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Decompaction modes of a two-dimensional "sandpile" under vibration: Model and experiments
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We report a series of experiments dealing with the progressive decompaction of a bidimensional pile

of aluminum beads under vibration. %'e put forward a model that allows one to understand that the

bulk decompaction originates from interaction between the lateral walls of the container and the beads.

The conjugated role of the local geometry of the array, the solid friction, and the aspect ratio of the pile

is established. A single dimensionless parameter is introduced, which, besides the acceleration, charac-

terizes the decompacted state. This parameter is determined independently and consistently throughout

several different experiments.

PACS number(s): 46.10.+z, 47.20.—k, 62.20.—x

I. INTRODUCTION

An increasing number of papers have recently been de-
voted to the dynamics of dry granular materials (for a
comprehensive review see [1] and references therein).
This class of materials displays a number of unusual phe-
nomena such as heaping, arching effects, and size or
shape segregation. These properties are a stimulating
challenge to fundamental investigation. In addition, dry
granular materials are of great concern in many industri-
al applications where the processing of grains is pre-
valent: pharmaceuticals, building materials, chemical en-

gineering, etc.
Among the open questions which currently receive

much attention is the behavior of a granular material un-
der vibration. The problem has been tackled from two
different and complementary standpoints. On one hand,
it has been the object of several computer simulations
dealing with numerical simulations of the dynamics [2,3]
or the use of specific statistical models [4]. On the other
hand, experimental research 6rst dealing with real three-
dimensional (3D) sandpiies (among others, [5]) has turned
also to 2D or 1D model systems [6—9], which have the
advantage of both providing direct insight into the local
dynamical processes and allowing a direct comparison
with the results of computer simulations which most fre-
quently deal with reduced geometries. Note that a cru-
cial question is still open, which is to know whether the
2D models contain in essence most of the physics of real
dry granules. Nevertheless, it is worth noticing that
characteristic features such as fiuidization [5], avalanche
[10], convection [11], heaping [5], size segregation, or
vault effects [12], which were first observed in 3D, are
also present in reduced dimension [6—8]. Among the in-
formation provided by experiments on model systems,
one is of essential importance and has subsequently
motivated the inflection of computer algorithms. It is the
crucial role played by the solid friction between the
granular materials and the boundaries of the containers.
As shown both experimentally and from computer simu-
lations [2,3], solid friction interaction is responsible for

convection and subsequently heaping in vibrated dry
granular materials [6,11].

Among other characteristic properties of granular ma-
terials is the decompaction process, which concerns the
transition from a condensed state where no relative
motion of granules is allowed toward a decompacted
state where a global deformation of the granulate is possi-
ble. The onset of this transition was earlier baptized the
"dilatancy threshold" by Reynolds [13]. Most of the re-
cently published papers, either experimental or dealing
with computer simulations, have pointed out the impor-
tance of the micromechanical parameters (shock elastic
restitution coef6cient and grain-grain or grain-lateral
wall solid friction) as well as the existence of an accelera-
tion threshold which determines the onset of relative
motions of particles.

The behavior of an assembly of highly elastic and pol-
ished steel spheres in a 2D triangular shaped container
[14] was previously investigated experimentally. Also,
numerical simulations were designed to reproduce this
system [15].The pile, under vibration, exhibited a decom-
paction mode called fluidization, but of a different ap-
pearance than the decompaction mode we shall describe
in this paper. In the latter case, the surface was shown to
behave in a "Quidlike" manner and the relative motion of
the grains was really looking like Brownian motion. The
macroscopic density was shown to decrease progressively
with height and reach a steady form, which was almost
independent of the excitation phase. For this mode we

keep the denomination "fluidization. " We have shown
that fluidization is due to a high restitution coefBcient in

such a way that a momentum wave can still travel from
ihe bottom to the top of the heap without noticeable
damping. It mainly concerns the collection of highly
elastic material such as steel beads. In the present paper,
we look at another mode of decompaction. In contrast,
the material is very inelastic and the momentum wave

due to the collision with the bottom is damped in the
bulk. At the macroscopic level, the heap looks compact-
ed most of the time. In Ref. [6] we showed, for highly dis-

sipative grains and large friction between the grains and
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the boundaries, that the convection rolls show up in a
granular material with some anomalous dynamics at time
scales much larger than the excitation period. Here we

make a step further by analyzing the decompaction pro-
cess responsible for the occurrence of the rolls. The per-
tinent parameters which drive the process are evidenced
using a simple model based on a continuum medium pic-
ture. This model is checked consistently against a series
of different quantitative and qualitative experiments.
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II. EXPERIMENTAL STUDY

