
PHYSICAL REVIE%' E VOLUME 50, NUMBER 1 JULY 1994

Dow'nstream evolution of the Benard —von Karman instability
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We describe experiments in the Benard —von Karman hydrodynamic instability of the vortex
shedding behind an obstacle. We obtain the scaling laws for the evolution of the global mode
describing the envelope of the peak to peak amplitude velocity oscillation of the Bow velocity and
we show the existence of a universal curve for the renormalized amplitude of the streamwise evolution
of this amplitude.

PACS nnxnber(s): 47.20.Ky, 47.27.Vf, 47.15.Fe

I. INTRODUCTION

We analyze experimental results on the streamwise
evolution of the vortex shedding in the Bow behind an
obstacle (Benard —von Karman instability). Kovasznay

[1] has performed a complete study of the spatial prop-
erties of the vortex shedding and has analyzed the down-

stream evolution of the amplitude of the peak to peak
oscillation (envelope) of the Huid velocity measured with
hot wires in the central line. He observed that this am-

plitude grows far away &om the obstacle and has a max-
imum near x = Vd, with d the diameter of the cylindrical
obstacle, and afterwards decreases in the How direction.

In 1983 Mathis [2] showed preliminary results where he

detected that this maximum position changed with the
Reynolds number and became larger than 5d when the
How velocity approached the critical Reynolds number

R, at the onset of shedding. This observation suggests
to us a critical behavior of this envelope as is the case
in confined hydrodynamic instabilities such as Rayleigh-
Benard convection [3].

The spatial properties of the vortex shedding were
studied with the concept of a global mode of instabil-
ity in open systems with spatially developing Hows [4—9].
As is now very well known [10,11], the wake instability is
absolutely unstable downstream near the blufF body and
convectively unstable far away. The synchronized oscil-
lation of the shedding instability in all the Bow domain
is characteristic of the existence of a global mode.

The spatially developed base fIow induced by the ob-
stacle in &ont of the incoming fIow shows different local
stability along this direction [12] and this can be mod-
eled by a decreasing relative Reynolds number s = s(x),
where r = (B —R,)/B, . The first theoretical studies to
calculate the form of the global mode were using a lin-
ear Landau equation as a model for the amplitude of the
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eigenfunction in the stream direction z [4]. The envelope
solutions obtained are Airy functions when s(z) is lin-

early decreasing and parabolic cylinder functions when

z(z) is quadratically decreasing [13]. The experimental
test of these models and the quantitative study of global
modes still remain open.

In order to observe these global modes and their evo-
lution as functions of the Reynolds number we have per-
formed experiments to measure the amplitude of the ve-

locity perturbations in the central line of the fIow behind
the obstacle for supercritical Reynolds numbers when
vortex shedding takes place. Our experiments were done
in a low velocity water tunnel where the velocity was
measured with a laser Doppler anemometer (LDA). The
bluff body is of trapezoidal form to ensure straight cor-
ners and a constant initial spatial phase to the vortex
shedding is defined. This shape, more efBcient than in
the classical cylindrical shape, is normally used in indus-
trial flowmeters in order to ensure more stable and robust
vortex emission [14].

The study that we present here is complementary and
different &om the study of the spatial properties of the
vortex emission along the body direction z. This prob-
lem has already been observed and discussed extensively.
Indeed comprehensive work was done in order to un-

derstand the infIuence of the sidewalls, the existence of
chevrons, the shedding of inhomogeneous obstacles, etc. ,
and almost all the situations are very well modeled by
Landau-Ginzburg models including the spatial deriva-
tives in function of the coordinate z [15—17].

II. EXPERIMENTAL SETUP

Our experiments were performed in a lour velocity vra-

ter tunnel with typical velocities of 1—2 cm/sec at the
onset of instability. The blufF body of trapezoidal sec-
tion (Fig. 1) is characterized by its width d. We have
used d = 1, 0.5, and 0.4 cm in difFerent experiments. The
angle of the lateral faces is 4 and the ratio of the length
3 of the long side of the trapeze in the upstream face, to
the width d, is l/d = 0.7. The transverse extension of
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FIG. 1. Experimental setup.
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the body (L,) is 5 cm.
The channel has a square section of 5 x 5 cm2 and is

preceded by a settling chamber and a convergent. A LDA
scans the transverse (V ) and longitudinal velocities (V„)
from the center of the blufF body (it is the z origin) until
z = 10 cm downstream. The velocity value is obtained by
processing the Doppler bursts with a &equency counter
and this instantaneous velocity value is analyzed by a fast
Fourier transform (FFT) analyzer in order to obtain the
&equency of the shedding and its amplitude. The Bow
in the channel is achieved gravitationally by a constant
head pressure, and exit gates modify the fiow rate.

