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Two-dimensional nonuniformly heated magnetized plasma transport in a conducting vessel
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The model of a cylindrical, axially symmetric discharge with conducting walls in a uniform axial mag-

netic Seld is considered. An analytic method which can be used for a wide range of conditions is sug-

gested. The results agree with the full-scale numerical modeling [IEEE Trans. Plasma Sci. PS-19, 204

(1991)]. It is shown that a possibility exists to control the discharge parameters by applying a potential

difference to the sectioned vessel walls.

PACS number(s): 52.25.Fi

I. INTRODUCTION

The problem of a magnetized nonisothermal plasma
transport in a conducting vessel is of considerable interest
in connection with the numerous applications of rf
discharges in the magnetic fields in plasma surface pro-
cessing. The complete problem of gas discharge model-
ing consists of (a) description of rf wave propagation and
absorption in inhomogeneous plasma, which is a source
an energy input into discharge; (b) analysis of the forma
tion of an electron distribution in inhomogeneous RF and
stationary fields, which is responsible for the ionization
processes; and (c) analysis of charged particle transport
and their loss from the plasma volume.

Each of these parts is rather complicated. Full-scale
numerical modeling of the transport problem for several
simple plasma configurations was performed in [1]. In
that paper a given energy input profile and Maxwellian
electron distribution function were postulated. The ion
motion was described by the Monte Carlo simulation.
The discharge volume was not separated into the
quasineutral plasma and the space-charge sheath, and the
Poisson equation was solved over the whole volume. The
resulting calculations turned out to be very labor con-
suming and could be performed only by a supercomputer.
This implies that self-consistent modeling of the whole
discharge with such accuracy by means of modern corn-
puter techniques is an extremely difBcult task. It is
worthwhile to mention that such numerical modeling has
no predictive power and only an analytic solution enables
one to deduce the dependencies of the plasma properties
on external parameters such as current, pressure, magnet-
ic field intensity, discharge geometry, properties of the
vessel walls, etc.

The analytic approach to such problems based on the

simple fluid equations in the quasineutral approximation
was developed in [2—4] for Simon s short-circuiting prob-
lem [5] in the isothermal magnetized plasma. Several

more complicated problems with nonuniform electron
temperature profiles were also treated in [6] numerically.
We shall demonstrate here that the analytic approach can
be easily generalized for the nonisothermal plasma and
nonequipotential boundary. If an ion free path A,; is

small compared to the discharge length L, the fluid ap-

proximation is applicable. It is shown that all the princi-
pal results of [1]are easily reproduced and their physical
meaning can be clarified. The account of the finite value
of A, , /L is performed in the framework of a kinetic
description of the ion motion. This considerably im-

proves the quantitative agreement of the analytic results
with the calculations [1]. The applying of the potential
difference to various parts of the vessel walls enables one
to control the profiles of plasma parameters and particles
and energy fluxes to the surface.

bei &&bii y (la)

where b;~, b, j are the ion and electron mobilities across
the magnetic field. This inequality is equivalent to

ceci ++vea Via

where co„„arecyclotron frequencies and v„„.are trans-
port collision frequencies of charged with neutral parti-
cles. The electrons are electrostatically trapped in the
longitudinal direction when

(lb)

where D,
~~

and D;~ are electron and ion diffusion
coeKcients along and across the magnetic field [4]. Lon-
gitudinal electron thermal conductivity and diffusion
coeScients are large compared to the ion ones, so the
electron temperature should be independent of z. Since

II. PLASMA TRANSPORT
FOR THE FIXED T, (r) PROFILE

We consider here the nonisothermal plasma with the
given T, (r) profile, in a conducting cylindrical vessel of
length L and radius R immersed in a stationary uniform
magnetic field B=B, parallel to the cylinder axis. We re-

strict ourselves to the axially symmetric problem with the
collision-dominated ion motion. Only the case of mono-
tonic temperature profile with the maximal value of T, (r)
at r =0 [1] and Maxwellian electron distribution are con-
sidered. The electron mobility across z is strongly
suppressed by the magnetic field. Such approximation is
valid if

