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Transition from a Townsend discharge to a normal discharge via two-dimensional modehng
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The transition from a Townsend discharge to a normal discharge is investigated using a two-

dimensional numerical model and an approximate analysis. The numerical model is based on a fluid

description of electron and ion transport coupled with Poisson s equation, with the ionization source de-

pending on the local field strength or provided by a Monte Carlo simulation of the fast electrons. The
model is applied to an argon discharge, for a product of pressure and gap length in the 1—10 Torrcm
range. The proposed analytical model provides insight into the major physical phenomena observed ex-

perimentally in the subnormal glow region: the lateral constriction of the Townsend discharge with an

increase of the current, the negative differential resistance of the discharge with a hysteresis loop in the
current-voltage characteristics, and the appearance of current oscillations and their dependence on pa-
rameters of the external circuit. The field distortion is responsible for the constriction of the Townsend

discharge provided that either the sign of the second derivative of the ionization coefficient a with

respect to the electric field strength E is positive or the secondary emission coefficient y is an increasing
function of E. A simple analytical description of nonlocal ionization is also suggested. Subnormal oscil-
lations are treated as a two-dimensional phenomenon.

PACS number(s): 52.80.Hc, 51.50.+v, 52.40.Hf

I. INTRODUCTION

Interest in glow discharges has been growing recently
because of numerous applications (plasma processing)
and rapid progress in numerical modeling. A number of
old problems in gas discharge physics have been solved in
recent years, and others are still under investigation. One
such classical problem is the existence of di6'erent re-
gimes of glow discharges (subnormal, normal, and abnor-
mal) between parallel plane electrodes [1,2]. It was ex-
perimentally observed that in a subnormal glow regime,
between the Townsend discharge and the normal glow
discharge, rather complex two-dimensional nonstationary
discharge modes exist. Recently this regime has been
studied experimentally and theoretically in a number of
publications [3—8], but some of the physical properties of
this regime still need to be clarified. The goal of this pa-
per is to study the transition between a Townsend
discharge and a normal discharge by means of numerical
modeling and to develop a simplified description of these
phenomena.

%e present here results from two-dimensional numeri-
cal modeling of the subnormal glow regime based on the
method described in Ref. [9]. The set of fiuid equations
coupled to Poisson s equation is solved with the ioniza-
tion source either given in a local approximation by the
Townsend coe%cient 0.(E) or provided by a Monte Carlo
simulation of the fast electrons. The simulations are done
for argon in a cylindrical 8 =1.5 cm radius chamber,

with the product of pressure and gap length pL in the
range 1 —10 Torrcm. The secondary emission coeScient
y was set to 0.07 in the numerical calculations.

The suggested analytical approach provides insight
into the main physical phenomena in the subnormal re-
gime. The distortion of the field is shown to be responsi-
ble for the constriction of the Townsend discharge pro-
vided that the second derivative of a(E) with respect to
the electric field strength is positive. The role of a possi-
ble dependence of secondary emission coeScient y(E) on
the electric field strength is also analyzed and is shown to
be important in the region where the current vanishes.
Both these factors may cause the instability of Townsend
discharge. The analytical model predicts the negative
slope of the current-voltage characteristics in the region
of instability and show that current oscillations can ap-
pear and are accompanied by a considerable variation in

the radial shape of the discharge.
The structure of the paper is as follows. In Sec. II, the

major physical phenomena observed in the subnormal
glow region are sketched and a review of previous work is
given. Section III is devoted to numerical modeling. The
analytical approach is formulated in Sec. IV. The results
of the calculations are discussed in Sec. V and summa-
rized in Sec. VI. A simple model for nonlocal ionization
is suggested and the electron multiplication coeScient is
calculated in the Appendix.

II. TOWNSEND BREAKDOWN
AND GLOW DISCHARGE MODES

'Author to whom correspondence should be addressed.
Present address: Engineering Research Center for Plasma-
Aided Manufacturing, University of Wisconsin-Madison, 1410
Johnson Drive, Room 101,Madison, WI 53706-1608.

The breakdown of a plane-parallel discharge gap is

characterized by a Paschen curve which depicts the
dependence of the breakdown voltage U, on the product
of gas pressure p and gap length I. [10]. For given gas
and cathode material, the Pasc hen curve exhibits a
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FIG. 1. Diagrammatic representation of di8'erent types of
glow discharges between plane-parallel electrodes {from Klyar-
feld, Guseva, and Pokrovskaya-Soboleva [1]). 1, Townsend
discharge; 2, subnormal discharge; 3, normal discharge; 4, ab-
normal discharge.

minimum at (pL)=(pL)m;„, corresponding to optimal
conditions for the development of the electron avalanche.
The breakdown voltage ensures the primitive reproduc-
tion of electrons in the gap. If a single electron emitted
by the cathode produces M —1 positive ions (M being the
electron multiplication), which, hitting the cathode, li-
berate y electrons per ion, then one primary electron is
replaced with one secondary electron: the electron repro-
duction coeScient q=y(M —1) is equal to unity g=1.
The onset of breakdown needs at least a small overvol-
tage hU=U —U„ensuring expanded reproduction of
electrons g & 1. The current increases during breakdown
(when U) U, ) with the time scale gr; l(g 1), w—here r;
denotes the ion transit time from the anode to the
cathode. When the current J increases, an increasing
voltage JR, is dropped across the Ohmic resistance of the
circuit R, and the voltage across the electrodes decreases.
When U drops to U„the current ceases to grow and the
self-sustaining current becomes stationary. Which
discharge mode will be set up depends on the supplied
voltage and the value of R, .

The relation between current density j, pressure p,
maintaining voltage U, and gap length L is shown in Fig.
1 for a steady-state self-sustained discharge between two
plane-parallel electrodes of radius R much larger than L
[1]. There is no completely agreed upon nomenclature
for discharge forms. A Townsend discharge will be taken
to be one lacking appreciable space charge and character-
ized by a maintaining voltage which is independent of the
current. The discharge voltage is therefore equal to the
breakdown potential and the U versus pL curve in Fig. 1

represents a Paschen curve having a minimum at (pL);„.
The plateau 3 with the lowest maintaining voltage is the
region of normal discharges. The plateau gradually nar-
rows with reduction ofpL and at pL & (pL);„transforms

into an initially deep, then gradually disappearing,
depression which separates the regions of subnormal and
abnormal discharges. The subnormal region 2 occupying
the transition region between the Townsend and normal
discharges and characterized by a descending part of the
current-voltage characteristic is omitted from Klyarfeld,
Guseva, and Pokrovskaya-Soboleva's classification [1].

The Townsend discharge covers the whole area of the
cathode. The subnormal discharge at pL ) (pL);„con-
stricts radially as the current is increased [2]. A consid-
erable constriction of the radial distributions of the
current density and light emission over the area of the
cathode has been observed for very low currents [4].
After the switch to the normal discharge, which at first
has about the same transverse dimensions as its subnor-
mal precursor, the discharge reexpands radially with a
further increase in the current. The current increases due
to changes of the area through which the current Qows
while the current density remains unchanged. For
pL & (pL);„there is a direct transition from a subnormal
to an abnormal discharge. The transition occurs without
radial constriction; the subnormal and abnormal
discharges cover the whole area of the cathode apart
from any wall sheaths.

