b 4b 43/2 243/2 24&2
t}t cosh t cosh t cosh r cosh r

Equation (22) can be solved either analytically (see Ap-
pendix A) or numerically. One of the the solutions of Eq.
(22) (corresponding to radiation) is shown in Fig. 2. (The
other one is the mirror image of the solution in Fig. 2
with respect to t =0 axis). The amplitude of the oscilla-
tions in these solutions, in the limit t=ao or —Do is

ho =1.987 (the exact value of bo is given in Appendix A).
Thus the amplitude of radiation at the main radiation fre-
quency co, is given by

where K =2r}i(0)+rt2(0). The expression (25}gives a rel-
ative dynamics of the soliton parameters of two interact-
ing solitons. Substituting (25) into any equation of the
system (24) one can get a solution in quadratures:

g~(0) /E

a b+ x y4(1 —y)2V 1 —2y —'7y2
(26)

r}2( )= 1

lPC+
(27)

where P=3a b+ /4 The solu. tions (26) and (27) are the
main analytic result of our paper. Together with (25),
they give the parameters for each interacting soliton as
functions of propagation distance g. The solution (25)
shows that, during propagation, the larger soliton in-
creases its soliton parameter g& and its amplitude A, as
well and the smaller soliton decreases its parameter g2
and amplitude A2. These changes are very slow (the
rates of change go to zero in the limit E=rt2/rt~ —+0, as
t}ri, 2/t}g ~ y e ). We will discuss the solutions (25)—(27)
in more detail in the next section and compare them with
the results of our numerical simulations.

IV. NUMERICAL SIMULATIONS

The integral in the expression (26) can be exactly evalu-
ated in terms of elementary functions to give an implicit
relationship between g and rt2. However, since we have
obtained Eqs. (24) in the approximation a=i}2/rti &( I we

can use this small parameter again in the approximate
calculation of the integral in Eq. (26) to get a simple
asymptotic result

We have carried out numerical simulations of the
near-Kerr equation (2} using the standard split-step

method with 512 mesh points. We use the initial condi-

tion

U(/=0, r) =23/2 sechr, (28)

—2-
—5 10 15

which in the case u =0 corresponds to the exact superpo-
sition solution

4V 2[cosh(3r)+3 coshr exp(i8$) ]U expi ) .
cosh(4r) +4 cosh(2r)+ 3 cos(8$)

FIG. 2. Solution of Eq. (22) with the asymptotic boundary
conditions b(t= —ao )=0 and (t}b/Bt)(t = —ao )=0. [b(t) and
t are dimensionless variables. ]

(29)

For the NLSE this expression gives the result of non-
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linear interference between two solitons with initial am-

plitudes A, =3i/2 and 32=i/2. We remind the reader
that from a near-Kerr system, the soliton parameters g,
and q2 are related with a high accuracy to the amplitudes

of solitons by simple formulas

(30}

We have used absorbers at mesh points close to the
boundaries to remove the radiation. The absorption
coeScient has been slowly changed from zero to a small
value along the mesh to prevent backscattering of the ra-
diation from the boundaries of the absorption region. The
total energy loss has been estimated by checking the total
energy of the solitons determined by the expression (12).
The difFerence between the energy Q(g) at the point g
and the initial energy Q(0) is equal to the energy lost b, Q.
Radiation appears periodically around the two-soliton
solution in the form of separate beams, which are emitted
at every period of the beats of the interacting solitons, so
that the value b,Q(g), which we calculate in our simula-
tions, is slightly shifted in g relative to the actual energy
loss (due to the finite distance between the interaction
area and the area of absorption) and is averaged (due to
the noninstant absorption).

An example of an inelastic interaction between two sol-
itons in a near-Kerr medium is shown in Fig. 3. The os-
cillatory behavior of the radiation is clearly seen. Because
of the losses due to the radiation, the amplitudes of the
two solitons are changing slowly during the interaction
process in such a way that the total energy gradually de-
creases. This process can be seen as internal friction be-
tween the two interacting solitons causing radiation. We
can calculate the amplitudes and the spatial frequencies
of the two solitons in the nonlinear superposition using
the fact that the maximum amplitude of the composite
solution at each period of the oscillations is equal to

(31)

The minimum amplitude of the composite solution is

FIG. 3. Perspective plot of the two-soliton interaction in the
near-Kerr nonlinear mediUm with a=0.005. The initial condi-
tion U(/=0, r) is defined by the expression (28).