1063-651X/94/50(4)/3033(8)/$06. 00 50 3033 1994 The American Physical Society



3034 L. L. BEILINSON, V. A. ROZHANSKY, AND L. D. TSENDIN 50

the electrons are trapped up along 8, they should have
the Maxwell-Boltzmann distribution (this is also valid for
the collisionless case}:

T, (r)
p(r, z)= ln[n(r, z)/n (r)]+y {r),

e
(2) + D i +b in +v;(T, (r))n =0 . (9)

where n, y are the maximal values of the plasma den-
sity and potential at a given radius. For the collisionless
sheath along 8 the longitudinal electron Aux at the end
wall I,II, is determined by the potential difference in the
sheath hp:

I', i, (r)=1/(2m)' n&[T, (r)/m, ]' exp[ eely—/T, (r)],
(3)

where nb is the plasma density at the sheath edge. For
further details, see [4], where formulas for the collision-
dominated sheath and for the non-Maxwellian electrons
are also derived. Equation (2) is valid for n +nb By.
combining Eqs. (2) and (3), we obtain the potential profile
in a plasma with respect to the conducting equipotential
end walls:

b, , B(aT, )
r

r Br e Br

b;((T, ( ) a&„

Bz

(10)

From Eq. (9}the physical reason for the distinction be-
tween the cases of uniform and nonuniform T, (r) profiles
is clearly seen. If T, (r }=const, the radial electric field is
determined, according to Eqs. (7) and (8), only by the
slow logarithmic dependence of a(r). The radial ion
transport [the first term in the left-hand side of (9)] is
connected with this small electric field and with the radi-
al ion diffusion. In the opposite case, as the ion tempera-
ture T, ((T, and the potential equation (7) is determined
by T„ it is possible to neglect the ion diffusion terms in
Eq. (9). Substituting Eq. (7) into Eq. (9), we have

T, (r) n (r,z)[T,(r)/m, ]'~
y(r, z) = ln

(2m. )'"I,
~,, (r)

(4)

Neglecting the weak logarithmic dependence a(r, z)=a,
it is possible to seek the solution in the form

n =n (L/2, 0)fi(z)f2(r) .

21,
~~,

(r) =v;{T, (r) )f n (r, z)dz .
0

(5)

For the Maxwellian electrons in argon, the approximate
expression for v, (r) is given by.

v; (r) =N, o;o[8T,(r) /em, ]' exp[ —/eT, (r) ], (6)

As we have neglected the transverse electron transport,
the flux I,i, (r) is determined by the ionization frequency
v;(T, (r)):

Employing Eq. (10), one obtains
r

rf2
e r ar ' ar

T,f2
Bz

af,
v;(T, )

T~ cx
(12)

The second term in the left-hand side is the only z-
dependent one. So it is equal to the constant C, . The
equations for f, ,f2 are given by

p(r, z) =Ele+a(r, z)T, (r)le,
where

(7)

where N, is the density of the neutral particles and 0.;0
and e are the adjustment constants (e = 16.3 eV,
o,0=3.1X10 's cm } [1]. Substituting Eq. (6) into Eq.
(4), we obtain

b,
„,

d'f,
=C,af, ,

Bz

&I(1 a aT
rf2

e r Br 2 Br
(T,fz)=—

(13)

v, (T, }
1

—C
Tq cx

(14)

a(r, z) =ln ~ n (r, z) (2LN, o;0)I n(r, z)dz (8)
From the boundary condition f, (z =O,L)=0, it follows
that