Different types of transition to the normal regime have
been observed experimentally depending on gas, the value
of pL, and parameters of the external circuit [5]. It has
been found that for values of the time constant ~=R,C
(the product of the resistance and the capacitance of the
circuit) less than a limiting value r~;, a static transition
can be obtained [5]. Small amplitude oscillations of
current observed at ~~~&; do not fundamentally alter
the transverse shape of the discharge and cease with fur-
ther current rise before an essentially lateral constriction
occurs. A static discharge that arises after the oscilla-
tions cease goes over to a normal discharge with a further
increase of the current. The increase of ~ leads to the ex-
tension of the region of instability and to the appearance
of relaxation oscillations accompanied by lateral constric-
tion of the discharge in the oscillation region. Relaxation
oscillations of large amplitude cease only when a normal
cathode spot is formed [4]. On the left of the Paschen's
minimum, the value of v&; increases sharply with a
reduction of pL. On the right branch, the region of sta-
bility of the Townsend discharge shifts toward lower
currents with increasing pL. The reverse transition from
the normal discharge to the Townsend one is accom-
panied by a hysteresis loop [3,4,7,8].

No systematic experimental investigation of the radial
shape of the discharge in the subnormal glow regime has
been published. Strong constriction of the light emission
has been reported [2] for subnormal discharges in air for
large enough pL values of about 25 Torr cm. The lateral
constriction of the current density and light emission has
been recorded [6] for discharges operating near Paschen's
minimum. A sharp constriction of the light emission has
been observed for neon discharges on the right branch of
the Paschen curve for pressure in the 50—200 Torr range
and gap length between 0.1 and 0.7 cm [7]. Subnormal
oscillations have been investigated in a number of works
(see the references cited in [6)) including a detailed study
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Bn,,
+div(n, p, E) D, hn, =—I, (2)

b$=4ne(n, n; ), E= ——VP,
with boundary conditions

pi
n, (z =0)=y n;(z =0), n;(z =L)=n, (z =L)=0,

Pe
c}

n, (r =R)=0, (r =R)= —4mo,
Br

P(z =0)=0, (()(z =L)=U,
where n, and n, are the electron and ion densities, p; and

p, their mobilities, D, is the electron diffusion coeScient,
y the secondary emission coeScient, I. the gap length, R
the radius of the discharge tube, U the maintaining volt-
age, I the ionization rate, and 0. the surface charge densi-
ty of the dielectric wall. Use of Eqs. (1)—(4) implies that
the physical processes under study are characterized by

of the dependence of their properties on parameters of
the external circuit [5]. A theory of oscillations has been
proposed [4,6], based on small perturbations of the field
and neglecting the alterations in the radial shape of the
discharge. As a two-dimensional phenomenon they were
treated by Hollo and Nyiri [11].

III. NUMERICAL MODELING

In the modern modeling of low-pressure, direct current
glow discharges, a fluid approximation for the slow elec-
trons is often used as well as some type of kinetic simula-
tion of the fast electrons, which are far from equilibrium
with the electric field. The most advanced one-
dimensional models of direct current discharges have
been published in Refs. [12—14]. Two-dimensional nu-

merical models have also been developed [8,9,15,16].
Steady-state subnormal discharges have been calculated
by Schweigert [8] using a two-dimensional fluid model
with the local approximation for the ionization rate and

by Fiala, Pitchford, and Boeuf [9] with the ionization
source provided by a Monte Carlo simulation of the fast
electrons.

A. Basic equations

For numerical discharge modeling in the considered
range of parameters (Fig. 1), the set of fluid equations for
charged particle transport coupled with Poisson's equa-
tion for the electric field can be used [8,9]

dn;
+divn;p; E=I, (1)

at

U=U, —R,J, (5)

where U, is the voltage of the generator, Rc the resis-
tance of the external circuit, and J the discharge current.
The steady-state solutions of (1)—(4) were found by fol-
lowing the time evolution of the discharge. The current-
voltage characteristics of the transition region between
the Townsend and normal discharges were obtained by
changing the value of the resistance in (5).

B. Numerical results

Numerical modeling of the subnormal region of dc
glow discharges operating on the right branch of the
Paschen curve allows us to reproduce the major physical
phenomena observed in this region: (i) constriction of the
Townsend discharge with an increase in current, (ii) the
negative slope of the current-voltage characteristics in
the transition region, and (iii) formation of the normal
cathode spot and increase of its size with further current
rise. Using the Monte Carlo simulation of the fast elec-
trons to reflect the nonlocal nature of the. ionization in
the cathode region results in formation of a plasma densi-

ty maximum and the occurrence of the axial field rever-
sals in the plasma region of the normal discharge. Oscil-
lations do not appear in the numerical modeling because

the time scale corresponding to the ion transit time and
ionization frequency [10]. The calculations were done us-

ing both the local approximation for the ionization rate
I=v, an„where a(E) is the Townsend coeScient, and
the ionization rate I provided by a Monte Carlo simula-
tion of the fast electrons. The electron mobility and
diffusion coeScient are assumed to be field independent
and their ratio D, lp, corresponds to the temperature of
slow electrons T, =D, /p, = 1 eV. The diffusion of ions is
neglected provided that the electron temperature exceeds
greatly the ion temperature. The electron current to the
cathode is mobility dominated, but to the anode and to
the walls it is purely due to electron diffusion. Ion flux
from the anode is absent. The electron emission flux
from the cathode is proportional to the ion flux.

Gas heating is neglected. Argon is used as a working
gas. The transport coeScients and data used in the
Monte Carlo simulation of the fast electrons as well as
the detailed description of the numerical method can be
found in Ref. [9]. The applicability of the fluid model for
the description of electron transport is discussed in Sec.
V.

The gap voltage U is calculated according to

TABLE I. Discharge parameters obtained from numerical modeling for pressure p =10 Torr:
current J, maintaining voltage U, resistance of the external circuit R„electricfield on the cathode and
on the anode E, and E„andmaximal values of ion and electron densities n~ and n, .

10
Torr

J
(I A)

0.07
1.50
1.69
2.31
2.87

U
(V)

325.6
324.8
323.8
319.2
314.0

R,
(kQ)

1000
50
45
35
30

(V/cm)

329
400
449
554
630

(V/cm)

324
277
245
175
139

n~
(10' cm ')

4.8x 10-'
1.23
2.61
7.3

11.8

(10' cm ')

1.5x10-'
6.3 x10-'
2.2x10-'

0.24
0.96
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FIG. 7. (a) Equipotential lines, (b) contours of constant ion-

ization, |,'c) electrons, and (d) ion density for a normal discharge
at 3 Torr. The ionization is provided by the Monte Carlo simu-

lation of the fast electrons. U=130 V and J =64 p,A. The
maximal values of ionization and the plasma density are 4 X 10"
cm s ' and 7X10 cm, respectively. The depth of the po-
tential well is of the order 0.1 V.

the field lines and the maximum of the ionization rate is
shifted toward the cathode (Fig. 4). With further in-
crease of the current the cathode sheath and plasma re-
gion are formed.

