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Landau-de Gennes theory of the chevron structure in a smectic- 4 liquid crystal
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We make a theoretical study of the chevron and tilted structures in the smectic- 4 phase of a liquid
crystal. These structures have been observed to occur in cells in which the director is oriented in the
plane of the wall. We examine the hypothesis of Limat and Prost [Liq. Cryst. 13, 101 (1993)] that the
layer buckling and the tilting is a consequence of a mismatch between layer thickness in the bulk and at
the surface. We use the covariant form of the Landau—-de Gennes free energy expressed in terms of the
nematic director field n(r) and the smectic complex order parameter ¥(r). The threshold condition for
and evolution of the chevron and tilted structure are obtained as a function of liquid crystal elastic prop-
erties, cell thickness, and surface orientational anchoring strength. The threshold and amplitude evolu-
tion exhibit almost universal behavior as a function of a dimensionless chevron number o. We give a
possible explanation of the hysteresis effect observed in the liquid crystal 40.8 [4-octyl-n-(4'-
butoxybenzylidene)aniline]. We estimate the energy barrier for the chevron-tilted-structure transition
and discuss the case where the stress imposed by surface positional anchoring is partially relieved by in-
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corporating a lattice of wedge dislocations.

PACS number(s): 61.30.Eb, 61.30.Cz, 83.70.Jr

I. INTRODUCTION

Recently there have been many studies of smectic
liquid crystals (LC’s) confined between parallel bounding
plates in the so-called bookshelf structure. In this struc-
ture the layers are perpendicular to the cell walls. An un-
derstanding of the stability of the bookshelf structure is
of considerable importance in the development of display
devices based on smectic LC technology. The perfect
bookshelf geometry in practice, however, only rarely
occurs. More often the so-called chevron structure,
shown in Fig. 1, is seen. In this case the smectic layers
are symmetrically tilted, with a kink in the middle of the
cell.

The chevron structure is believed to be the conse-
quence of the mismatch between the natural smectic lay-
er separation d, and the separation d; imposed by the
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FIG. 1. Schematic representation of the chevron (left) and
tilted (right) structures, showing the structure of the smectic
layers within a cell. In the Sm-A phase the nematic molecules
tend to be oriented along the layer normal.
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surface interaction [1-7]. If d; >d,, by tilting the layers,
the smectic liquid crystal can avoid the strong elastic de-
formations, uniformly distributed over the whole cell,
which retaining planar bookshelf geometry would imply.
The tilt compensates the difference between d; and d,
the tilt angle thus tends to the value 6,, =cos ™ '(d,/d, ).
The resulting structure is energetically favorable com-
pared to the bookshelf configuration. The elastic defor-
mations are now localized at the boundary plates and in
the middle of the cell. In detail, the chevron structure
depends on the interplay between elastic nematic, smec-
tic, and surface interaction forces.

The chevron structure was first observed in a ferroelec-
tric smectic-C LC by Rieker et al. [1]. There has been
much subsequent experimental and theoretical investiga-
tion [2—4] of the mechanism of chevron formation. Re-
cently the chevron configuration has also been observed
by Takanishi and co-workers [5,6] in the smectic- A (Sm-
A) phase. Although this phase seems to be less relevant
in a commercial context, it is a particularly simple model
which may nevertheless serve as a paradigm for the inves-
tigation of chevron formation in general. The structure
of a Sm-A4 LC is less complex than that of a Sm-C LC. It
is therefore easier to extract the crucial parameters for
chevron formation. In a subsequent study we shall show
how our results may be naturally extended to Sm-C ma-
terials.

We begin with a brief summary of the main experimen-
tal features of the chevron structure in the Sm-A4 phase.
X-ray patterns [5,6] reveal the continuous onset of chev-
ron ordering on cooling from the nematic (V) phase. For
some samples the data show pronounced thermal hys-
teresis. The experiments also indicate that, for small cell
thickness, the chevron structure is replaced by a tilted
structure, also shown in Fig. 1. In this structure the
smectic layers simply tilt to satisfy the positional bound-
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ary conditions. This requires slipping of smectic layers at
the bounding plates. The amplitude of the tilted struc-
ture shows continuous development on cooling from the
nematic phase. Takanishi and co-workers [5,6] suggest
that the observed continuous chevron and tilted structure
evolution results from layer thinning. This conclusion is
based on the experimental observation that the thickness
of smectic layers reduces with decreasing temperature.