In the central line (at y = 0) the longitudinal com-
ponent of the velocity has a special dynamics behavior.
Indeed, for the shedding frequency fo, the V compo-
nent of the velocity fiuctuation shows the presence of the
harmonic 2fe. In fact Kovasznay [1] noticed that this
component can be written as

V~ = Vq cos2m((q + fot) + V2cos2z'($2+ 2fo&)9 (1)

where Vj is an odd function of y. As the velocity probe
senses the synchronized upper and lower vortex emission,
when it is nearer one of the trails (y g 0) it senses essen-
tially its contribution at frequency fo But the trans. verse
component V„always shows the fo frequency. In our ex-
periments we observed, for the transverse component V„
in the central line, the harmonic 2fe, as our LDA system
does not determine the sign of the velocity component
and the &equency counter dressed the velocity signal. In
order to take into account these situations we recorded
the values of the amplitude of each mode and the total
power spectr»~ in the FFT analyzer.

They are two dye (fiuorescein) injectors in the blufF
body. With an ion argon laser light sheet produced
by a cylindrical lens we are able to visualize the eddies
by laser induced fiuorescence (LIF) and check the two-
dimensional structure of the shedding.

III. EXPERIMENTAL RESULTS

We have measured the transverse V„component of the
velocity and we have explored the oscillating downstream
velocity field, from the obstacle (at z = d/2) to x = 10
cm in the central line at y = 0 (it is x = 10d, x = 20d, and
z = 25d for the difFerent obstacles). These measurements
were done for numerous Reynolds numbers ranging &om
R, to 2R„where R, is the onset of the Hopf bifurcation
in the absolute regime of instability. We have chosen the
V„component of the velocity oscillation. This component
of the How velocity is zero when R ( R, and reaches
a maximum in the symmetric central line [1]. The V
component of the velocity auctuation is not maximal in
the central line; it is maximal for a certain y = y [18]
and we are not able to ensure then that this y value
does not change when the Reynolds number is modified.

In Fig. 2(a) we show the visualization image obtained
by LIP visualization, where the instantaneous view of the
streak lines is superposed with the average view during
many periods In Fig. .2(b), at the same spatial scale, we
display the evolution of the envelope of the peak to peak
amplitude, from the velocity measurements.

We can observe that the strength of the emission
grows after the obstacle reaches a maximal value (around
z = 4d in the figure) and decays downstream, as was no-
ticed by Kovasznay [1] and Mathis [2]. We can notice
that the streak lines of the dye visualization do not show
[19]this important feature of the spatial development and
we observe a strong discrepancy between the "tracer en-
velope, " obtained by dye visualization in Fig. 2(a), and
the velocity envelope in Fig. 2(b).

The physical origin of this downstream decay is the vis-
cous relaxation of the shear base profile induced behind
the blufF body. This relaxation reduces the strength of
the local relative Reynolds number s(z). This instability
parameter becomes negative far away &om the origin in
bluE body. This downstream relaxation of the shedding
oscillation is one of the typical characteristics of open
fiow instabilities with spatial inhomogeneity [5].
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FIG. 2. (a) Laser induced Suorescence view of vortex emis-
sion. The picture shows the superposition of an instantaneous
view of the streak line and the time averaged streak lines dur-
ing many periods. (b) Normalized maximum amplitude of the
transversal Suctuation of velocity along the z streamwise di-
rection, measured with laser Doppler anemometry.

In order to appreciate this relaxation, we have per-
formed measurements of the V (longitudinal component
of the Sow velocity) at different z locations of the water
channel and for all the values of y (the transverse co-
ordinate) at z = 0 (in the middle of the channel), at a
Reynolds number just before the onset of instability. We
observe a strong variation of this base How pro6le in the
downstream direction. This in turn leads to a reduction
of the strength of the instability due to the downstream
relaxation of the base How.

The variation of the spatial scale of the base flow

(equivalent to the boundary layer thickness b) induced
a nonparallel Bow, as can be deduced &om the conti-
nuity equations. The systematic exploration of the full

velocity 6eld can give us the value of the degree of the
nonparallelism parameter.

From measurements obtained after careful exploration
of the velocity field, we obtained the envelope of the peak
to peak amplitude as shown in Fig. 2(b). We repeated
these explorations for diferent Reynolds numbers and
obtained the results shown in Fig. 3. In this 6gure we

plotted the total power of the kequency spectrum con-
taining the information of the highest peak at f = 2fo.

The alternative way to plot these results was by con-
sidering that only the highest peak are less coherent with
the plots including total power.