1/2
Equations (7) and (8) express the potential in the plas-

ma in terms of the density and T, (r) profiles and enable
one to obtain an analytic solution of the problem. If the
density profile can be factorized as n =f, (z)f2(r}, the
value of a is r independent. For example, if
f, (z)= isn(n z/L), we have

n. sin(n. z/L)
4I.W, Cr;0

f, =sin(vrz/L), C, =— ~(i

ae

Substituting Eq. (15) into Eq. (14), one obtains

= [ —v;( T, )+r, (~']f2,

where

(15)

The value of a can be both negative or positive. We re-
strict ourselves to the case of positive o;. %ith the poten-
tial given by Eq. (7), one can solve the ion transport equa-
tion. In the stationary case it has the form

2 2
Te

b — =D
& II e & II

is the inverse time of the longitudinal ambipolar
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f p(r'}+j (r')
bqa BT,

e Br'

where P(r}=v;(T, )
—r, ~~' and

abj 1 g BT,j (r)= — r
e r Br Br

(17)

The a value can be replaced approximately by

difFusion. The solution of Eq. (16) for an arbitrary T, (r)
profile is given by

L LP(r)= f pn dz= f v;n(a+3/2T, }dz
0 0

z+4f', i, T, , (20)

where p(r, z) is the power input per one electron .Here
the first term in the right-hand side represents the energy
losses for the ionization and heating; the second term is
the energy which is transferred from the electrons to the
ions by means of the longitudinal electric field, Eq. (7};
and the last term is the heat flux to the end wall. Em-
ploying Eq. (7), the second term can be rewritten in the
form

a(0) =ln
4LN, u;o

(18) —feI',
~~

dz=e f y
' dz= f (s+aT, )

ar
II dz

Plasma density is finite in the vessel center, where

(BT,/Br)~„o=0. SoP(0)+j(0)=0. As

abi dT,j (0)=2
e r=0

we obtain the equation for the central electron tempera-
ture T,

v(T, )— 2+
m;v;, L

2ab(i r} T~

dr r=O
=0, (19}

IIL ENERGY BALANCE

The profile of T, (r) is determined by the electron ener-

gy balance equation averaged over z for the given profile
of power input P (r):

where the ionization rate is given by Eq. (6).
Equation (19) describes the one-dimensional balance

between generation and longitudinal diffusion of the elec-
trons. For the arbitrary T, (r} profile, the value of T, is

larger than for T, =const, if a) 0 (such a situation was

considered in [1]}, because (8 T, /Br z)
~ „o&0. This

means that the ion generation at r =0 is now compensat-
ed by their diffusion along z as well as by the radial out-
ward convection. (Note that for a vessel long enough, a
is negative. A more complicated situation such as this is

beyond our consideration now. }
It should be particularly emphasized that all the main

results presented in this section follow from Eqs. (2), (3),
and (6), which are based on the assumption of the
Maxwellian electron distribution function. But the elec-
tron losses on the vessel walls and inelastic electron-
neutral collisions (e.g., excitation and ionization} result in
considerable depletion of the electron distribution tail
and reduce the values of I,II, and v; with respect to Eqs.
(3) and (6). These expressions are valid only in relatively
highly ionized plasma, when the electron-electron col-
lisions are frequent enough to restore the Maxwellian dis-
tribution. In the opposite case, the whole problem be-
comes of essentially kinetic nature, and the radial poten-
tial profile is determined by the form of the electron dis-

tribution function tail [7].

p(r)=v;[2s+(a+ —,')T, ] . (22)

The energy input profile is determined by the form of the
electron distribution function tail. Taking into account
the expression for v;, Eq. (6), one can obtain T,"(0}from
Eq. (22) as a function ofp"(0):

p"(0) T,"(0)

p(0) T,
1+ +

em

a+-',

(2e/T, +a+ —', )

(23)

Finally, substituting Eq. (23) into Eq. (18), we have the
equation for T,

exp( /eT, )T,'
2V 2m, v,,N, o,oL

,&2 5&2 b; 2aL p (0)
m, ~ +1

(24)

where

1 a+-,'
A= +—+

T,~ 2 (2s/T, +a+ —', )