The experimental setup, as well as the image process-
ing technique, is similar to the one we used in previous
works [6,7]. We use a carefully controlled driving mech-
anism for the vertical vibration and the cell contains a
single layer of about 3000 metallic beads. We use a com-
puter posed photograph procedure (CPP), which consists
in an accumulation of snapshots of the piling at a con-
stant excitation phase. The snapshots are processed to
show only the centers of the beads. As an illustration,
Fig. 1 shows such a CPP obtained after several minutes
of shaking at 15 Hz of a regular packing of oxidized
aluminum beads. If no motion is evidenced, the accumu-
lated image shows a perfect triangular lattice. We ob-
serve that a definite portion of the array is allowed to
move significantly via long range horizontal or 60 slip
lines during a long lasting shaking process. If the obser-
vation is long enough, a well defined limit between re-
gions where b1ock motion is possible and regions where
block motion is not possible shows up. This defines that
we call the decompacted region. Starting from a rec-
tangular perfect stacking of height ho, we observed that
the height of the decompacted portion increases when the
excitation amplitude is increased. We measured very pre-
cisely and reproducibly (for a given cell) the height h of
the lowest horizontal slip line observed on the CPP. We
report in Fig. 2 the ratio a=h /Ito as a function of the re-
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FIG. 1. Typical computer posed photograph of a vibrated
2D cell obtained at I = 1.19 and 15 Hz. Here the aspect ratio is
SO=0.67. The large white trails keep memory of the block
motion of the heap guring a 10-min experiment. The upper
right corner inset illustrates the definition of the parameter E in
the regular configuration.
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FIG. 2. Compacted-decompacted phase diagram of a vibrat-

ed 2D pile at two different aspect ratios. The cell as well as the
beads are the same for both experiments. The solid squares are
experimental data and full lines have been calculated from the
model using Kf =0.29. The inset in the upper part of the figure

reminds us of the definition of a.

duced acceleration I obtained for two different aspect ra-
tios of the cell So and at a frequency of 15 Hz. The as-

pect ratio So is defined to be the ratio of the original

height of the cell by the horizontal size L, so that
So=hoiL. We see that the larger the aspect ratio is or
the deeper the cell is, the larger the acceleration needed
to allow bulk movements in the lowest part of the pile.

Figures 3(b)-3(d) give a sketch of additional experi-
ments which were performed in order to give a hint on
the pertinent parameters which govern the decompaction
mechanism. Figure 3(b) has been obtained by letting un-

der vibration, for two days, a cell (So=1 and I =2) con-
taining corrugated aluminum beads and exhibiting fric-
tion at the lateral boundaries. It turns out that, at the
end of the experiment, the frontal windows of the glass
cell have been marked by the moving beads thereby
displaying a trace of the up and down motions of the suc-
cessive rows of the packing. As can be observed directly
on a part of the negative image reproduced in this figure,
the amplitude of the motion of the beads in the frame-
work of the cell increases with altitude. Although clearly
showing the trend, this striking and simple experiment
leads to rather imprecise results. But what we will show
in the following is that it is yet another consistent result
with our theoretical model. This experiment has been
reproduced in a more quantitative manner using a minia-
turized charge coupled device (CCD) camera attached to
the vibrating piston, which supports the container. Do-
ing this, and again working in the mobile referential
frame, we observed that the distances between the beads
were rapidly Suctuating in time. We recorded this funda-
mental feature by taking snapshots of the pile (Fig. 4)
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FIG. 4. Snapshot of the 2D vibrated cell showing several
fluctuating and (mostly) reversible tearing lines occurring at
every period during a lapse of time short compared to the
period of excitation (15 Hz and I = 1.3).

FIG. 3. Sketch of the different experiments mentioned in the
text.

while it was vibrated and lit from behind by a synchro-
nous stroboscopic light. We observed that, during short
fractions of a period, the stacking undergoes fast and re-
versible fluctuating tearings, which can be seen on the
photograph as microcracks. An important question
arises here which concerns the various time scales of the
dynamics of the 2D sandpile as it is observed through
Figs. 1 —5: It is essential to remark that CPPs, as in Fig.