At the same time we obtained the value of the fre-

quency on each x and we observe that this value was
constant within the error limits along the flow direction.
This constant &equency implies a synchronized oscilla-

tion and is one of the major features of the existence of a
global instability in the full domain of shedding. Exper-
iments are in progress to complete this description with
local measurements of the growth rate of perturbations
in order to compare the behavior of the imaginary part
of the growth rate (u; = f, the frequency of oscillation)
to the real part of this rate ~„,giving the ampli6cation of
the instability. From the measurement of the &equency
fo we obtain the plot shown in Fig. 4, which is a repre-
sentation of the Strouhal law showing that the &equency
of shedding increases linearly with the Reynolds num-
ber, from the value fo, at the onset of the Hopf bifurca-
tion. We completed this description with measurements
of the &equency in the subcritical region R ( R, when
an external abrupt perturbation of the Bow is introduced
upstream in the Bow and we can observe the transitory
decaying vortex emission stimulated by the perturbation,
as done before by Provensal et aL [20].

The slope of the curve &equency vs Reynolds num-
ber gives the imaginary part of the complex coefFicients
(co —c2) in the Landau model description of this instabil-
ity [20,21] and the slope in the subcritical region gives the
linear coeKcient co. Our measurements give an estimate
of c2/co = —0.2 [22].

One of the original aspects of these measurements is
an encouraging confirmation of the tendency observed in
the preliminary results of Mathis [2] about the Reynolds
dependence in the location of the maximum in amplitude,
called I . We observed that in our experiments this
value was shifting far away from the bluE body when we

approached the onset R, . From these measurements we
could observe that a dependence in the Reynolds number
begins to be suggested. Prom the log-log plot of Pig. 5 we
proposed a law in X (R —R,)

~~2 as a reasonable
fit to our measurements.

Let us look at the validity of the result of Fig. 5.
Indeed, when R ~ R„the maximum of the amplitude
oscillation approaches zero and &om the experimental
point of view it is very difFicult to establish precisely the
position of the maximum as the envelope becomes soft
(without contrast)

We observe that for B 1.5R, we obtain asymptot-
ically the value of X 4d or 4.5d as found before
in the literature [1]. In this asymptotic regime, Kovasz-
nay [1] observed that X —7d with measurements of
the V component and Mathis [2] found that X —5d
with measurements of the V~ as in our experiments. So in
this intermediate range the behavior in this scale is rem-
iniscent of the critical behavior of the infiuence length (
in the confined hydrodynamic instabilities [3] where the
Landau-Ginzburg model can explain this behavior with
the law ( - (R —R,) '~ as in the classical mean-field
theory of phase transitions.

With this behavior in mind we proceeded to evaluate
the Reynolds dependence on the amplitude of the oscH.-
lator. This evaluation has been done before [20,21,23] in
order to con6rm the validity of the weakly nonlinear I an-
dau model for the evolution of perturbations. In these
works the amplitude of the oscillation A, measured in a
fixed spatial station at x = 5d, was plotted as a function
of the Reynolds number and the law A = Ao(R —R,) ~~
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FIG. 3. Envelope of the peak
to peak amplitude, in arbitrary
units, for difFerent Reynolds
numbers. The abscissa z is the
distance to the body in millime-
ters.
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was obtained {As ——1/g is the inverse of the Landau
constant). In addition, Ref. [21] claims that both the ex-
ponent 1/2 of the power law and the Landau constant do
not change with z

We proceeded difFerently and we plotted the A
value obtained from each Reynolds number measured

at the point where the envelope is maximal; it; is for
x = X and not at x = Sd, as has been done be-
fore. The difference can be irrelevant for R & 1.5R„but
is more important when we approach the onset of insta-
bility. Very near this onset we are not able to ensure
sufBciently good experimental precision in the localiza-
tion of A and in the estimate of A as the form of
the envelope is too soft. More work needs to be done in
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FIG. 4. Shedding frequency as function of Reynolds num-
ber.

FIG. 5. Maximum amplitude A and X as a function
of relative Reynolds number.
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IV. DISCUSSION OF THE RESULTS

In this paper we show the existence of a single curve
(Fig. 6) for the renormalized amplitude of the streamwise
evolution of the peak to peak amplitude of the oscillating
velocity components in this instability. The crucial point
in order to obtain this behavior was obtaining two scale
laws related to the Reynolds number: the 6rst one for the
maximum amplitude and the second one for the position
of the maximum of the global mode.

One other important aspect of our measurements was
the possibility of con6rming the tendency observed in the
preliminary results of Mathis [2] about the scaling of the
X behavior with the Reynolds number, very near the
onset of instability. Many open problems are related to
the physical meaning of this important spatial scale. The
question is to know what is the typical length that scales

Many scales exist in this instability and can be

the future in order to reduce the experimental error in
the evaluation of A when R approaches B,.