;„=Ai —32=v'2(gi —i)~) .

The beat frequency is

rnaX miII
I 1 II 2

where T& is the effective period of these oscillations.
Hence Eq. (33) can be used to confirm that the ampli-
tudes and the beat frequency are consistent with each
other.

We found from our numerical simulations that there is
a small transition region at the beginning of the beam
propagation (0&(&2). The existence of this region is
due to the fact that the initial shape (28) corresponds to
the two-soliton solution in a Kerr medium and it takes
some distance g to transform it into a nonlinear superpo-
sition of solutions (3). In the transition region, the total
energy losses are relatively small in comparison with the
energy exchange between the partial solitons (i.e., the sol-

itons which are involved in the nonlinear superposition}.
After the transition processes have been completed, we
can observe the phenomenon of pure internal friction be-
tween the two near-Kerr solitons. We present only the
results concerning this region of the internal friction.

The amplitude A 2 of the smaller soliton decreases with
increasing g, but the amplitude of the larger soliton 3,
increases. This means that only the smaller soliton loses
energy as a result of internal friction. The larger soliton
acquires energy rather than loses it. This in turn means
that the energy from the smaller soliton is shared be-
tween the energy gained by the larger soliton and the ra-
diation dispersed out of the soliton interaction region.
This result is similar to the one which has recently been
obtained for the breather interactions in a nonlinear }at-
tice [13]. In multiple random collisions, the energy ex-
change tends to favor the growth of the larger excitation.
In the model used in [13], it was a discreteness-induced
phenomenon. In our case, the reason is the explicit devi-
ation from integrability in Eq. (2). We ean reformulate
the philosophical conclusion of [13] as follows: The
world of solitons in non-integrable systems is as merciless
for the weak as the real world: the larger solitons grow at
the expense of the smaller ones. (Qualitatively this con-
clusion coincides with the results obtained in [16].)

An example of the A, and A2 versus g dependences
obtained numerically is shown in Fig. 4. The asymptotic
analytic solution (27) is shown in Fig. 4 by the dashed
curve. One can see that, in spite of relatively large initial
value of E=g2fq, = —,', our analytic result is in excellent

agreement with the numerical one.
If we know the values of A

&
and A 2 Iand thus the

values of r)& and i)z), then we can calculate the energies

Qi and Q2 using Eq. (6). Although the total energy of
the composite soliton solution can be shghtly difFerent
from the sum of the energies of the solitons (3), this
diff'erence is small for a near-Kerr system (when

~ y ~
&& 1).

This condition determines the range of
~
a

~
for our initial

condition (28), viz. , ~a~ 0.005. The total and diff'erential

losses can be calculated from the values of A, and A2 at
each step of the simulations. Comparing the difFerential
energy loss of the system of two solitons —BQ/Bg with
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FIG. 4. Amplitudes of the larger ( A
& ) and the smaller ( A2)

solitons versus g for a =0.005. The analytic result (27) is shown
by the dashed curve. The analytic curve starts at /=50, where
A

&
/A2 = 4. The upper ( A,„)and the lower ( A;„) envelopes

of the amplitude beats of the two interacting solitons are also
presented. (All variables are dimensionless).

FIG. 5. Normalized energy growth of the larger soliton
versus the total energy loss of two interacting solitons for
a=0.005. The energy losses are normalized to the energy
values at /=2. In this parametric plot, EQ and AQ& are func-
tions of the propagation distance g (g varies in the range
2&/&500).

the differential increase of energy of the larger soliton
BQl /Bg, we have found that the energy lost by the small-
er soliton is shared between the radiation and the energy
increase of the larger soliton in approximately equal pro-
portions. In other words,

aQl aQ
ar' (34)

where Q, and Q2 are the partial energies of the larger
and the smaller solitons, respectively, at any point g & 2.

The difference between the cases a & 0 and. a (0 is due
to the interaction forces acting between the solitons. If
a & 0, the two solitons attract each other and the energy
Q, ,„can be achieved at g

= ~. If a &0, the solitons re-
pel each other and move apart at finite g. In this case
each soliton has a finite value of energy after the interac-
tion has ceased.