FIG. 5. (a) Takeoff accelerations as a function of aspect ratio
of the same cell and beads. The solid squares are experimental
data and the full line has been calculated from Eq. (10) with

Kf =0.11. (b) Maximum elongation of the vertical motions of
the beads as a function of height in the same cell as in (a). The
solid squares are experimental data and the full line is obtained
theoretically from the solution of Eq. (17). Here I = 1.3.

1, exhibit essentially the irreversible and slow motions of
the beads in the container. Here the time scale of the or-
der of more than ten periods of excitation, which is the
time necessary for large scale and irreversible displace-
ments to occur. In contrast, the time scale for inducing
small and fast reversible bead motions, like the cracks re-
ported in Fig. 4, is of the order of fraction of a period. In
other words, it turns out that the dynamics of the vibrated
pile involves fast reversible fluctuating tearings (as can be
seen in Fig 4), which e.ventually turn out to build up con
structive!y into slow irreversible block slip motions (as can
be seen in Fig. 1). The limiting condition for such a col-
lective motion to occur should correspond to the Rey-
nolds dilatancy threshold. In this paper, we leave out the
detailed study of these microfluctuations, but neverthe-
less we note that we have found experimentally that these
erratic motions seem to combine into a smooth and regu-
lar increase in the average decompaction amplitude as a
function of the vertical position in the cell [see Figs. 3(b)
and 5(b)].

In order to discriminate between different possible
mechanisms which may drive the decompaction process,
we performed additional experiments reported in Figs.
3(c) and 3(d). Concerning Fig. 3(d), we performed the
same experiments as in Fig. 3(a), except that we used
fresh and polished aluminum beads. Within the same
range of excitation parameters, namely, I ranging be-
tween 1 and 2, and according to our preceding findings

[6], we observed neither convection nor decompaction of
the pile. Under these conditions, the pile behaved as a
fully compact block. Moreover, using a metallic deposit
on the lateral walls, we observed that suppressing the la-
teral wall-bead friction led to the same result even if we
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used corrugated aluminum beads. These observations
clearly exhibit once more the decisive role in the lateral
bead-wall friction in triggering the decompaction process.
This is also consistent with our previous experiments per-
formed in a 2D cylinder where the suppression of boun-
daries did suppress the heaping process whereas the in-
troduction of a stick between the windows of the cylindri-
cal shaped annulus restored the convection [6]. Still
more informative is the result of the experiments report-
ed in Fig. 3(c), where we initially arranged the packing
with a rotation n/2 compared to the triangular array
configuration we usually use and which is sketched in
Fig. 1 (inset). For simplicity we call this configuration
the "dual" network, though we realize that this denom-
ination may be improper. An important point to realize
is that now a vertical array of beads leans on the walls in-
stead of being on the bottom. Although these experi-
ments, using the dual configuration, were performed with
corrugated aluminum beads and lateral walls exhibiting
bead-wall friction, we did not observe any convection,
heaping, or decompaction. Again, the pile behaved as a
block. Furthermore, for experiments performed in the
spirit of Fig. 3(b), the marks on the frontal windows of
the cell were found this time to be independent of the al-
titude. This shows that the geometry of the arrangement
is essential in determining the decompaction process.

It is noteworthy that in all the preceding cases where
no decompaction was observed at a moderate accelera-
tion (say 1 & I & 2), a significant increase in the excitation
acceleration, above this range, would end up in starting
an overall decompaction and/or fluidization process.
However, as stated in the Introduction, we decided to
limit our investigation within the low acceleration range
where the behaviors can be easily identified and led to
reproducible measurements. Staying within these limits,
we will take all the preceding features into account for
setting up the following simple phenomenological model.

III. A CONTINUOUS MEDIUM MODEL FOR THE
DECOMPACTION OF THE 2D "SANDPILE"

A. Derivation of the compacted-decompacted phase diagram

In view of the preceding considerations and of the
currently available observations, we restrict our approach
to a rather simple and heuristic analysis of the behavior
of the 2D sandpile. Nevertheless, as will be realized in
the following, the model gives a coherent and consistent
picture of the whole set of experiments. Here we work
essentially in a quasistatic limit where we only consider
large scale and slow motions of the pile compared to the
short lived fluctuations and reversible distortions of the
array evidenced in Fig. 4. In other words, the stacking is
considered as a continuum and all the fast fluctuations
combine into macroscopic and effective parameters.
Keeping this in mind, the description of the problem has
to take into account and render several essential features
which have been identified all along our experiments: (i)
the decisive e8'ect of the bead-wall friction as well as the
influence of the aspect ratio of the container, (ii) the pro-
gressive decompaction of the pile when the excitation

amplitude is increased, and (iii) the key role played by the
geometry of the stacking (regular or dual).