Figures 5-7 show the structure of subnormal and nor-
mal discharges at p =3 Torr with an ionization source
term provided by a Monte Carlo simulation of the fast
electrons. In Fig. 5 the two-dimensional distributions of
the potential, the charged particle densities, and the ion-
ization rate are plotted for conditions where the cathode
sheath and plasma region are just separated. It is seen
that, as above, for 10 Torr, the discharge is already sub-
stantially constricted in the lateral direction at these
currents. Figure 6 shows the corresponding axial distri-
butions. The length of the cathode sheath can be
identified as a position where the electron density is half
the ion density. The axial field does not change its sign
and reaches its mimmum at the point marked by a dot in
Fig. 5. The maximum of the ionization is located approx-
imately in the middle of the sheath. The length of the
negative glow is about equal to the sheath length.

With further increase of the current, field reversals
occur in the plasma and a potential well appears, which
captures the slowest electrons. Figure 7 presents the
two-dimensional structure of the normal discharge for a
spot with a small radius. The depth of the potential well
is about 0.1 eV. Small nonlocality of the ionization (the
negative glow length slightly exceeds the sheath length) is
suScient for the plasma density maximum to form near
the maximum of the potential. The structure of the plas-
ma region is discussed in more detail in Sec. V.

It appears from the numerical simulation that the basic
discharge characteristics in the subnormal glow region
can be correctly reproduced using a Quid model with a lo-
cal approach for ionization. For regimes close to normal,
the nonlocality of the ionization results in the formation
of the plasma density maximum and the appearance of
the axial field reversals in the plasma region. This max-
imum is not so pronounced as in abnormal discharges [9]
and thus in the subnormal glow region the ion Aux into
the sheath (which is proportional to the gradient of the

plasma density on the sheath boundary) is small com-
pared to the total ion Aux in the sheath. The results of
the numerical modeling help to justify the assumptions
made below in the formulation of the simplified model of
the discharge.

I&. ANALYTICAL APPROACH

Our analytical approach consists of some approxima-
tions which allow us to simplify the initial problem
(1)—(4). As the system considered has very different
space and time scales, an asymptotic description of the
structure formation on the slow space and time scales can
be formulated [17]. The time derivative in the electron
equation can be neglected and the number of spatial vari-
ables can be reduced if the characteristic dimension R of
the cross section of the discharge vessel is much greater
than the gap length I. or the cathode sheath length d.
The suggested analytical models describing the formation
of the cathode spot can be divided into two groups. The
models [8,18,19] account for the radial diffusion of elec-
trons, but neglect the radial component of the field. This
assumption restricts the range of applicability of these
models to the low-current subnormal regime. It was
shown [15,16] that the shape of the normal cathode spot
is determined by the two-dimensional distribution of the
potential while the electron diffusion does not play a de-
cisive role. The model of the spot including the transport
of ions in the radial field has been considered by Hollo
and Nyiri [11]with neglect of the radial diffusion of elec-
trons. The approach described below is an extension of
the models by Schweigert [8] and Hollo and Nyiri [11].

Two different cases are treated separately in Secs. IV A
and IVB. For low currents, the field distortion by the
space charge can be considered as a small perturbation.
The radial shape of the subnormal discharge is governed
in this case by diffusion of electrons and by the form of
a(E) and y(E). For larger currents, where the cathode
sheath is formed, the radial structure of the discharge is
determined by the ion transport in the radial electric
field. An equation for the evolution of the cathode sheath
in this case is obtained in Sec. IVB and is used for
analysis of steady-state and oscillation regimes.

A. Low-current subnormal discharge

In Sec. IV A 1 we ignore the field distortion to obtain
an exact solution of the set of Auid equations (1) and (2)
for a steady-state case. In Sec. IVA2 we consider the
distortion of the field as a small perturbation and derive
an equation governing the time evo1ution of the radial
distribution of the ion space charge. The steady-state
solutions of this equation are analyzed in Sec. IV A 3 and
the traveling wave solutions are investigated in Sec.
IV A4.

The distortion of the field can be considered as a small

perturbation while the ion space charge is small and the

gap length greatly exceeds the Poisson length
d =Eo/4~en, -. For this case, using the local approxima-
tion for the ionization rate, Eqs. (1) and (2) can be rewrit-
ten in the form

One l Q One
r

Bz r dr dr
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of Poisson's equation (3} with such a distribution of the
space charge is

U 4~en oL
g ——'z+ [ A cosh(kz)+B sinh(kz) —1]

L a U

(7)
at

"'
az

where v, and v,. are the electron and ion drift velocities
and A, r =T, /eEo is the diffusion length. The time deriva-

tive in (1) can be omitted provided that v, &)v, At
kz-a «1, the axial diffusion of electrons can be neglected
for the main part of the gap excluding the region of
length A, & « 1 in the vicinity of the anode.

=v, an, ,

XJo(kr) ',
where the constants A and 8 are determined by the con-
ditions y(z =0)=0 and y(z=L)=U. For L «R, the
potential profile (13) corresponds to a linear decrease of
the axial field E,(z, r) away from the cathode. If
E,=E,(0, r) is the field at the cathode, then the point
d =E, /4meno, where the extrapolated quantity E,(z, r)
vanishes, lies far beyond the discharge gap at low current.
As the current increases, it moves closer to the anode and
coincides with the anode surface at no = U/2neL . W. ith
a further increase of no, at d &L, the plasma region is
formed.

(13)

1. Townsend discharge

If a=const=ao, the linear set of Eqs. (6) and (7) can
easily be solved by the method of separation of variables.
The steady-state solution has the form

n, ;(z, r)= Y, ;(z)Jo(kr),
where Jo(x) is the zeroth-order Bessel function,
k =2.4/R, and Y„,, (z) are given by

exp(aoL )
—exp(aoz )

Y, (.}=Y, (0}- (9)
exp(aoL ) —1

Y,(z }= Y,(0)exp(aoz ), (10)

(8)

2. Quasi one di-men-sional model

In this section, we obtain a differential equation
describing the evolution of the ion density at the cathode
no(r, t) for a low-current subnormal discharge at d &)L.
Since the distortion of the external field is small, it needs
only to be taken into account in a(E). The possible
dependence of y(E) will also be considered below. This
dependence of y(E) may be responsible for the negative
slope of the current-voltage characteristic in this region
[4,6].

The space and time scales in the axial and lateral direc-
tions differ if ArL /R ,« 1. When the time scale exceeds
the ion transit time ~; =L/v;, the axial distributions of
electron and ion densities at a given radial position can be
considered as quasistationary. The radial shape of the
discharge is formed on the slow time scale R /A, rv, »r;.

Using (6) to eliminate the right-hand side in (7) and in-
tegrating along the gap, we obtain

with
2ao=ao Ark- .

—f n;dz+D, — r f n, (r, z)dz
a ~ 1 a a
at o

' ' r ar Br o

=v, [n, (L)—n, (0)]—v;n;(0) . (14)

To calculate the electron density at the anode we obtain
we approximate solution of (6). Equation (6) describes
the diffusive spread of the electron avalanche on its way
to the anode. At R &&A,&L, this spread is small and the
electron density at the anode is given by

n, (L)= n, (0)—ArL g Bn, (0}
r

r Br Br

I.
exp a E, dz'.

0
(15)

Using (10) and (15), we obtain the equation for the ion
density on the cathode no(r, t) in the form [8]

Bno ~r ~ g Bno
r, — (aoL —1 }— r =no(ri 1), (16)—

Bt ao r Br Br

where

I.
i)(U, no)=y exp a(E, )dz —1

0
(17)

is the electron reproduction coeScient.