We have checked, using numerical methods, that the
same relation between the losses and energy exchange
holds when two solitons are colliding. However, the an-
gle of the collision must be small enough so that at least a

where E varies in the range 1.0-0.95 when a is changed
from 0.0001 to 0.005. Relation (34) is accurate in almost
the whole range of propagation distance (2&(&500),
which we have considered (see Fig. 5). The transition re-
gion 0 & g & 2 is excluded. As a result, the energy of the
larger soliton has the upper limit

K
Q 1 max Q 1

few beats between the solitons take place when they are
interacting. If this condition is fulfilled, the amplitude of
the smaller soliton decreases and the amplitude of the
larger soliton increases. Radiation is also emitted from
the interaction area. At large angles of collision, when
the interaction length is shorter than the beat period, the
solitons are almost unchanged after a single collision.

The collision of two equal solitons at a small angle can
be considered as the interaction of two solitons with
equal parameters r1l and rj2 [see Eq. (8) of [17]]. In this
case, the beat period goes to infinity for the Kerr non-
linearity. The inelastic interaction changes the soliton
amplitudes, so that the beat period gradually decreases.
The process of two solitons merging into one soliton can
then be explained as the survival of the soliton with the
higher amplitude and the decay of the smaller one. We
have observed this process for the case a )0. If a is neg-
ative, the two solitons repel each other and move apart
while the smaller soliton still has energy comparable with
the larger one.

V. CONCLUSIONS

In conclusion, we have examined two-soliton inelastic
interactions in a near-Kerr system (which is described by
the generalized NLSE with a small fifth-order nonlinear
susceptibility term). Our analytic investigation and nu-
merical simulations show that not only does radiation ap-
pear from the interaction area, but also that the solitons
exchange part of their energies during the process. If the
angle of a soliton collision is zero (the case of copropagat-
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ing solitons), then the solitons emit radiation continuous-
ly until both of them have enough energy to interact.
This process can be considered as internal friction of two
solitons. During the interaction, energy is lost only by
the soliton with the smaller amplitude. Asymptotically,
the amplitude of this smaller soliton decays so that it is
inversely proportional to the cube root of the propaga-
tion distance. The soliton with the larger amplitude ab-
sorbs half of the energy lost by the smaller soliton. The
dependences of the amplitudes of each of two interacting
solitons as functions of propagation distance ( are given
by the expressions (25)—(27). These analytic results are in
excellent agreement with our numerical simulations if the
initial ratio of amplitudes of two interacting solitons
c= A2/A, is equal to or less than —,'. The cases of
nonzero angles of collision have also been considered.
The results that we have obtained can be used in esti-
mates of parameter changes during soliton collisions and
in experimental observations of the interaction of solitons
in various nonlinear media. In general, the analytic ap-
proach of this paper can be used for the calculation of ra-
diative losses of two interacting solitons in other systems
which are close to integrable.
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We are interested in a particular solution of Eq. (Al) for
the boundary conditions 6( —~ ) =0 and
(Bb/Br)( —ce )=0. First we determine two linearly in-
dependent solutions of the corresponding homogeneous
equation [i.e., Eq. (Al) with a zero right-hand side part].
These solutions are the associated Legendre functions of
the first kind P„—'(z), where z =tanh(t), i =&—1, and
p=(&17—1)/2. Now the solution of the inhomogenc-
ous Eq. (Al) [for the boundary conditions b( —~ )=0
and (Bb /c}t( —oc ) =0] can be written in the form
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APPENDIX

Here we present the analytic solution of Eq. (22) and
give the exact value of bo. The basic equation is

W[P„'(z),P' (z-)] =P„'(z)[BP„'(z)/c}z]

Pt, (z)[c}P;, '(z—)/c}z]

(Wronskian), and z=tanh(t). The solution (A2) is shown
in Fig. 2. The amplitude of the oscillations in the solution
(A2), in the limit t ~ oo (or z ~1), gives the value of b„
All the formulas and integral values that are necessary to
calculate this can be found in [18]. The final result is

5/2
ho= 4 2m

(A3)
cosh(rr/2)&sinh(n )f'(5) I (u ) ~ P 5+i /2) I (o +i /2 } l

where I denotes the gamma function, 5=(3+&17)/4), and o =(3—}/17)/4. An approximate value of bo can also be
calculated: ho= 1.986 559 51. . . .
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