Now we refer to Fig. 1, which reports a static photo-
graph of the 2D piling of aluminum beads stacked in a
regular triangular array. We are interested in finding the
stress distribution at the boundary of the container. We
1ook for the quasistatic equilibrium conditions of a slice
of material of width dh at a height h starting from the
lower part of the cell as shown on the figure. We take
into account three types of forces: (i) the bulk force ex-
erted by the weight of the slice, (ii) the force due to the
stress gradient, and (iii) the effective friction forces exert-
ed at the frontal and lateral vertical boundaries of the
container.

The magnitude of the friction forces at the walls can be
determined using, first, the argument of Janssen [16],who
proposed that it is a characteristic property of a granular
material to be able to convert a part of the vertical com-
ponent of a stress cr„into a horizontal one cr „suchthat
0, =To . In our particular case of a 2D regular
geometry (inset in Fig. 1), this property can be readily un-
derstood considering the diamond-shaped elementary
pattern of the piling. Then, this horizonta1 component of
the stress interacts with the lateral and frontal boundaries
of the cell via the Coulombs friction. We call f the
coeScient of proportionality of the Coulomb friction
force defined as o„,= fear„„.In the following, since all
the resulting forces are directed vertically, and for the
sake of simplification we will make use of a single p com-
ponent instead of the detailed expression of the stress ten-
sor. Actually, the friction forces oppose the up and down
motion of the considered slice of material. In the follow-
ing, without any loss of generality, the direction of these
forces will be taken on the average to be in the upward
direction. It is possible to verify a posteriori that this
choice gives a consistent picture of the stress distribution.
Due to the geometry of our experimental setup and to the
frictio'n properties of the materials used, we expect that
the K and f parameters will be different for frontal and
lateral boundaries. Frontal boundary coeScients are K*
and f'. We suppose an horizontal symmetry of the
problem. We write now the equilibrium equation be-
tween forces per unit width:

Lpog dh L—dh+2Kf—P dh+2K'f 'P dh =0,P
h

po and g being, respectively, the mean density of the rows
of beads and the gravitational acceleration.

Now, we estimate that frontal boundaries only play a
minor role in the decompaction process, i.e., K'f ' «Kf
because both K' and f' are expected to be small com-
pared to K and f: (i) f* stands for the bead-polished
frontal windows friction coefBcient, which is much sma11-
er than the relatively high bead-plastic lateral wedges
friction coefficient (f is typically 0.8). (ii) Due to the
confined geometry of the 2D configuration where a single
layer of particles is in contact with both frontal windows
thereby prohibiting a redistribution of stress as implied
by Janssen's argument (see inset in Fig. 1), K' is expected
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to be vanishingly small. Also, this is consistent with the
fact that no noticeable decompaction was observed when
the lateral boundaries were rendered smooth and/or
when the dual network was used. By integration of Eq.
(1) and using the free boundary property P(h =ho)=0,
we obtain the effective stress distribution

P(h}= 1 —exp (h —ho)
PogL 2Kf
2Kf L

(2)

A (t)=a ain't,

a detachment may occur from a quasicompacted state in

the region where 0&tot &n/2 (2~.). Then, we write the
equation of dynamics for the rigid "slab" in this phase
quadrant. Let us consider this slab having some upward
but small relative motion (h =0+,h -=0+ }. The friction
forces with the boundaries oppose the upward motion
and are directed downward. In the limit where no other
interaction with the other slabs is considered (except
through the effective stress P) we have

dm (h coasin—tot ) = —dm g dFt„„, —

where

(4)

dm =poL dh, dFt„„=2KfPdh . (5)

Then we obtained the condition necessary for a detach-
ment of the slab as

h a u sincot 1 frict2 ~

g g g Bm
(6)

We see from Eq. (6}that since (1/g )(BFt„„/Bm) is a pos-
itive function, increasing when the height is decreased,
there is a limiting minimal height h, for which (6) can
be true. It is when cot =~/2 (2m ) and

This equation can be regarded as a 2D version of the oft
quoted Janssen formula [16], which we recall here in or-
der to remind the reader of the assumption used in its
derivation. It means that the stress increases linearly
with depth from zero exhibiting an hydrostatic profile
P(h) -=pog(ho —h} and then saturates to a constant value

P(0)=pog(L/2Kf). This is again an effect of the vaults
starting from the boundaries. Thus Eq. (2) can be seen as
defining a vaults range to be L /2Kf.