Two theoretical studies [3,7] have concentrated on the
chevron structure in the Sm- 4 phase. Nakagawa [3] has
proposed a simple soliton model to model the chevron
layer structure in smectic phases. He demonstrates that a
coupling between the layer compression and the density
change at the Sm- 4 —nematic phase transition can cause
chevron formation. A more detailed study of the chev-
ron structure in the Sm- A4 phase has been carried out by
Limat and Prost [7]. They express the free energy densi-
ty in terms of the smectic layer tilt angle and the strain
€=d;/dy,—1 imposed by the bounding plates. They
show that the chevron structure in a cell of thickness L
exists only for a strain larger than a threshold value
€, <(L/A)%, where A is the smectic penetration depth.
The chevron structure evolves continuously for €>¢€,.
They propose two mechanisms for the chevron formation
on cooling from the nematic phase: (i) the layer thinning
effect discussed above, and (ii) the strong temperature
dependence of A near the N-Sm- A4 transition at constant
strain. They find that the threshold value for the ex-
istence of the tilted structure is €, /4.

In this article we extend the study of Limat and Prost
to a more general case. We use the covariant form of the
Landau-de Gennes free energy in terms of the nematic
director field n(r) and the smectic complex order parame-
ter Y(r). The plan of the paper is as follows. In Sec. II
the model free energy and corresponding Euler-Lagrange
equations are presented. In Sec. III we study the
influence of LC bulk elastic properties on the chevron
evolution in the strong anchoring regime. The effect of
weak director anchoring is studied in Sec. IV. A possible
scenario for the hysteresis effects observed in the 40.8 [4-
octyl-n-(4'-butoxybenzylidene)aniline] LC is discussed in
Sec. V. In Sec. VI we estimate the energy barrier for the
chevron-tilted-structure transition. In Sec. VII we com-
pare the chevron structure with a structure incorporating
edge dislocations. In the last section we draw some brief
conclusions. We discuss in an Appendix the relationship
between our work and that of Limat and Prost.

II. MODEL

In our study the chevron structure in the Sm- A4 phase
is described in terms of the nematic director field n and
the smectic density wave y=ne’®. The unit vector n
points along the average local orientation of a LC mole-
cule. The smectic translational order parameter 77 de-
scribes the degree of smectic ordering and the phase fac-
tor ¢ determines the position of a smectic layer. In terms
of these parameters the covariant form of the Landau—de
Gennes free energy [8—-11] is expressed as

[rod’r= [ f,(0+f, 01+ [ f,(nd’r . (1)
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The nematic f,(r), smectic f;(r), and surface anchoring
f,(r) free energy density contributions are given by

K K
fn<r)=—2‘—‘[v-n<r)]2+%<n-vxn)2

K
+—2£(nXVXn)2 , (1a)

iD=y, |(n-V—igo)p>+7 [(aXV)y|*, (1b)
W,

fa(r)=TO(n-v)2 . (10)

Here K, K,,, and K;; denote the nematic splay, twist,
and bend elastic constants, respectively. The quantities
y, and v, are smectic elastic constants which describe,
respectively, the layer compressibility and the cost of tilt-
ing the director with respect to the layer normal. The v,
term favors the formation of a density wave in the n
direction with the layer spacing d,=2w/q,. The orienta-
tional anisotropic part of the substrate-LC interaction is
modeled by a term weighted by the anchoring strength
constant W, which tends to orient the director at the
surface perpendicular to the surface normal v. This kind
of boundary condition is conventionally called planar an-
choring.

The bend and twist elastic constants exhibit divergent
behavior on approaching a second order N -Sm- 4 transi-
tion from above as a result of smectic pretransitional fluc-
tuations [12]. These fluctuations introduce into the
nematic phase small domains with local smectic organi-
zation. Since the Sm- 4 phase is incompatible with twist
and bend nematic deformation, the presence of smectic
domains gives rise to an anomalous increase in measured
values of the elastic constants K,, and K;;. However, in
the smectic phase K,, and K ;; need not be considered to
have infinite value. The nematic bend and twist deforma-
tion are forbidden by the topology of the smectic phase
itself. The nematic elastic constants in Eq. (1) may be
considered to be ‘“bare” nematic elastic constants in the
sense that they do not include smectic phase fluctuations.

