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Modulational interaction of short-wavelength ion-acoustic oscillations in
impurity-containing plasmas
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The modulational iateractions of ion acoustic waves are investigated for plasmas containiag heavy
impurity ions or dust particles. Low-frequency modulations arisiag from dust-acoustic oscillations
are considered. It is found that instability of the short-wavelength ioa-acoustic, or ion Langmuir,
waves can develop for modulations with wavelengths larger as well as smaller than those of the
pump waves. The latter possibility can result in the appearance of waves resonant with thermal
ions. It follows that the bulk of the plasma ions can be heated. The corresponding one-dimensional
ion Langmuir solitary waves are also discussed.

PACS number(s): 52.35.Fp, 52.35.Ra, 52.35.Qz, 52.25.vy

I. INTRODUCTION

Investigation of plasmas containing heavy impurity
ions or dust particles is important [1—7] for the under-
standing of space and astrophysical phenomena (plan-
etary rings, cometary tails, interstellar clouds, etc.),
the Earth's environment (noctilucent clouds, auroras,
etc.), many laboratory and technological plasmas (low-
temperature rf and dc glow discharges, rf plasma etch-
ing, the wall region fusion plasmas, etc.), as well as many
materials (semiconductors, dusty crystals, etc.). The im-

purity ions or dust particles often have large mass, are
charged negatively with large charge numbers (~Zg] up to
10s), and are of average sizes usually much less than the
Debye length [8,9]. Such charged impurity particles can
signi6cantly modify the properties of the normal modes
and their evolution [10—17]. Moreover, their presence re-
sults in the appearance of new normal modes, such as the
dust-acoustic waves [12,14], which involve oscillations at
such low &equency that the electrons and ions remain in
equilibrium and the dynamics is mainly due to the dust
particles.

Nonlinear processes that can disturb the wave struc-
ture and transfer energy to or from the plasma particles
are important in many situations. Studies of transitional
scatterings of waves off dust particles [9,18,19] and the
effect of decays and induced scatterings involving the
dust-acoustic waves [20] have indicated the importance
of these effects in dusty plasmas. An important non-
linear process is the modulational interaction [21—23] of
6nite amplitude waves, whose amplitude and phase are
modulated by much lower frequency motion. It is the
basic process for transition &om weak to strong turbu-
lence in plasmas. The strongly turbulent state is char-
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acterized [21—25] by strong phase correlation among the
excited modes within coherent objects (such as solitons,
phase-space holes, and collapsing cavities) with chaotic
interaction among the latter. Modulational instabilities
are the main source for these coherent objects.

In the development of the modulational instability,
plasma is expelled &om regions of high wave energy by
the ponderomotive force, which results from the non-
linear coupling between the high-&equency waves with
much lower frequency density perturbations, which are
usually quasineutral. For an impurity-&ee plasma, the
latter are usually &om ion motion. The presence in dusty
plasmas of the even lower frequency dust-acoustic oscilla-
tions results in the possiblility modulational instabilities
associated with the latter. Such an instability for finite
amplitude electromagnetic waves has been studied [15].
In this paper we investigate the modulational instability
of short-wavelength ion-acoustic waves in a dusty plasma.
Linearly, the waves have negative dispersion. It is found
that instability with perturbation wavelengths exceeding
those of the pump wave is possible. The instability can
lead to resonance between the enhanced dust-acoustic os-
cillations and the thermal ions, resulting in the heating
of the bulk plasma ions. One-dimensional ion-wave soli-
tons which can appear in the evolution of the instability
will also be discussed.

The paper is organized as follows. In Sec. II, we

present the dusty plasma model and obtain the evolu-
tion equations for the slowly varying short-wavelength
ion waves. In Sec. III, we obtain the dispersion rela-
tion for the modulational interaction of the pump ion
waves with quasineutral low-&equency density perturba-
tions associated with the dust-acoustic mode. In Sec-
tion IV, we evaluate the dispersion relation and present
the existence conditions and growth rates of the modu-
lational instability. Section V is devoted to a localized
solution of the evolution equations for the slowly varying
envelope of the short-wavelength ion waves. In Sec. VI,
our results are summarized and discussed.