As a result of the neglect of axial electron diffusion, the
electron density (10) does not satisfy the boundary condi-
tion (4) on the anode. The axial diffusion of electrons
1eads to a density drop near the anode in a length of
about A, z «L. In this region, the electron flux is
transformed from the mobility dominated in the bulk to
the purely diffusive at the anode. This process should be
treated kinetically as discussed in Sec. V.

Using Y~(0)=y Y,(0} and Y;(L)=0, the condition of
self-sustenance follows from Eqs. (9) and (10)

1 ao
[exp(aoL ) —1] . (12)

ao
At A, rk L «1, relation (12) coincides with the one-
dimensional condition y[exp(aoL) —1]=1 discussed in

Sec. I. The effect of the finite radius R results in the over-
voltage b U= U —U, =(da/dE)Ark /ao (U, is the
breakdown voltage at R ~~, i.e., at k~O), which is
necessary to compensate the losses of electrons to the
wall. Consequently, the electron reproduction coef5cient
ri=y[exp(aoL) —1] for a discharge of finite radius R
must exceed unity by g —1=(A,rk /ao)(aoL —1).

The results of the numerical solution of (1)—(4) for low
currents [shown in Fig. 2 and in curve (a) of Fig. 3] are
well reproduced by Eqs. (8)—(10}.This suggests that the
radial profile of the ion density for these conditions is
governed by the diffusion of electrons. The axial profiles
of electron and ion density resemble one-dimensional dis-
tributions, i.e., the maximum of the ion density is reached
near the cathode and the maxima of the electron density
and ionization occur near the anode. In most of the gap
the ion density greatly exceeds the electron density, so
practically the entire space is positively charged, but the
space charge is too small to produce any significant dis-
tortion of the external field. The distortion of the field
can be evaluated supposing the distribution of the ion
density is independent on z, n; = no Jo(kr) The solution.
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where Di =p; T, (1 1/La—o), g =y'lyLa', b =(a"/
6a')(Uo/L), and u =hU/Uo. Equation (19) is a time-

dependent diffusion equation with a nonlinear source
term known as Fisher's equation in [20]. In our case, the
source term also depends parametrically on the discharge
maintaining voltage. If the latter is changed with time, a
new phenomena compared to [20] appear, as will be dis-

cussed below.
It is interesting to note that the diffusion coefficient ob-

tained in (19) coincides in practice with the ambipolar
diffusion coefficient D, =p; T, though the plasma in the

gap is absent. This seemingly unexpected result has a
simple explanation [7]. According to (6), the electron
avalanche spreads during its motion along the gap by a
distance -+ANAL. The avalanche process is repeated
after the time v; =L/v;, which is necessary for the ions
(generated mainly in the vicinity of the anode) to reach
the cathode surface. Hence during a time t, an initial
nonuniformity at the cathode will spread by a length
-Qv, Az. t. The effective diffusion coefficient is therefore
of the order of the ambipolar one.

Adopting the usual approximation a(E }

=Apexp( Bp/E), we fi—nd b = ,'(BpL/2U 1).—The-
minimum of the Paschen curve corresponds to
BpL /U = 1 and the point of infiection of a(E) lies to the
right of the minimum at BpL /U =2. It follows from Eq.
(18) that for BpL/U & 2 the conditions for multiplication
are facilitated by redistribution of the potential and the
same multiplication can be achieved with a lower voltage.
If BpL, /U & 2, the situation is reversed: redistribution ei-
ther impedes multiplication or increases the voltage. The
evolution of the radial shape of the discharge with an in-
crease of the space charge is expected to differ in these
two cases.

3. Steady-state analysis

Looking for the steady-state solution of (19},we obtain

D,
D, N" + N' = F(N), —(20)

where primes denote differentiation with respect to r and

To calculate the electron reproduction coefficient
(17) we consider small perturbations of the field [4].
The voltage U changes under the influence of the
small space charge from Uo to Uo+AU and the axial

field changes from Eo to Eo+5, where 6=6U/L
+ 2m enoL (1 2z—/L ). For small perturbations,
a(E)=ao+a'(E Eo—)+a"[(E Eo—) l2], where ao
=a(EO), y(E)=y(Eo)+y'(E Eo—), and primes denote
differentiation with respect to E. The unperturbed value
of the electric field Eo is given by (12). Calculating the
integral in (17), we obtain

2
I. Uo a"N'1.f a(E, )dz =aoL+a'Lb, U+ (18}

0 1. 6

where N=2rtenoL /Uo. Using (18), we rewrite (16) in

the form

1 8 BN a UN
Di ——r = (u +gN +bNi), (19)

dt ' r dr "or

F(N)=(a'UON/v, )(.u+gN+bN ). Formally, Eq. (20}
describes a classical particle of mass D, moving in the
potential

V(N)= f F(N')dN'= u+ +
0 2~ 3 2

N'(r =0)=0, N(r =R)=0 (22)

correspond to a particle which starts from a point X=N,
at r =0 with zero velocity N' and reaches the point N =0
after some time R. Multiplying Eq. (20) by N' and in-
tegrating over r from 0 to R gives the energy balance of
the particIe

D, gDl
V(N„u)— N' (r =R)= N' dr .

2 0 r

According to (23), the alteration in the total energy of the
particle has to be equal to the work done by the damping
force. For a given N„this relationship yields a definite
value of the voltage u and thus defines the current-
voltage characteristic of the discharge.

Let us consider the case a' (0 (b (0) when the operat-
ing point lies on the Paschen curve between the minimum
and the point of infiection a(E). Figure 8 shows the force
F (N) for the case when y is an increasing function of the
field [4,6] g & 0 and the discharge maintaining voltage is
less than the breakdown potential u &0. In this case the
function F(N) has two nontrivial roots which correspond
to radially uniform solutions of (20). The lower root N,
decreases whereas the higher %2 increases with rising u.
The root X, can be shown to be unstable and the root N2
is stable [20]. We are interested in a solution which cor-
responds to a constricted discharge with a radius of the
cathode spot less than R. In terms of particle motion,
this case represents the particle coming to rest at N =0
with zero velocity [the second term on the left-hand side
of (23) vanishes]. In a planar case, such a particle would
start from the point where potential passes through zero
V(No, u) =0 and come to rest at the second maximum of
the potential at N =0 (see Fig. 8). The two roots of the
potential (21) are given by

2

2g
No 3(u) = — + 2g 2u

3b b
(24)

The lower root No increases with a reduction of u until
the maximum density X„=—2g /3b is reached at
u„=2g l9b when the roots join %0=%3. As soon as X
reaches the value X„,an increase of the current is accorn-
panied by a rise in the spot radius while the density in the

(21)

under the influence of a "time"-dependent damping force—(D, /r )N'. The density N plays the role of the particle
coordinate and the variable r corresponds to time. The
damping force (D, /r )N' is due to the effect of the cylin-
drical geometry. It would be absent in a planar case.
%ith the help of this analogy, the formation of the radial
structure of the discharge can be analyzed quantitatively.
The boundary conditions on the discharge axis (r =0}
and on the wall of the discharge vessel (r =R )
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FIG. 8. The force F(N, U) acting on the particle and its po-
tential V(N, U), in arbitrary units. The particle starts from
N=N„is accelerated in the region N, &N &N&, and is slowed

down in the region 0&X & X&. The discharge parameters cor-
respond to the conditions of curve 5 in Fig. 9.

center remains unchanged N, =N„. The shape of the

large spot is given by

N(r)=
]+exp

N2

N2(r ro)—
T

(25}

where a=d lna/d lnE and rz is the radius of the spot
defined as the point where N(ro }=N„/2.