We see qualitatively that since the stress increases with
the depth in the bulk of the material, we need to find a
limit where no relative motion between the grain and the
boundary is possible because the Coulomb threshold
"pins" the grains. In the following, we express this limit
quantitatively and identify the threshold with the limit of
long range motions observed experimentally (see Fig. 1,
for example).

We now take a vision of the system with a fine time
resolution, but still we suppose that the stress distribution

given by Eq. (2) is maintained all over the excitation
phases. We can consider the cell as being an assembly of
slabs of height dh, piled on the top of the others. If we
take an excitation of the cell in the form

which depends on the effective coef6cient E of transmis-
sion between vertical and horizontal stresses o.„ando.

the Coulomb friction f, and the aspect ratio of the cell
So. Note two immediate consequences of (8): (i) Ac-
celeration I =2 defines a limit for a granular material be-
ing stuck by the boundaries. (ii) For any block there is a
limiting acceleration

I o=2 —exp( —2y)

beyond which the whole pile will start moving.

(10)

B. Experimental tests of the decomyaetion diagram

In the following we test experimentally the validity of
Eqs. (8)—(10). Equation (8) can be illustrated by using a
phase-diagram-like picture as in Fig. 2, where we plot the
functions a(l ), which indicate the limit between decom-
pacted and compacted domains, as a function of a re-
duced acceleration I and for two given aspect ratios Sp
(for the same cell and the same granular material). As
can be seen on this figure, the experimental data fit well
the theoretical model represented by solid lines using a
single Kf parameter (Kf =0.29).

Now, let us consider Eq. (10). It turns out that i „can
be measured experimentally quite easily and at a rather
good approximation using the following procedure. We
start from a null amplitude of excitation and at a given
frequency; we progressively increase the amplitude of the
excitation. We measure the reduced acceleration when
the lowest row of the piling is seen to take off regularly
from the bottom of the container. The observation is
made with a stroboscopic Bashing lamp slightly out of
phase and through a CCD camera attached to the vibrat-
ed piston. This experiment was repeated for different Sp
values. Experimental data are reported in Fig. 5(a). We
see that measured data can be fitted satisfactorily with

Eq. (10) using a single characteristic parameter
Kf =0.11. Note that it is another cell than the previous
one.

Now, we check the dependence of the decompaction
process on the Kf product that enters in Eq. (9}. Actual-

ly we realized that different cells exhibit different Kf pa-
rameters due to the fact that there is little control of the
roughness and consequently on the bead-wall friction
coefflcient f of diff'erent machine-finished lateral walls.

a co 1 ~+frict=1+-
g g Bm

Then, using relations (5) in (7), we obtain the limiting
height h„for a possible upward motion relative to the
cell. We put this in a scaled form

a= I+(2y) 'ln(2 —I ),
with the height ratio a =&, /ho obtained as a function of
the reduced acceleration, which we usually define as
I =ace /g. The only parameter that is dimensionless
which we call "decompaction parameter" in the follow-

ing, is

(9)
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C. Study of decompaction gradients
in the decompacted phase

Now, since the previous experimental tests give some
confidence in the model, we shall push it a little further
and check its implication by testing the amplitude of
decompaction as a function of the height. Again, we con-
sider the same analogy of the independent sets of slabs
acting on the boundary with the stress gradient of Eq. (2).
The vertical position of the slab is given by
z(t)=h+lkh(t), where h is the vertical position at
"rest." Once the slab has some relative motion compared
to the cell, it follows that

T

2= —g 2—exp' —1
ho

+aco sincot .