The calculations are performed in the Cartesian coor-
dinate system r=(x,y,z). The Sm-A liquid crystal is
confined between two plates located at x=—L /2 and
x =L /2 and the layers are running in the z direction.
We confine our interest to the case when the mismatch
between LC and surface positional smectic layer
configuration is resolved by tilting the layers. This allows
us to restrict n to lie in the (x,z) plane: n=(sin6,0,co0s8).
Here 6(x) denotes the angle between n and the z axis.
For such a director configuration the K,, term in Eq. (1)
vanishes. We enforce the smectic density wave in the z
direction by taking v to be of the form

¢(I)=1]€iq[z+u(x” , 2)

where the displacement field u (x) describes departures
from the planar layer configuration. The wave vector q is
in general different from gq,. It is imposed by the surface
which enforces smectic layer separation d,=2w/q. In
this model we assume strong smectic positional anchor-
ing and the layers are not allowed to slip or form disloca-
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tions. In addition we neglect the spatial variations of 7.

The most relevant quantities of our study are (i) the
strain e=1—gq /g, imposed on the LC because g+¢,, (ii)
the penetration depth A, =V K, /(y,¢3n?), measuring
how far into the smectic phase the bend nematic defor-
mation persists, and (iii) the surface extrapolation length
A;=K, /W, describing the influence of the surface an-
choring on the n profile. The chevron structure can exist
if A, <L. The surface anchoring strength plays an impor-
tant role if L /A > 1. We write our equations in terms of
the dimensionless quantities a;=K3;, /Ky, a=vy /vy,
w=0u /dx, and p=x /L. For calculational convenience
we introduce a parameter A=2X,\/a/a;. With these
definitions we can compute a dimensionless free energy G
per unit surface:

L/2

G—RLT, m:ﬁfmdx
=" leutp) e (p)ldp e, (1) g, (— 1) 3
Here
1 [0 | .

g,,(p)ZE la (cos’6+a,sin®0) , (3a)
g (p)= i; fa(w cosf—sin@)X(1—e)?

+[(1—é€)(w sin@+cos)—1]?} , (3b)
ga(p):%ﬂz‘z‘&’ . (3¢)

s

We can easily extract some asymptotic information about

the chevron structure from Eq. (3b). The first term,

describing the bend smectic elastic deformation, vanishes

if w=tanf. This condition sets nematic molecules per-

pendicular to smectic layers, which is shown in Fig. 2.
The condition w =tan® can be written in the form

n=Ve¢/|Vd|={w,0,1} /V1+w*,

and is in fact a requirement of the continuum theory ap-
proach [13] everywhere (not just in asymptotia). In this
approach the Sm-A4 behavior is determined by the dis-
placement field u(r) alone, and n(r) is locked along the
layer normal. The condition w =tan@ is strictly realized
within the Landau—de Gennes theory, however, only in
the limit y |, — .

The second term in Eq. (3b) is due to layer compressi-
bility. It vanishes if, in addition to w =tan6, cos@=1—¢
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FIG. 2. The w=du/dx=tanf  and
cosf=1—€=d/d; minimizing the smectic elastic contribution
can be extracted from geometrical considerations. The condi-
tion w=tanf sets nematic molecules along the smectic layer
normal. Smectic layers tend to tilt at an angle =cos "'(d,/d,)
in order to satisfy the surface anchoring imposing periodicity d,
and smectic elastic forces favoring the layer separation d,.

conditions

is also satisfied. This is the condition that smectic layers
must be tilted at an angle 6=6,, =cos™ '(1—¢) in order
to preserve the equilibrium layer spacing. This condition
can be also obtained by geometrical considerations alone,
as can be seen in Fig. 2.