The term (1Ir)N' in Eq. (20} becomes negligible only
for a large radius of the spot. For a finite radius, the
maintaining voltage u exceeds that of the planar case in
order to compensate the work of the damping force. The
particle is to start from the point N, & No defined by
V(N„u)=fo(D, Ir)N' dr (Fig. 8). For a small radius

of the spot, u exceeds u„and approaches u„asymptoti-
cally with increase of the spot radius when N, -NO-N2.

The numerical solutions of (20) have been obtained fol-

lowing the time evolution of (19). Figure 9 shows the ra-
dial distributions N(r) for different values of u. With an
increase of the current, lateral constriction of the
discharge occurs while the discharge voltage is slightly
reduced. As soon as the density in the center reaches the
value corresponding to the maximum of V(N), the lateral
spread of the discharge begins. This phenomenon is
analogous to the normal-current-density effect discussed
below in Sec. IVB2.

For the case a" & 0 (b & 0), the stability of a Townsend
discharge is lost for very low currents [7,8]. As the elec-
tron multiplication depends strongly on the ion density,
the increase of the density in the center cannot be com-
pensated by the lateral diffusion and a sharp constriction
of the discharge occurs. Distortion of the field should be
taken into account for the description of the constricted
discharge, and this is carried out in Sec. IV B.

4. The lateral spread of'the discharge

In this section, we will consider time-dependent solu-
tions of Eq. (19) which correspond to traveling waves.
Upon application of a constant voltage higher than u„a
lateral spread of the discharge is obtained. Although the
model we consider in this section is not applicable to the
experimentally investigated case of lateral spread of a

0.00
0

s

4 6 8 10
Distance from the center (cm)

FIG. 9. Radial distributions of the dimensionless ion density

N at p =0.5 Torr for different currents: (1) 4.9 pA, 97.7 V; (2)

7.86 pA, 97.64 V; (3) 10.4 pA, 97.56 V; (4) 19.8 pA, 97.49 V; (5)

39.6 pA, 97.47 V; (6) 79.2 pA, 97.46 V. The secondary emission

coefBcient y is an increasing function of the field for b= —
6

and g =0.05.

normal discharge [21], the main features of the phenome-
na are the same and the concept developed here for
describing the low-current subnormal discharge will be
applicable for the "normal" conditions discussed in Sec.
IV B.

In the spatially homogeneous situation, the steady-
state solutions of Eq. (19) correspond to the roots of the
function I'(N). Traveling wave solutions have the form
N(r, t}=N(r ct)=N(g—) moving at speed c without
change of shape. Equation (19) does not possess traveling
wave front solutions in which a wave spreads out with
constant speed c, because of the 1/r term. But for large r
the (1/r)dN/dr term becomes negligible so the solution
will tend asymptotically to a traveling wave front solu-
tion spreading with constant speed as in the planar case.
For this case, substituting the traveling wave form in (19),
we obtain an ordinary differential equation

D N" +cN'+ AN(Ni N)(N N2)—=0, — (26)

where A = b( a' Uo /r, ) —and primes denote differ-

entiation with respect to g. The solution of (26) should
satisfy the boundary conditions

N(g~ cc ) =0, N(g~ —cc ) =N2 . (27)

The set of equations (26) and (27) constitutes an eigenval-
ue problem which determines the value of c. It can be
shown [20] that the unique wave speed is

AD
'"

c= (N 2N )—
2 2 1 (28)

and the shape of the wave front is given by

1+K exp

1t2

2D N2
1

(29)

Because of translational invariance of Eq. (26), K is an ar-
bitrary constant. It can be chosen so that /=0 corre-
sponds to N=N2/2, in which case E =1. We can think
of the axisymmetric wavelike solutions of (19) as having a
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wave speed c(r), a function of r, and asymptotically
reaching the value c (r) —c for large r.

Upon application of a voltage greater than u„,a lateral
spread of the discharge is expected to occur. The depen-
dence of the speed of the spread on the applied voltage u
can be obtained from (28). At u„~u~0, the speed is
given by

e= V;g
1/2

aA, Ta

2b

1/2
Su

I —3 I—
9u„ (30)

B. Subnormal discharge with strong distortion of the Seld

where a=d lna/d lnE. The speed tends to zero when
the voltage u approaches the value u„and it rises with
voltage if the voltage is in excess of this value. The
spread of the cathode spot edge occurs due to lateral
diffusion of electrons. The spread mechanism differs
therefore from that investigated experimentally for a nor-
mal discharge when a voltage is applied which is higher
than the normal cathode fall voltage [21]. In normal con-
ditions, the propagation of the spot edge results from ra-
dial ion drift [11]. This case is studied in the following
section.

This assumption is valid for subnormal and normal re-
gimes and is violated for the abnormal regime where the
ion influx from the plasma may constitute a considerable
part of the total ion flux in the sheath [22]. We will not
consider here the abnormal discharge mode for which a
great part of ionization occurs in the plasma [22] and in
which the discharge covers the whole area of the cathode
[9].

To calculate the ion fluxes in (31) it is necessary to
know the two-dimensional distribution of the electric
field in the sheath. We will suppose the potential distri-
bution is of the form

z
P(z, r) =zE, 1—

2d
(33)

It corresponds to the solution of the Poisson equation (3)
when both the radial term in (3) and the axial dependence
of the ion space charge are neglected. Such an approxi-
mation is suggested by the numerical modeling (see Fig.
6). Both the field on the cathode E, and the sheath
length d=E, /4n. en; in (33) depend on radial position.
According to (33), the axial and radial components of the
electric field are

In this section we consider the subnormal discharge in
the regime when the cathode sheath is formed d &L.
Equation (38), which resembles Eq. (19) above, will be ob-
tained using the following assumptions: (a) the radial
term in Poisson's equation can be neglected and the
sheath length depends parametrically on the radial posi-
tion; (b) the shape of the axial distribution of the ion
space charge does not change with time; and (c) the flux
of ions from the plasma into the sheath can be neglected.
The effect of the normal current density and the appear-
ance of subnormal oscillations are analyzed using this
equation.

E, (z, r)=E, 1 ——z

dn, (L —z.) at L &d
E„(z,r)=2mez X '(d

)dT

and the field at the cathode is given by

U 2d
at L&d

L 2d —L
E,(r)= '

2U
d

atL&d .

Using Eq. (34), we find the integrated radial ion flux

(34)

(35)

1. Balance ofions

The radial motion of ions cannot be neglected for a
subnormal regime when the cathode sheath and plasma
region are formed. The potential fall is concentrated in
the cathode sheath the length of which is d. The plasma
region can be treated as field free. The equation for the
radial balance of ions can be obtained by integrating Eq.
(1) with respect to z within the sheath

d Bn; 1 8 df ' dz+r„(r,O)+1,, (r, d)+ r f r,„(r,z}dz—
0 Bt lZ ~ IZ &

g l l

dI dz .
0

(31)

For d )L integration should be performed up to the
anode. Equation (31) differs from Eq. (14) as the field dis-
tortion is taken into account. The different terms of (31)
are calculated below.