The maximal temperature in the vessel T, is given by

Eq. (24}, the temperature profile for the arbitrary power
deposition is determined by Eq. (22), and the density
profile is described by Eqs. (11), (15), and (17). The po-
tential profile is given by Eqs. (7) and (8}. These expres-
sions are valid for the plasma parameters a&hen the ion
mean free path is small compared to the characteristic
system length. For example, for the parameters set

p(r)=const, N, =1.2X10' cm, L =30 cm,

o;o=3.1 X 10 ' cm, v;, =7.0X 10

@=16.3 eV,

=2( +-T, )l

Here we have replaced a be a because of its slow loga-
rithmic variation. From Eqs. (5), (20), and (21), one ob-
tains finally
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we obtain from Eq. (24) the value T, =4.8 eV, while the
simulation [1]gives T, =3.65 eV. The difference cannot
be attributed to the accuracy of the simulation. It is
caused by the fact that under conditions [1],the ion mean
free path

df; eE, df,
v, + = —v,j;+(v, +v,„)n (r)

BZ 7'. ()U~

Xexp[ e—y(z)/T, ]5(v, ) .

Introducing a new variable instead of v, :

A, ; =(2T, /m;)' /v;, =6 cm (25) E =m, u, /2+ ey(z), (27)

is of the same order as L/2=15 cm. In order to develop
a more exact approximation, we should use the kinetic
equation for ions.

IV. KINETIC METHOD

we obtain Eq. (26) in the form
1/2 @

v,„f—, +(v;+v,„)n(r,z)
az

2
[s—ey(z) ]

m,

X[E—eq)(z)]' Qm, /2 .

Transforming the 5 function, we obtain the equation for

We start with the simplest case T, (r)=const. The
Maxwell-Boltzmann equation (2) remains valid, as it is
based on the distribution of the trapped electrons. In the
calculations [1]charge-exchange collisions dominate, and
the frequencies of elastic and charge exchange collisions
are equal to 30 and 40 kHz, respectively. To simplify cal-
culations, we consider all collisions as charge-exchange
ones and take charge-exchange frequency v,x=70 kHz.
The ions are magnetized, and the radial electric field is
absent. Therefore, the ion motion can be described by a
one-dimensional equation, and f; depends on v„, r
parametrically. So we obtain the ion kinetic equation

af,
az

Vex
1/2

2
[e—ep(z) jPl;

+m;(v;+ v,„)n (r)exp
ey(z(e) )

em

X 5[z —z(e ) ] /eE [z(e)],
where ey(z(e) ) =E. The solution of Eq. (28) is

n (r)m;(v;+v, „)exp
eg(z(s))

em

df, eE, df, .
u, + = —v,j';+(v, +v,„)n(r,z)5(u, ) .

Bz m; BU,

(26)

f, (E,z)=
eE[z(s)]

Xexp
z(c)

VexdZ
' 1/2

2
[E—eq(z) IPl;

(29)

The last term corresponds to the generation of particles
in point z with zero velocity. Substituting Eq. (7) in Eq.
(26), we have

With this ion distribution function, we can express the
ion Aux along B as a function of z:

I '~[(r z)= f f (v„r,z)u, dv,
0

=
—,
' f f,d(v, )=f f,d [e—ey(z(e))]

o
' '

o
'

m,

Vexdzeg(z')=n (r)f (v, +v,„)exp — exp

[tp(z') —q)(z" ) ]

- 1/2 dZ (30)

The equivalent expression of I,.~~(r, z) can be obtained by
integrating of Eq. (26) over u, :

I,.~~(r, )z= (vT, )n (r) exp — dz' .ey(z')
0 em

(31)

Expression (31) means that the ion fiux at z is formed by
the particles that are generated between 0 and z. By

Z=[v,„/(2T, /m;)'~ ]z, g(Z)= eq)(z)
(32)

we obtain the equation for q:

equating Eqs. (30) and (31), we obtain an integral equa-
tion for the potential profile y(z). Introducing a new
variable and a new function instead of z, y:
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8Z