In Fig. 5, we also show the behavior of A
A(X ) as a function of the Reynolds number and we
observe that the law A ~ ~ (R —R,) produces a better
6t. The extrapolation to zero for A gives an estima-
tion of R, (R, = 58 for the smallest bluff body), very
consistent with the critical value observed by the LIF
Bow visualization, when the streak lines of the dye begin
to show the typical undulations related to the beginning
of the shedding.

From the results of Fig. 5 we obtain two scaling laws
for the maximal value of the perturbation and its loca-
tion. From these two results we can renormalize our full
results in order to incorporate these two natural scalings.

We check the validity of the assumption: A(x, R) =
A E(x/X ), dividing each experimental value of
the envelope by the maximum value A and shifting
the spatial coordinate with the scale X . The renor-
malized full set of points corresponding to each of the
experiments shown in Fig. 3 is now presented in Fig. 6.
Prom this 6gure we can estimate that these two scales
were fully ensuring the collapse of almost all the points
of each independent measure in a universal curve for di-
mensionless velocity and spatial position.

relevant for this problem.

(i) The amplitude of the influence length (o, which
scales the shift of the critical Reynolds number with the
aspect ratio [3,20], is used as a prefactor of the spatial
term in the Landau-Ginzburg equation.

(ii) The size of the recirculating zone behind the body
and this distance is related to the shape of the blufF body.
This scale is very important in the dynamic behavior in
wakes to ensure the physical mechanism of feedback al-
lowing self-sustained oscillations. Hannemann and Oertel
[10] have shown the relation between the extension of the
absolutely convective region behind the obstacle and the
extension of the recirculating region, characterized by the
negative longitudinal velocity in the central line. It is in
this region that the "wave maker" acts for the entire How

[24].
(iii) The extension of the unstable region where s(x) &

0 is related to the typical distance of the spatial inhomo-
geneity of the base pro61e of longitudinal velocity.

A series of experiments are currently in progress in order
to observe these scales and identify the pertinent length
which scales with X

We also extend these experiments with measurements
of the longitudinal V Quctuating velocity oE the axis,
at y . These experimental results [25] and numerical
simulations of Zielinska [26] show the existence of a global
Inode for V with a larger value of X and critical
exponents equal to —1/2 for X and equal to 1/2 for
Amaz-

The existence of a renormalized curve for the peak
to peak amplitude of the velocity Huctuation modifies
the preexistent view about the pertinent order parame-
ter of this instability. As a consequence of this we can
take as a correct magnitude of the perturbation any in-
tegral measure of the velocity perturbation along the
streamwise direction. If X = Xo(R —R,) and

P
A = Ao(R —R,), the integral parameter Z of
the instability (for instance, the energy of one compo-
nent of the velocity) becomes F„=jo A (x, R)dx
(AoXo) (R —R,) j P (x/X )d(x/X ) and if
this integral is constant as our results suggest, we can
conclude that E„(R—R,) . Our results enhance
the importance of the integral or global concept of order
parameter in this instability.

In previous works [27,23], the evolution of the ampli-
tude as a function of the relative Reynolds number was
measured at a fixed position x = xo. In light of our
results, it implies that if this spatial station is local-
ized between the body and the maximum of the enve-
lope, then the form of the renormalization function W
can be approximated with a linear function. In this
case A(xo) = A X(xo/X ) —A xo/X
(R —R,) . So the effective critical exponent is P —v
and not P as was claimed. When the experiments are
performed at Reynolds numbers not sufBciently close to
the onset B, the position of X~ does not change sig-
nificantly with the variation of R (X' cte) and in
this case A(xo) A xo/X (R —R ) . Only in
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this situation [27] the local amplitude seems to be com-
ported as an order parameter with critical exponent P.

The form of our experimental function T is reminiscent
of the form of the calculated function by Chomaz and
co-workers [4,6], when they supposed a linear relaxation
of the instability parameter e (x) downstream. Indeed
they modeled the global mode with the Landau-Ginzburg
equation

BA
7-p ——s (2:)(I+ tcp)At

+(o(1+tcz) —g(1+tcg) [
A

~
A,2 2

taking the linear part of the real version of this equation,
with s (z) = po —pq2:. The solution with boundary
conditions A.(0) = A(oo) = 0 is the Airy function or
the parabolic cylinder function if a quadratic law was
chosen for the relaxation of e(x). From the experimental
point of view it is very difBcult to distinguish between
these functions with similar linear growth &om z = 0,

as the distinction between them occurs essentially in the
tail of the curve .

In this article we show than the global mode of insta-
bility is deformed when the Reynolds number changes.
This behavior has not been taken into consideration in
previous theoretical studies [7,9] of the amplitude of a
spatially dependent global mode.
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