The ion influx from the anode is absent l,,(r,L)=0.
We assume that the ion influx from the plasma is also
negligible, i.e., for both cases d )L and d & L,

f I,„(r,z)dz = '

me@ L dn;
n, at L&d

3 '
dT

me@;d dn,
n; atL&d .

3 dT

(36)

The ion flux at the cathode surface is found from Eq. (35)

U 2d
at L&d

L 2d —L
I,,(r, O) =p, , n;E, =p;n, X' 2U, .

d
at L&d .

(37)

The right-hand side of (31) is proportional to the electron
reproduction coefficient i)=a(M —1); the multiplication
M is calculated in the Appendix.

Using Eqs. (31), (32), (36), (37), and (A8) and introduc-

ing the dimensionless density X=2~enL /U and voltage
U = U/BpL, we obtain the time-dependent diff'usion

equation

I,,(r, d)=0 . (32) f (N) —— rD(X) =F(Jil, U),
Bt T Br BT

(38)
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with a source term 5

p, U (1+N) for N &1
F(N, U) = N(ri 1—) X '

and the nonlinear diffusion coefficient

~ &
0 I T

@'o Cz

p,. U X for %&1
N ' f N 1

The function

1 for X(1~("}= N-~~~ for N)1

0

-10

V

0 -]5

-20 I

10 15

describes a decrease of the ion drift time through the
sheath with reduction of the sheath length for d & L. The
multiplication M from (A8) can be expressed in the form

T

JArh[ U( 1 +N) ]—S~,h[ U( 1 —N) ]
ApLM(U, N)=exp X for N) 1 (39)
2UN

&~,h(2U&N } for N &1 .

At N = 1 the sheath length is equal to the gap length.
The left-hand side of Eq. (38}describes the radial trans-

port of ions which is formally diffusive with a nonlinear
diffusion coefficient D(N}. The source F on the right-
hand side includes the production of ions by ionization
and ion losses to the cathode surface. This term is pro-
portional to the departure of the electron reproduction
coefficient from unity; unity is the equilibrium value of g
for a steady-state radially inhomogeneous discharge. At
pL )(pL);„the ionization coefficient a is a rapidly vary-

ing function of the field, while the multiplication M and
reproduction coefficient g depend on a exponentially.
Therefore, small changes in N or in U are already
sufficient for g to be appreciably greater than unity and
for the characteristic time for the density rise to be of the
order of rim;. Equation (38) resembles Eq. (19) with the
exception of the functional dependence of the source
term and the value of the diffusion coefficient.

2. Steady-state and traveling wave solutions

The methods developed above in Secs. IVA3 and
IV A4 can be applied here.

Introducing a new function of density
4=2 J cD (N)dN, the steady-state version of Eq. (38) for
4 can be reduced to Eq. (20) with the diffusion coefficient
Dp =p; U /6, the right-hand side being given by

p, U 24'~ (I+4'~ ) at 4&1
F(4 U) = (g —1}X (@+3)3~16 ~ 1

(40}

and with the multiplication M from Eq. (39). The analo-
gy with the particle motion discussed in Sec. IVA 3 can
therefore be used in this case. The force F(4, U) and its
potential V(4, U) are shown in Fig. 10 for discharge con-
ditions corresponding to the formation of a normal
cathode spot.

Figure 11 shows the current dependence of the radial
distributions of ion density for two values of pL. In the

FIG. 10. The force F(4, U) acting on the particle and its po-
tential V(4, U), in arbitrary units. Discharge parameters corre-
spond to normal conditions [curve 5 in Fig. 11(a)]. The particle
starts in the vicinity of the potential maximum 4=4O, is ac-
celerated in the region 4o &4 & 4&, and is slowed down in the
region 0&4 &4&. The efFect of the cylindrical geometry leads
to a positive value of V(4O, U).

vicinity of the Paschen minimum pL -(pL);„,the radial
distributions of the ion density remain almost unchanged
while the current rises [Fig. 11(b)]. For higher pL, an in-
crease of the current is accompanied by a lateral constric-
tion of the discharge [Fig. 11(a}].When the density in the
center reaches the value corresponding to the maximum
electron multiplication (see Fig. 15}, a lateral expansion
of the spot occurs [see curves 5 and 6 in Fig. 11(a)].

Calculated static current-voltage characteristics in the
subnormal glow region are plotted in Fig. 12 for two
pressures. They are obtained as steady-state solutions of
the time-dependent Eq. (38} for different values of the
resistance R, . To model the hysteresis loop, the resis-
tance was slightly changed and the previous solution was
used as an initial condition for the next one. The voltage
jumps that are observed for the generator voltage
U, =265 V are shown by dashed lines.

Experimental investigations of the lateral spread of the
normal discharge have been summarized by Emeleus and
von Engel [21]. The speed of the discharge edge increases
with the degree of anomalousness, i.e., the amount of the
voltage excess with respect to the normal cathode fall.
The theory proposed by Hollo and Nuiry [11] uses an
equation similar to Eq. (38) to describe the discharge
spread at constant voltage. The approach developed in
Sec. IV A 4 can be used as Eq. (38) resembles Eq. (19) and
their right-hand sides exhibit similar behavior.

3. Subnormal oscillations

If the discharge maintaining voltage changes with
time, new phenomena can be observed. A finite delay of
the voltage feedback due to presence of displacement
current and the capacitance of the external circuit may
cause the appearance of current oscillations. The subnor-
mal oscillations are studied in this section.

The contribution of the displacement current to the to-
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—r, /( —1). Owing to a strong dependence of rl( U on
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and (43) are shown in Figs. 13 and 14. DifFerent pnt sha es
of current oscillations can be obtained for difFerent
discharge conditions: small amplitude oscillations ( ig.
13) 1 tion oscillations, or a periodic breakdown ig., re axa ion
14). The shape of the oscillations depends on e ra

'

aE,
2~e f'ddr J+ (41) 40

BU' af

U, —U —J
R,

(42)

Equations (41) and (42) can be combined giving

BU Jc
Bt C

U, —U
(43)

where E, is the field at the cathode and j is the conduc-
tion current density. The presence of a capacitance Co in

the external circuit modifies Eq. (5)

0
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FIG. 13. (a) Subnormal oscillations of sma p
~ ~

mall am litude for
=0.1 R =2 cm, pL =1.3 Torrcm, =152 V, C=10 pF,

.5~. (a) 1, voltage; 2, conduction current; ' 3 totaland ~=1. ~;. a, v
less ion densi-. (b) Radial distributions of the dimensionless icurrent. a ia is

n a minimum ofty for ten different times between a maximum an a
the voltage.

where distortion of the field is neglected and the time
constant ~==R,C=R (R~/4L+C ) is introduced The.0
conduction current is given by

R
(44)J =(1+y)2mep, , nc(r}E,r dr .

C 0

Since usually C R /41. Eq. (43) can be applied to the
entire subnormal region [4].