Equation (11) is valid just in the case when h )0; other-
wise we would have to consider a friction force acting up-
wards on the pile. The relative motion starts at a time t*,
which is given by

sing'=F ' 2—exp' —1
ho

(12}

with y =mt * and at t =t, h =0 and h =0. Equation
(11) is a priori a nontrivial nonlinear diff'erential equation,
but we can consider that the relative motion is of small
amplitude and that the stress exerted on the walls will not
change much during the excitation. Thus we consider
the differentia1 equstion

~ 0

Ah = —g*+aco singlet, (13)

Furthermore, we observed experimentally that depositing
a thin aluminum layer on the lateral walls nearly
suppressed the friction coeScient with the oxidized
aluminum beads. We reported earlier that, in this case,
no decompaction would occur consistently with a value
f=0.—Also, as expected, we got the same result by re-
placing oxidized aluminum beads by fresh and polished
ones, which again suppressed the bead-wall friction
coeScient. Now we would like to test the influence of the
parameter E, which may be considered as a sort of Pois-
son coefficient in solids (though Poisson coefficient is,
properly speaking, defined for strain ratios rather than
stress ratios). Since it is an effective parameter it would
be difBcult to derive it from first principles, but we shall
see that its action can sometimes be suppressed. Earlier
we mentioned the experiment where we were using the
"dual" configuration of the piling [see Fig. 3(c}] and no
decompaction or heaping was occurring. This effect has
an interpretation in the framework of our model. When
we compare the dual configuration with the regular one,
we see that all the beads touch each other along vertical
lines which form a continuous and vertical network of
forces (see the inset of Fig. 1, where the diamondlike
figure should be rotated by 90'). Thereby it should be no
surprise that, in this case, the transmission of vertical
forces to horizontal forces should be minimal and thus
K—=0, which again, is consistent with our model for
which no decompaction occurs.

where

hg'=g 2—exp' —1
ho

(14)

Equation (13) is then easy to integrate

hh = ,'g'—(r—t')—+a[sincot+co(t t')c—os''],
bh = g'(t—t—)+aco(coscot+cosy') .

(15)

(16)

We are interested in the maximum relative height. This
value is obtained for a time t,„corresponding to hh =0,
which leads to the implicit equation

g'(i,„r'—) =ace(cosset, „+cosy'). (17)

IU. DISCUSSION AND CONCLUSION

The work we present here is an investigation into
modes of decompaction of a dissipative sandpile. Since
the internal energy dissipation between grains in contact
is high, a momentum wave resulting from the shock with
the bottom is strongly damped and does not fluidize the
upper layers. This is a situation common to numerous
grain assemblies. On the other hand, we have shown
that, in this case, the lateral walls play a capital role and
that the decompaetion process can be rationaHzed in
terms of a vault e+ect originated from the boundaries and
propagating inside the bulk. We put forward a macro-
scopic model to understand more clearly these features.
We could predict an effective stress gradient acting on
the walls. We found this model to be both qualitatively
and quantitatively consistent with a series of experiments
involving a variation of the aspect ratio of the pile, the
friction condition at the lateral walls, and the internal
geometrical structure. We predicted and measured a
sharp transition between a compacted and a decompacted
region. In any case, the model shows that this separation
is bound to disappear for accelerations larger than 2g.
Maybe one of the most surprising results is the pertinence

Then we should use Eq. (15) to obtain hh, „=Eh(t,„).
There is a set of three implicit equations to solve [(12},
(17), and (15)], which is done using a numerical routine
on a computer.

Now we perform an experimental measurement of the
decompaction gradients. Since the decompaction ampli-
tudes are small, in order to optimize the measurements,
we work preferentially in the domain where the accelera-
tion is larger than I o [called takeoff acceleration in the
following; see Eq. (10)) and thus the whole pile undergoes
relative motion compared to the cell. We accumulate
snapshots using a CPP and a video camera in the vibrat-
ing reference frame. We measure the maximal amplitude
of displacement as a function of height. The results of
the measurements are reported on Fig. 5(b}. Introducing
the parameter Kf =0.11, which has been found indepen
dently from the preceding experiment [Fig. 5(a)], which
was performed in the same cell, we compute a solution
from our model. We find satisfactory agreement with the
experimental data reported in Fig. 5(b) without introduc
ing any new fitting parameter.
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of the efFective stress gradient in the investigation of the
short-time dynamics (decompaction amplitude averaged
over a large number of observations though). Once
again, the comparison with experiments is fair. We have
shown that the vertical scale of relative fluctuations be-
tween the grains is increasing with height (when decom-
paction is mechanically possible of course). Nevertheless,
in view of its relative simplicity, a brief discussion con-
cerning the domain of validity of the picture we propose
is required. First of all, one should realize that this rather
crude picture of the pile neglects the time-resolved dy-
namics of the decompaction as it is observed in Fig. 4
(microcrack waves). Actually it deals either with time
scales much larger than the period of excitation (block
motion) or with quantities averaged over several periods
(mean decompaction). The stress profile that is found
was really tested (indirectly) in the decompacted region,
thereby leading to a prediction for a threshold. However,
nothing is certain about its validity inside the compacted
region where another mechanical picture could take
place.