1063-651X/94/50(4}/3060(8}/$06.00 50 3060 1994 The American Physical Society



50 MODULATIONAL INTERACTION OF SHORT-W'AUELENGTH ION-. . . 3061

II. EVOLUTION EQUATIONS

Consider a uniform unmagnetized collisionless hydro-
gen plasma containing massive impurity particles or dust
grains with an average negative charge Zge. When dust
grains are involved, the size of the latter is assumed to
be much smaller than the Debye length, the wavelength
of the perturbations, as well as the distance between the
plasma particles. Thus we can treat the dust grains as
negatively charged point masses. We also assume that
the following conditions are fulfilled:

T, )& T; )& Tg/Zg,

m, (( m; (( mg/Zg,

noe np~ npa Zg

1+ lkl'r' (2)

and that for the long-wavelength (lklr~; (& 1) dust-
acoustic waves by

where m, np, and T (a = e, i, d) are the mass, the
unperturbed density, and the temperature of the elec-
trons, ions, and dust particles, respectively. Thus both
ion-acoustic and dust-acoustic oscillations can exist in
the plasma.

For lklrD, « 1 the linear dispersion relation of the
ion-acoustic oscillations is given by

gy(~) gy(~) gy(~)

Bt Br Bp
+v- +q E- =0, (6)

where q, :—e, q; = —e, and qg = Zge; f& is normalized(a) ~

such that jf& dp/(2m)s = n, with n the number den-
sity of species o,.

We also need the Poisson equation

v E = 4~) &.f y,' t

a
(7)

where E is the wave electric field. We shall assume that
the quasineutrality condition n; = n, + Zing is satisfied
by the low-frequency motion.

To investigate modulational instability, we must take
into account terms up to third order in the fields, in-
cluding interactions with the virtual waves. The lat-
ter are perturbations in the pump electric field at the
beat &equency 0 and in general also at the harmonic
2(up [27,28]. Thus, for the slowly varying wave envelope
E;r, (r, t), where

1E = —[E;r,exp( —iu„;t) + c.c.]2
(8)

long-wavelength ion-acoustic oscillations. Here we shall
investigate the case in which the modulation is associated
with density perturbations arising from the dust-acoustic
mode. The kinetic equation describing the distribution

f ction y,(-) is

uri = lklvea, 3
of the ion Langmuir pump waves, we have [26]

where ug is the wave frequency, k is the wave vec-
tor, u~ —(47I'np e2/m;)i~2 is the ion plasma &equency,
r&,(;) ——(T,(;)/4mnp, (;)e~)i~2 is the electron (ion) Debye
length, and

1 1

(npgZg) ' (ZgT;l '
no* ) gmq)

(4)

is the dust-acoustic speed.
The long-wavelength limit (lklr~, && 1) of (2) de-

scribes the ordinary ion-acoustic waves. In the short-
wavelength limit (lklrn~ && 1 && lklrz) && Qm;/m„
the last inequality being needed in order to avoid strong
electron Landau damping), the dispersion relation can be
written as

82
, —v,'b. ' = b.lE;l, l',

Ot2 '
np,. 16mnp;m,

(10)

( Bt ) 2rD~ 2 ( noi )
(9)

where 6 is the Laplacian and we have introduced the
efFective density modulation bn;.

The evolution of the effective density modulation bn;
depends on the regime considered. First, if the modula-
tion &equency 0 satisfies lfII « ~~' and IKlvz' && lfII &&

lKlvz„where K is the wave vector of the modulations
and v~, (;) = gT, (;)/m, (,) is the electron (ion) thermal
speed, the dust particles do not contribute and hn; is
determined by

The dispersion relation (5) for short-wavelength ion-
acoustic waves (sometimes called ion Langmuir waves)
is typical for media with inverse dispersion [26].

In the earlier treatment of the modulational instability
of ion Langmuir waves [26] in an impurity-&ee plasma,
the low-frequency perturbations were associated with the

where v, = gT, /m; is the usual ion sound speed. For
this case the earlier treatinent [26] of the ion Lang-
muir wave modualtional instability in a dust-f'ree heo-
component plasma is applicable. Here the slow density
perturbations are also associated with the ion modes. We
note that (10) is valid only for perturbation wavelengths
(oc lKl i) much smaller than the inverse electron Debye
length r&, , while the wavelengths (oc lkpl ) of the ion

Langmuir waves are larger than so . Therefore, for the
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situation described by (9) and (10) modulation is possible
only when ]K] « ]ko~.