~ ~

Th d' harge behavior is characterized by two timee isc a
scales. The time scale ~ defines the delay of the gvolta e
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V. DISCUSSION OF RESULTS

The applicability of the fluid model for the description
of slow electrons can be understood as follows. General-
ly, the Quid approximation is valid when the characteris-
tic spatial scale exceeds the electron energy relaxation
length. For atomic gases, in which the elastic collisions
with gas atoms are the only mechanism for the energy re-
laxation of electrons with energies w below the excitation
potential, the energy relaxation length is given by

rlr; as well as on the value of pi. . The radial distribu-
tions of ion density for different phases of the oscillations
are shown in Figs. 13(b) and 14(b}. It is seen that the ra-
dial distribution changes significantly during the period,
i.e., the current oscillations represent a two-dimensional
phenomenon.

The boundaries of oscillation (dis}appearance are
affected by the parameters of the external circuit. The re-
gion of oscillation is expanded with increase of the capac-
itance Co in accordance with the experimental observa-
tions [5]. For small values of Co the static current-
voltage characteristics are obtained with a hysteresis loop
(Fig. 12). As Co increases, the low-current boundary of
the region of oscillation shifts toward lower currents.
The increase of Co also degrades the stability of the nor-
mal discharge. This influence shows up with current de-
crease when the transverse dimensions of the normal
cathode spot become so small that further reduction of
current is accompanied by an increase in the voltage.

X,=A, /&5, where A, is the electron mean free path,
5=2m /M « 1 is the energy loss in elastic collisions, and
m and M are the electron and ion masses. For argon at
p =10 Torr this length A,,-0.2 cm is small compared to
the gap length I., hence only the region of length A,, in the
vicinity of the anode should be treated kinetically [23].
At p =3 Torr the length A,,-O. 7 cm is of the order of the

gap length. When A,, exceeds the plasma dimensions, the
slow electrons move with conservation of their total ener-

gy (kinetic plus potential) [22]. This results in the ap-
pearance of standing striations in subnormal discharges
[7,24] with the potential difference between striations be-
ing roughly equal to the excitation potential of the gas. It
is desirable to emphasize that the potential contours for
subnormal discharges have not been measured experi-
mentally, but the observable striations make the optical
mapping of equipotentials possible [24]. In the presence
of the potential well (as in Fig. 7) which captures the
slowest electrons, and in the absence of electron-electron
collisions, the electrons are divided into two almost in-
dependent groups: trapped and free. As the densities of
trapped and free electrons change in an entirely different
manner, the mean energy (temperature) of slow electrons
is spatially inhomogeneous [22]. To our knowledge, no
spatially resolved measurements of the electron energy
distribution function for these conditions have been car-
ried out up to now.

The structure of the plasma region can be treated as
follows. The plasma density profile can be described by
the ambipolar diffusion equation with the density at the
sheath edge equal to the ion density in the sheath and the
density at the anode equal to zero. The nonlocality of the
ionization which is to be taken into account for near-
normal regimes results in the formation of a maximum in
the plasma density at the end of the negative glow region
(see Fig. 7). The condition of quasineutrality n, =n; =n
defines the distribution of the potential in the plasma.
The potential can be divided into two parts: the ambipo-
lar potential P, = —T, ln(n} and the "current" potential

which satisfies the current conservation equation
div(n grad/) =0 and is responsible for the current. The
sheath edge and the anode are equipotential lines for g.
In this way, the appearance of the maximum and saddle
points in the potential distribution obtained from numeri-
cal modeling (Fig. 7) can be understand qualitatively.

We turn now to discussion of the results obtained from
the analytical model.

The question of whether diffusion of charged particles
plays a decisive role in the formation of structures on the
cathode of a glow discharge has been widely discussed
(see [16] and references therein). Our results show that
both radial diffusion of electrons and ion drift in the radi-
al field may lead to the formation of the cathode spot.
The former mechanism dominates at low currents, when
the Poisson length exceeds the gap length. The latter
rnanifests itself at enhanced currents when the field dis-
tortion is essential. Their magnitude is of the same order
at N =6T, /U «1 when the difFusion coeScients in Eqs.
(19) and (38) are equal.

The equations obtained for the lateral distribution of
the space charge in both these cases coincide formally
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with the cylindrically symmetrical Fisher equation [20].
For a time-independent maintaining voltage, the steady-
state and traveling wave solutions have been analyzed
qualitatively using the analogy with particle motion un-
der the inhuence of a force. The character of the possible
solutions was shown to be essentially dependent on the
topology of the nonlinear source term, which is
influenced by discharge conditions.

The source term is proportional to the departure of the
electron reproduction coefficient from its equilibrium
value defined by the balance of electron multiplication,
which is necessary to sustain the discharge. The depen-
dence of the electron multiplication on the sheath length
has been calculated using the local approximation for the
Townsend ionization coefficient as well as using a simple
model for nonlocal ionization. On the left branch of the
Paschen curve, the multiplication increases monotonical-
ly with the rise in the sheath length. On the right branch,
for a given voltage, the multiplication exhibits a max-
imum as a function of the sheath length when the field on
the cathode goes through the value corresponding to sat-
uration of the ionization coefficient and the sheath length
becomes shorter than the range of the fast electrons. The
results of the local and nonlocal approaches are found to
be close to each other for the subnormal glow region and
differ significantly for the region of abnormal discharges.
The existence of the multiplication maximum is the
reason for the existence of normal glow discharges: the
normal cathode spot is formed in such a way that multi-
plication reaches the maximal value [16]. Hence the nor-
mal cathode spot can be formed only on the right branch
of the Paschen curve where the multiplication exhibits a
maximum.

A phenomenon that is analogous to the normal-
current-density effect is predicted to exist in the subnor-
mal glow region if the secondary emission coefficient is an
increasing function of the electric field and if the operat-
ing point lies between the minimum of the Paschen curve
and the point where a"(8)=0. In this case also the mul-
tiplication can reach a maximum as a function of the ion
space charge and a cathode spot can be formed. The
difference between the phenomena of normal and subnor-
mal spots is due to different kinds of lateral losses. The
shape of the subnormal spot is governed by diffusion of
electrons while the normal cathode spot is formed under
the infiuence of the transport of ions in radial field. %ith
an increase of the voltage in excess of the normal value, a
lateral spread of the spot was found.

For a time-dependent maintaining voltage, new phe-
nomena appear. Due to the presence of the displacement
current and the capacitance of the external circuit, the
voltage feedback is characterized by a finite delay and
causes the appearance of subnormal oscillations. The
subnormal oscillations are recognized as two-dimensional
phenomena. The mechanism of their excitation and a se-
quence of events can be identified as follows. A local in-
crease of the ion space charge results in an increase of the
electron multiplication, which in the subnormal regime
cannot be stabilized by the lateral losses of ions. A stable
state can only be achieved when the ion density reaches
the value corresponding to the maximum multiplication.

If the discharge sustaining voltage at this time exceeds
the value corresponding to the normal cathode fa11 vo1t-
age, lateral spread of the discharge occurs. In fact, such
a behavior appears in our calculations for 1arge values of
the capacitance C. For small values of C, an increase of
the ion density is accompanied by a voltage decrease.
The rate of the voltage feedback is characterized by the
time ~. %hen this time is of the order of the rate of
discharge development (which is of the order of r, ) the
ion density begins to decrease before reaching the maxi-
mal value corresponding to normal conditions. The oscil-
lations occur therefore for two reasons: (a) the local insta-
bility of the sheath in the subnormal region and (b) the
finite relaxation time of the discharge maintaining volt-
age. The shape of the oscillations is determined by these
two time scales. For sma11 ~, the oscillations are not ex-
cited in the whole transition region. In this case, a hys-
teresis loop in the current-voltage characteristics appears
in the calculations (see Fig. 12). The experimental data
[7] show more pronounced hysteresis behavior of the
discharge due to gas heating, which was neglected in our
model.