Also, the simplification of a horizontally symmetric
block turns out to be quite untrue in the upper part of the
pile where no decompaction wave is observed. Along the
same lines, we realize that our continuum model, which
implies compact horizontal slices of the material,
oversimpli5es the role of the friction bead-bead interac-
tion. In the real situation and using polished or corrugat-
ed beads, it is impossible to differentiate experimentally
and quantitatively the respective roles of the bead-bead
and bead-wall friction interactions. Under these condi-
tions, one might ask the question of what would occur if
we could turn off the bead-bead friction while turning on
the bead-wall friction interaction. Moreover, an investi-
gation of the possible dependence of the efFective decom-
paction parameter with the frequency might be of great
interest. We are aware that all the implications of this
model should be tested more extensively.

One of the goals of the present work was also to push
for more detailed comparisons with more sophisticated
theoretical efforts as well as with computer simulations,
on the grounds of firm and reproducible experimental
facts.

It is worth noticing that some computer simulations
have previously led to the claim of "partial fluidization. "
Taguchi [4] has shown that his computer simulations, in
rectangular vibrated cells, exhibit the coexistence of a
"fluidized" domain overlying a compact zone. A study is
made that shows that the depth of the fluidized domain
increases with the acceleration of the container. It is
noteworthy that Taguchi*s algorithm, in a certain
manner, includes the conversion of vertical solicitation to
horizontal ones, but in his work the motor leading to
convection is some form of viscoelastic relaxation and not
Coulomb friction at the walls, contrary to what we
demonstrate in our present and previous works [6].
Another recent simulation work performed by Moreau

[17] dealt with 2D vibrated cells similar to those we used
in the present work. Using a complete mechanistic
description of the problem in terms of description of
shocks, Coulomb bead-bead and bead-wall friction, he
produced quite realistic pictures which exhibit the pro-
gressive decornpaction effect as well as the crack waves
we evidence here. Further work is in progress along
these lines in order to check more thoroughly the coher-
ence of our experimental observations with Moreau's
computer model.

A crucial question arises here as to whether the preced-
ing observations and model could apply to the more com-
plex situation of a 3D multidisperse sandpile.

Literature has occasionally reported experimental ob-
servations corroborating our findings. In particular,
Laroche et al. reported in [5] the observation that, under
moderate excitation, only the higher part of the 3D sand-
pile was the locus of internal motions while the bottom
remained compact. Also Evesque, Szmatula, and Denis
[18] reported the same observation in an experiment
where a test tube filled with sand was plunged inside a
sand bucket. Under vibration and for a moderate depth
of the immersed boundary of the test tube, a creeping of
the sand out of the tube could be observed. For deeper
immersion, the motion would stop. This can be inter-
preted as a coexistence between two states of the sand-
pile, i.e., compacted andlor decompacted in the spirit of
our experiments and model.

However, yet in the absence of quantitative experimen-
tal observations of the bulk decompaction of a vibrated
3D real sandpile, we cannot take for granted that all the
reported features would extrapolate directly to real 3D
situations. In particular, it turns out that the somewhat
"crystallized" nature of our samples implies that some
preferential dislocations lines (say horizontal or at 60')
are more likely to occur in 2D than they would in a po-
lydisperse 3D sample. This particular feature probably
tends to expand to a larger distance in the bulk, the per-
turbations induced by the friction interaction at the la-
teral walls. Keeping this in mind, as far as we could, we
paralleled the reported quantitative experiments in 2D
with rough qualitative observations in real 3D sandpiles.
We also observed in 3D the formation of localized eddies
at the lateral corners at acceleration just above threshold,
as well as the coexistence of superimposed compacted
and decompacted states. At the present time, not being
in a position to see inside the bulk of the 3D sandpiles (as
NMR imaging might), we have not noticed any novel and
divergent behavior in 3D from the above reported results
in 2D.
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