A more important case is one that satisfies ~K~uTg &&

vz; and IKlrD* «1 where ~T g = V'Tg/~~ is
the thermal speed of the impurity particles. Under these
conditions, the low-&equency motion is described by

0 ]ko] . 2 2cos20

x4(
)

—8
t' 0 ) 0 ]ke[cosO

~i*' ]K] rX~.

1

fko]'r'.

noi

Z2n

16+no,.m, g
where 0 is the angle between K and ko. In the opposite
limit ]K] « ~kp], we find

In this case the slowly varying density perturbations
are associated with the dust-acoustic mode. We empha-
size that here the magnitude (~K~) of the perturbation
wave vector can be both larger and smaller than that
(~ks]) of the pump.

Q ~ko~ 2 2 (4cos20 —1)

x4i
i i i

—8
l fl l' C]ko] \ 0 ]ko/cosO

& I Kl)

III. DISPERSION RELATION

- —1
4cos20

+]k,~2~K]2r4~.

To find the growth regimes and rates of the modula-
tional instability described by the system (9) and (11),
we shall follow standard procedure [21] and present only
the essential steps and formulas. We assume that unper-
turbed (monochromatic pump) wave has an amplitude
given by Ee given by E;I, = Eob(k —ko). In the lowest
approximation, we have the homogeneous and station-
ary solution bno; for a'ny ]Eo]2. By renormalizing the
background density noi —+ no; + bnoi we can remove the
static density perturbation bno;. Thus, by combining (9)
and (11) in the Fourier space, we obtain the dispersion
relation

[ko (K + ko)] [ko (K —ko)]
ko'IK + k, I's~+i. ko'IK —ko I's~-, ,

~ ~

(12)

where the linear dielectric permittivity is given by

VVe shall obtain in the following section solutions of the
dispersion relations (15) and (16).

IV. GRO% TH RATES

A. Short-wavelength ([K] )& ]ko]) modulations

When the wavelength of the pump ion Langmuir wave
is long (~K~ &) ~ko]), the dispersion equation takes the
form (15). We let ~cosO] ~sinO] 1, so that interac-
tions with the largest growth rates are represented. In-
teractions corresponding to K

~] ko and K J ko are not
so important since for these the growth rates are much
smaller.

We also assume

1 iK)
]kp/2r~2, ]kpf

'

(0 + (uo)' iK + kei'r'
so that (15) reduces to

(13)

327rno;T; (02 —]K]zv2„)
' (14)

where ~o —~~; 1 —(1/2]k0~2rD2, ) and ko, K are the
wave vectors of the ion Langmuir waves and the density
modulation, respectively. The parameter Z is defined by

1 = 2 cosOsin OZ~EO~,

which corresponds to the case with the maximum growth
rate for ~K] &) ]ko]. Here, only supersonic (p )& ]K[@,g)
development of the modulational instability is possible.
The growth rate of the instability is

Taking into account the linear dielectric permittivity
(13),we shall obtain the dispersion relations for the limits
]K] &) ]ko] and [K] « ]ks]. For ]K] )) fko], Eq. (12)
takes the form

where W = ~EO~ /16mno;T;. The growth rate can have
the maximum value given by
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1 1 1

(20)

where a = m;Zg/mg. Equation (20) follows from the
conditions (17), p )) lKlv, ~, as well as the inequality

lKlr~; && 1. The maximum growth rate can be realized
if which can occur if

&upi 1

2lkolrv.
(27)

( 1 T, (aT; ) ' lKl'
T lkplr~.

I T
'

I

Ik I'
J

Td mi W aT;
24 (&

41kol'IKI'r4D. T.

(21)

We consider next the case 1 « —lkpl r~ W &&
4 ' kp2

1

lkolzrz (dpi

1 lKl Finally, for the case of very slow modulation satisfying

The corresponding dispersion relation is

1

lkol r' (30)

cos 02. 2'-
n 2lk, l, 'l"l

the dispersion equation (15) reduces to
(23)

1 = —2lkol rD, cos OElEol (31)

In this case both supersonic (p ) lKlv, s) and subsonic

(p & lKlv, g) growths are possible. For the fast growth
limit the instability develops with the rate

The corresponding growth rate of the modulational in-

stability is

(lKl' aT;
lkpl 4T,

for which the pump amplitude must satisfy

(24)
1

p = lKlv, g (lkol rD, cos OW —1) ',

which occurs for

1&lkol r&,w«min —,
4 2 s

' . (33)2 2

and

T. W
4T; lkpl'lKl'r4~, a

In the subsonic limit we find

(26)