VI. SUMMARY

The subnormal region of direct current glow
discharges in a cylindrical chamber between two parallel
electrodes has been investigated by means of both two-
dimensional numerica1 modeling and a simplified quasi-
one-dimensional approach. The formation of the lateral
structure of the discharge and the appearance of current
oscillations were explained. The methods developed can
be used for the investigation of more complex spatial pat-
terns observed in the near-electrode regions of glow
discharges. The results obtained should stimulate the ex-
perimental investigation of the subnormal glow region us-
ing modern methods.
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APPENDIX

The concept of Townsend ionization coefficient cx,

defined as an average number of ionizing collisions per
unit distance of drift, may be used in the range of E/iV,
where the electrons attain an equilibrium drift velocity in
the electric field. These conditions are not satisfied at
high E/N reached for a Townsend discharge on the left
branch of the Paschen curve [25,26] or in the fully
developed cathode sheath [22]. Consequently, in these
cases the energy of an electron is a function of the dis-
tance, therefore ionization depends on the spatial posi-
tion. Hence it is necessary to calculate the electron rnu1-
tiplication M as a function of position in the gap. For a
Townsend discharge M has been calculated in Ref. [25]
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dN =eE(z, r) NL—(w), (Al)

where w is the electron kinetic energy, N the gas density,
L(w) the energy-loss function, and f the fast electron
path along its trajectory. The loss function corresponds
to a mean retarding force acting on the electron due to
energy losses from excitation and ionization of the gas.
In argon it has a weak maximum at energies of about
three times the electron excitation threshold [28) and is

by means of Monte Carlo simulation of fast electrons as-

suming predominantly forward electron scattering. A
simple method of calculating M for a spatially unhomo-

geneous electric field in the cathode region of glow
discharges is given below.

The energy balance of fast electrons can be described
using a continuous-energy-loss approximation [27]

J=acffI f (A2)

where a,~=NLQ/s0 is an effective Townsend coefficient
and s0=29 eV the energy loss per ion-electron pair [28].

Neglecting both the scattering of fast electrons and the
radial component of field, the flux of fast electrons can be
obtained [22] in the form

assumed to be energy independent below
L (w) =Le=5 X10 ' eV cm . The electrons can be di-
vided into two groups according to their origin. The first
group represents electrons generated in the high-field re-
gion eE &NLD. The second group consists of those ap-
peared in the low field region where the retarding force is
less than the accelerating force eE &NLD. The electrons
of the first group are runaway and produce nonlocal ion-
ization in the low field region eE &NLD. Ionization by
these fast electrons is proportional to their flux [22]

exp(az ) at 0 & z & d

I /(z)=I X exp[a(2d —z)] at d &z &d

A —z
exp ad 1 — 1 —4A

(2A —d )

' 1/2

at d &z&A,

(A3)

=a(E)(r, —rf )+a ffrf

Integrating (A4), we find the total electron flux at z )d

I,=I exp aZ+ f a(E)dz
d

+f [a,z—a(E)]exp f a(E) I~dz'.
z'

(A5)

The second term in (A5) describes the ionization by the
fast electrons in the low field region. At A&d the fast
electrons produce nonlocal ionization in the plasma and
at A & d they contribute to the local ionization within the

where d is the sheath length, d=d(1 —d/2A) is the
boundary between high and low field regions,
A= U/NLD is the fast electron range, and I' is the elec-
tron flux at the cathode. The value of NL0 =170 V cm
coincides approximately with the field at the Paschen
minimum Bp =180 V cm ' and the value a,ff=6 cm ' is
of the order of a(NL0)=4. 4 cm '. On the left branch,
A & L and the electron runaway should be taken into ac-
count [25,26]. On the right branch, A &L and nonequili-
brium conditions exist after the field on the cathode
exceeds the value of NL0.

The slow electrons are those generated in the low field
region where retarding force is less than the accelerating
force d &z & d. They are roughly in equilibrium with the
field. The ionization they produce is therefore deter-
mined by the local field, with ionization coefficient a(E)
depending strongly on the field strength. Since the slow

electron flux is equal to zero at z &d, the total electron
flux I', coincides with I / at z &Z. Atz) d it is givenby

dIe
(A4)

dz

sheath in the region d &z & 2d.
On the left branch of the Paschen curve L &A, a por-

tion of the fast electrons can reach the anode. Their
losses on the anode result in a decrease of multiplication
with reduction ofpL

M=exp(a, riL) . (A6)

The maximal value of M is reached at E=const, i.e., for
a Townsend discharge. The distortion of the field leads
to a decrease of M.

On the right branch the situation is opposite. The dis-
tortion of the field results in an increase of M. Using (A5)
and noting that a(E) is a rapidly varying function of E,
we obtain, for 2d & d,

ABp
M& =exp ~Arh4m.en '

Bp
~Arh

p
(A8)

where E, =(U/L)[(d L)/(2d —L)) is—the field at the
anode at L & d or zero at L )d and J~,i,(x) is the "Ar-

M=exp ad+ f a(E)dz' + ' f I /dz' . (A7)r a

The second term in (A7) is due to fast electron contribu-
tion to ionization in the low field part of the sheath. For
A) d nonlocal ionization is partly produced in the plas-
ma and the upper limit of the integral should be changed
to A. The multiplication calculated according to (A7) ex-
hibits a maximum as a function of sheath length (Fig. 15,
curve 1).

Using the local approximation for Townsend' s
coefficient a(E)= Ap exp( Bp /E ), we obtain—the multi-
plication [11]
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FIG. 15. Electron multiplication (M —1) as a function of the

reduced sheath length (d/A) for L =3A: (1) according to Eq.
(A7) with the contribution of nonlocal ionization, La =5 X 10
eVcmt, so=29 eV; (2) according to Eq. (A8) with the local ap-

proximation for Townsend ionization coeScient, Ap = 12 cm
Bp=180 Vcm '; (3) the contribution of nonlocal part [see Eq.
(A7)].

rhenius integral"

x
J~,„(x}= exp ——dy .

The multiplication calculated using (AS) is shown in Fig.
15 (curve 2) for comparison. The region A(21 corre-
sponds to local ionization. In the limit d ))L, the multi-
plication is given by (A6) with substitution a(E) in place
of a,~.

Both curves 1 and 2 in Fig. 15 have maxima as a func-
tion of reduced sheath length at 1/A about unity. The
difference between results of local and nonlocal ap-
proaches is essential in the region corresponding to ab-
normal discharges d &A. In the limit of a strongly ab-
normal regime d &&A, essentially all ionization is pro-
duced in the plasma region. Equation (A7} gives
M = U/eo while the local approach (A8) gives M, =0. In
the region of subnormal discharges A &d, the difference
between (A7) and (A8) is not very important, so relation-
ship (A8) has been used for convenience.
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