(33)

Introducing

8Z(v, +v,„) e exp

—g(z')gZ ~

0

2.0—

p=(v, +v,„)/v, ,

we have

e
—q(z')UZI

0
g( )

0

dz"

(34) 1.0—

0.0
0.0

»
i

I »

0.5 1 0 1.5
J 1

2.0
z

(35)

We can obtain i)(Z} for each value p ) 1 by solving Eq.
(35) by means of the method stated below. Several curves

7l(Z) corresponding to different values of p are shown in

Fig. 1. All the curves contain the critical point Z„, so
that

FIG. 1. Solutions of Eq. (35) at different values of p. Curve 1

corresponds to p=2.0, curve 2 to p=3.0, curve 3 to @=4.0,
curve 4 to @=5.0, curve 5 to @=6.5, curve 6 to @=7.5, curve 7
to @=8.5, curve 8 to p=9.5, and g and Z are in dimensionless
units.

V. GENERALIZATION OF THE KINETIC
METHOD FOR THE CASE OF ARBITRARY

TEMPERATURE PROFILE

z=zcr

This point corresponds to the plasma-sheath boundary.
As the sheath is thin compared to L, Z„(p) can be
identified with the wall coordinate

Z„=L/2[v, „/(2T, /m;)' ] .

I;l(r, z) = [v;( T, (r) )+J(r) ]n (r)

X exp —ep z' Te r z',
0

where

(36)

Since the ion Larmor radius is small compared to R,
the radial ion transport is also small with respect to the
longitudinal one. Accordingly, we shall describe it in the
fiuid approximation [Eq. (10)]:

Thus we have a connection between p, T, , and L.
Dependence of Z„on p is shown in Fig. 2. Using simul-

taneously Fig. 2, Eq. (34), and Eq. (32), we can obtain T,
for each value of L. Combining Fig. 2 with Eqs. (32) and
(34), we obtain T, =3.9 eV, while simulation [1] gives
T =3.65 eV. The agreement is reasonable. Theem

difFerence can be attributed to the accuracy of the simula-
tion.

abi 1 g dT
J(r)= — r

e r Br r}r

2abi d T,
J(0)=

Bf =0

Equating Eqs. (30) and (36) at r =0, we obtain an integral
equation for the potential y(z, 0):

dz'[ (v~T) +(J)0]f e "' 'dZ'=[v;(T, )+v,„]f e "' 'exp, dZ
0

(37)

The solution of Eq. (37) give us the dependence T, on L and T,"(0). We can rewrite Eq. &37& in the form

z- (z~) z EfZ
e "i 'dz'=p(0) e " exp —

i&&
dZ

o z [q(z")—r)(Z')]
(38)

where

p( )0= [ (vT, )+v,„]/[v;(T, )+J(0}]. (39)

We seek g(Z) as a set of parabolic functions rlk(Z)= Akz +Bkz+Ck, where ZD[zk „k],2 LZ Z g Z Z A The
coefficients Ak, Bk, and Ck are to be selected from the conditions of continuity of r}(z),g'(Z) at

rlk(zk i) =v)k i(Zk —i)» 9k(zk i) rh i(Zk, ) . —

Instead of Eq. (38},we have

(40)
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FIG. 2. Dependence of p on Z„ in dimensionless units.
FIG. 5. The potential profile along the axis at r =0 as a func-

tion of longitudinal position.
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FIG. 3. The radial electron temperature profile at the axial

midplane (z =15 cm). The solid and dashed lines in Figs. 3-7
represent theoretical results obtained in this paper and numeri-

cal results [1],respectively.
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FIG. 7. The normalized plasma density as a function of axial
position at r =0.
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Zk Zk Zk dZ"
e "' 'dZ'= p(0) e "' 'exp ~—,dZ' .