Thus we see that modulational instability of the ion
Langmuir waves with wavelengths larger than those of
the pump wave can appear in a dusty plasma. Since
these waves can interact with the thermal ions, energy
transfer to the latter becomes possible. It follows that in
a dusty plasma the bulk plasma ions can be heated by
the ion Langmuir waves. The corresponding rate of ion
heating depends on the parameters of the plasma as well
as the pump wave. For example, if

(lkolrD. aW)' & min lkol'rL.
I

'W
I (lkolrD )'

I&T.) ) iT. )
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then ion Langmuir wave modulations with IKIrD; 1

(i.e., those which are resonant with the thermal ions)
grow at the rate (19). The rate of bulk ions heating can
be estimated to be

For supersonic (p &) IKIv, g) growth, the instability de-
velops with the rate

1

T. dt ~
[ 4 Tv/2T1/2 )g~o' '

(35) which occurs for

(42)

We emphasize that the possibility of heating the
bulk plasma ions is the result of nonlinear coupling be-
tween finite-amplitude ion Langmuir waves and the dust-
acoustic perturbations. Modulational processes in which
the low-&equency perturbations are associated with the
ordinary ion-sound perturbations do not result in such
ion heating because the limit IKI » IkpI does not occur.

and

IkpIsr~, nT, W IkpI

4T, IKIs

T,R'

T; IkpI4r4~. n
'

(43)

(44)

B. Long-wavelength modulations
Here subsonic (p « IKIv, q) growth is possible only for
coszO & 1/4. The rate of the instability is

We now consider the case IKI « IkpI, for which the
dispersion relation (22) is valid. Again we let IcosOI
IsinOI 1 and investigate three regimes of 0/~~, . For
the regime which occurs for

(dgn IK I

2IkGIPD IkoI

0 1 IkpI

IkpIzr~z. IKI
'

the dispersion relation (22) reduces to

(36)

and

m; Td W' o/T, -—&C 4 4 &(
m~ T. 4IkoI'r4~.

(46)

1 = 2 cosOsin OZIEpI .
0

(37)
1« -IkpI r~.W &&

z z IkoI'
4

(47)

Here, there exist unstable solutions only in the supersonic

(p ) IKIv, &) regime. The growth rate of the instability
1S

Finally, we consider the regime

0 1 IKI
co~; IkpIzrz~. IkoI

' (48)

(IKI v &~z'W)'
0

(38)
Here the dispersion relation takes the form

which is much smaller than that of (19) because of the
condition IKI « IkpI here. The above instability occurs
when

1 = —2IkpI r~, @ZIEoI, (49)

where 4 = (4coszO —1)/4coszO. The instability can
develop only for coszO ) 1/4. The growth rate is

1 T, IkpI' (nT;)t '
O' P& max

(39)
Next, for the regime

which occurs for

1 IKI

we find the dispersion equation

IkoI
(4O)

1 & IkpI r~.@W && min —, , , (51)2 2

Since @ & 1, the necessary condition for the instability
1S

~~; (1 —4cos 0) IKIz
nz 2Il,oI,„, Il which is coincident with the left inequality of (33).
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V. ION LANGMUIR SOLITONS

(2f'~p oed )
2

(2v, g)
bn;l
np; )

and

1 1

u, g (2u, s) (16vrnp, md)
(52)

Equations (9) and (ll) can be written as

a2 (.a~
8(2 87. (53)

8 v 8'v 8 ]s]'
/~2 g(2 oj$2

(54)

We seek localized solutions moving with a constant
speed u, such that e' = s(v, (;() and v = v((), where

( = (—ur. In this case, one obtains, from (53) and (54),

(g
i —+ = e')

Bp I
87 1 —u )

(55)

which is well known for xnedia with inverse dispersion
and has been investigated earlier [29—31].

Assuming s = g(()exp(iS), where 8 S = —Op —ku
and B,S = k((), and separating the real and imaginary
parts of (55), one finds

Here we consider one-dimensional localized solutions of
the set (9) and (ll). All vectors are assumed to be paral-
lel to the x axis and the following dimensionless variables
are defined:

1
&v ~u)„;) '
E 2"12. )

can be wntten as

d2$
M =u —QkV,

(57)

—@ I
Oo+

d

and

(d@ 't u2 d2@

&.') «&r O' «2
@kO. (,

u I, 3/2)

, I. (58)
y2 ( q2 $

Op ( 2 p)
where we have set D = 0 and defined g, = Oo(u —1)/3
Finite solutions of (58) exist only when Op ) 0 and u ) 1
(so that $2 ) 0). In this case the localized solution
contains a singular point at g = Q„where the derivatives
are discontinuous.

We can visualize the solution as follows. For Q &( Q„
one can omit the second term in (58) and obtain

@ = 0' exp( —](I/O. )

where (, = Op, and (59) is valid for ]g/g, —1] )
[u(u' —1)/~2Oo"]'

On the other hand, near the soliton apex (@ —g, )
one can neglect the first derivative in (58) if k kp ——

C//Op, where C is a constant, and obtain

exp( —[&]/&„)

where („= (/Op/u) ~ (~2/2 + 2C/3) 4. Prom the
equation for k in (57) one finds C = ~2. Compar-
ing (59) and (60) and taking into account condition
u « Op, we see that g„( (, . That is, there are3/2

two characteristic widths in the solution. They are
given by („[u(u —1) ~ /Q, ] ~ near the apex and

Op ——Q, [3/(u2 —1)]~ at the edges, so that the
solution varies more rapidly near the apex. A typical
localized solution of (58) is presented in Fig. 1.

I
+M =2y ~+D

dM kd
d( 4' dC

(56)

d2$
u = QkV+M,

where D is a constant, 00 is the nonlinear &equency shift,
and we have defined V = ku + Op + @ /(1 —u ) and
B = ku+Op/2+3@ /4(1 —u ). The necessary asymptotic
behavior (vP ~ 0 when 1,

' ~ +oo) for localized solutions

can be realized only if u &( Op . In that case, Eq. (56)3/2

0 I I

-10 —8 -6

FIG. 1. Profile of the solitary ion Langmuir wave envelope

@(()for Ap = 10 and u = 1.41.
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It can be shown that near the apex, the soliton phase

J'o k(t,")d(' remains finite. In fact, there are u/Oo~ (&&

1) phase oscillations, and in the edge regions the number

of phase oscillations is (u/Oo ) ~ .
A physically important feature of the solution of (55) is

that harmonics with large [K[ are present. These short-
wavelength harmonics interact strongly with the thermal
ions and are thus heavily damped. Since all the harmon-
ics in the soliton are correlated in amplitude and phase,
the entire soliton will also be damped, leading to the
heating of the bulk plasma ions.

VI. SUMMARY

To summarize, we have investigated the nonlinear in-
teraction between 6nite amplitude short-wavelength ion-
acoustic, or the ion Langmuir, waves and dust-acoustic
perturbations in a uniform unmagnetized impurity-
containing plasma. We obtained a pair of nonlinear equa-
tions governing the self-consistent interaction. The equa-
tions are then used to study the development of the mod-
ulational instability as well as the evolution of the non-
linear ion Langmuir waves. The modulational instability
can develop at all angles between the wave vectors of
the pump wave and the low-&equency modulations. A
feature of the modulational instability of ion Langmuir
waves arising &om interaction with dust-acoustic pertur-
bations is the possibility of unstable perturbation wave-
lengths larger than those of the pump wave. This feature
distinguishes the present modulational instability &om
others involving ion-acoustic (or the short-wavelength ion
Langmuir) waves in that here resonant interaction with
thermal ions can occur. Thus the bulk of the plasma ions

can be heated.
We have also studied the existence and properties of

ion Langmuir solitons, which could be formed as a result
of the interaction. The equation governing the nonlin-
ear evolution of the modulational instability is typical
for media with inverse, or negative, dispersion. Simi-
lar spiky envelope solitons were found for other media
with inverse dispersion [31]. A unique feature of the ion
Langmuir solitons is the presence in its Fourier spectrum
of harmonics with large wave vectors. These harmonics
can strongly interact with the thermal ions and result
in the damping of the solitons and the heating of the
thermal ions in a dusty plasma. On the other hand, for
applications in. dusty plasmas, one may have to take into
account the dust charging process using an appropriate
model [8,16,17] for the latter.

Thus, for plasmas containing heavy impurity or dust
particles, the modulational instability of Gnite-amplitude
short-wavelength ion-acoustic waves can lead to the heat-
ing of the bulk plasma ions at both the initial and anal
stages of its evolutions. This behavior can be useful in ex-
plaining ion-heating phenomena in space and other plas-
mas, as well as in the development of methods for ion
heating in fusion-related plasmas.
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