0 0 [q(Z")—q(Z )]'" (41)

At k =0 we have 80=CO=0, and Ao can be easily found from Eq. (41). All the subsequent values Ak, Bk, and Ck are
determined by Eqs. (40) and (41). Solutions of Eq. (38) are shown in Fig. 1. Using Fig. 2 and Eqs. (23), (32), and (39), we
can obtain T, for each value Z„ for an arbitrary profile T,(r). Combining T, obtained from Eqs. (23) and (39) for a
Bessel-like profile of energy input [1],we obtain T, (r) profile (Fig. 3). For an arbitrary radius r, instead of Eq. (39), we
have at z =L/2,

p(r) = [v;( T, (r) )+v,„]

r

ab;j 1 g dT,
v;( T, (r) )+ — rn

e r Br dr
(42)

From Eq. (42) we can obtain an expression for the density profile

v;(r)
n (r)=n (0)exp —f"

v; (r)+ v,„'" —J(r)p(r),
ab;~ BT,

e Br

(43)

The radial density profile is shown in Fig. 4. The axial and radial potential profiles obtained from Eq. ('7) are presented
in Figs. 5 and 6. The axial density profile can be obtained as exp[ —g(z) ] (see Fig. 7). The agreement with the results of
[1]is quite satisfactory.

z:. B

z', 8

:0

D

FIG. 8. Side view' of the simulation domain: cylinder with length L and radius R. The uniform magnetic field is applied in the
positive z direction. (a) The parts AD, BC of the vessel perpendicular to 8 are sectioned into concentric circular strips. The strips
AD are under Boating potential, and to the strips BC a monotonic potential profile @(r) is applied. (b) The potential difference 40 is
applied between the perpendicular and parallel (with respect to B) walls AB and BC.
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VI. CONTROL OF THK PLASMA PARAMETERS

A simple but very effective method of controlling plasma parameters based on our analysis can be suggested.

(1) According to Eq. (7}, the plasma potential with respect to the end surfaces perpendicular to the magnetic field

[AD, BC in Fig. 8(a)) is determined by the electron temperature only. So by applying to the wall BC that is perpendicu-

lar to B a radial potential profile 4(r), as is shown in Fig. 8(a), we can control T, and the density profile. This can be

done by cutting the conducting walls BC and AD into thin insulated concentric strips. Equation (37) for the monotonic

profile @(r}takes the form

p(L, T, ) = [v;(T, }+v,„]1[v;(T, )+24"(0)b,i+J(0)] . (44)

The increase of ~4"(0)
~

leads to the increase of T,
(2) If the wall parallel to the magnetic field AB is

biased negatively with respect to the end wall SC, as is
shown in Fig. 8(b), the discharge remains unchanged, but
all the potential difference is applied to the space-charge
sheath adjacent to the side walls DC, AS. This enables
one to control the energy of ions bombarding these ~alls.

(3) The applying of positive potential difi'erence 4o
leads to a steep increase of the plasma density near the
side walls AS, CD without changing the central part of
the discharge.

VII. CONCLUSIONS

(1) An analytic model of the inhomogeneously heated
magnetized plasma diffusion with T, ))T, in a conduct-
ing vessel is proposed.

(2) It is demonstrated that the radial potential profile is
determined by the balance between the longitudinal elec-
tron escape to the vessel walls and ionization, and for the
Maxwellian electron distribution is proportional to the

electron temperature profile T,(r). In the general case
the potential profile depends crucially on the electron
kinetics.

(3) The plasma density profile is determined by the ion
motion along and across the magnetic field. The plasma
diffusion is accompanied by the current flow in the plas-
ma volume. This current is short circuited by the con-
ducting walls.

(4) The analytic results presented are in fair agreement
with the numerical modeling.

(5) The plasma parameter profiles and intensities and
the energy spectra of ion fluxes at the vessel surface are
crucially dependent on the potentia1 profile over the
boundary surface. By varying this profile, its possible to
control these important plasma characteristics.
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