In order to minimize this free energy we need to obtain
the appropriate Euler-Lagrange equations. These are

g, 9 ag,
g, % o %

_"“”A—’—’"‘:O s 4

36 ' 36 p 8(36/8p) “a)

3
9 % g, (4b)
dp Jw
” 3 3
|_ % | % -0, o)
| 08(36/3p) 30 |-/
| Bg, | %,
] + =0 . (4(”
| a36/3p) ' 36 }Ww

Equations (4a) and (4b) come from the bulk contribution
to the free energy. Equations (4c) and (4d) are boundary
conditions. After some algebra these equations can be
simplified, yielding

w=tan(0)H (a,p) , {5a)
2 : 2 02 11— (1 — _ (] — ;
—'a-iz(cosze+a3sin20)+ a6 (1—a, )2 sin6 cosO+ 4L"/A%)a[1—(1—¢€)/cosO][ —1+(1—¢€)(1—a)cosO]sin26 -0,
3p dp [1+a +(a —1)cos(20)]?
(5b)
l]:——ag(cosze+a3sin26)+—Lsinecose]] - _05=0, (5¢)
dp Ay P
|]:+—aﬁ(cosze—%%sinzﬂ)—%—L—sinecose:u —05=0, (5d)
ap }‘s P
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where

_ (a—1)cos’0+cosf/(1—¢)
(@ —1)cos?0+1 '

H(a,p) (5e)

Equation (5a) yields a relation between the variational pa-
rameters of our approach, namely, u (r) and 6(r). In the
continuum theory approach, by contrast, w =tan6 exact-
ly. Therefore the quantity H (a,p) can be used to mea-
sure departures from the continuum approximation. In
Eq. (5b) we have already substituted for w in order to ob-
tain an equation in terms of 6 alone.

The boundary conditions for 6(p) are defined by Egs.
(5c) and (5d). In the case of strong anchoring (W,— o)
they enforce 6(x1)=0. For W;=0 we have
30/3p(+1)=0. The strain e=1—gq/q, is imposed by
surface positional anchoring. In our model strong posi-
tional anchoring is assumed, which enforces the smectic
layer separation d, =2 /q at the boundary plates.

The equations are solved numerically using the relaxa-
tion method [14]. The layer displacement u(p) is ob-
tained from w (p) by integration.

III. CHEVRON STRUCTURE

Previous experimental and theoretical results suggest
that the chevron structure in the Sm-A4 phase can exist
only if a threshold condition is exceeded [5—7]. The way
the chevron evolves from the bookshelf structure is rem-
iniscent of the familiar Freedericks transition [9,12] in a
thin nematic layer. In a conventional arrangement the
nematic LC is confined between parallel plates enforcing
homeotropic anchoring. An external (electric or magnet-
ic) field h is applied in a direction perpendicular to the
plate normal. The field h is thus in competition with
nematic elastic forces which favor the homogeneous
structure imposed by the boundary conditions. The field
can continuously break this ordering if the field strength
exceeds a threshold value .. In the chevron case it is the
strain € which tends to break the homogeneous planar
Sm- 4 ordering imposed by the smectic elastic constants.

To obtain analytically the threshold condition and the
amplitude of the chevron structure one can directly fol-
low the mathematical procedure developed for the
Freedericks transition by Vertogen and de Jeu [9]. We
present here an alternative derivation based on free ener-
getic arguments. Our main conclusions are as follows.

(i) The onset of the chevron and tilted structures can be
parametrized by a single dimensionless parameter which
we shall call the chevron number o, defined by

_ €L?
277\

The chevron structure exists for

R4

Y1

o 1+e

I ©

oZo, . (6a)
The tilted structure can occur if
oc2o, . (6b)

For strong anchoring 0, =1, 0, = 1.
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(ii) The evolution of the chevron and tilted structures
also exhibits almost universal behavior as a function of o.
For conventional values of LC material parameters the
scaled chevron-tilted-structure amplitude behaves to a
good approximation as

172

b
; ™

_~

0

O'—Ui

- o
where the indices i ={c,t} denote the chevron-tilted
structure and 6,, =cos” '(1—¢) is the asymptotic ampli-
tude of both structures.

A. The chevron transition

The chevron transition can be examined using a
Landau-type theory. Since w can be expressed in terms
of 6 via Eq. (5a) only 6 need be taken into account. We
expand the free energy density given in Eq. (3) up to
fourth order in 6. The chevron structure requirement
6(0)=0 and the boundary condition 6(—0.5)=6(0.5)=0
imply that 6 can be written as

=73 6'Fsin(2k mp) ~ 6'Vsin(2mp) , (8)
k=1

where the leading term 6! dominates close to the transi-
tion. The resulting dimensionless free energy in terms of
the mode amplitude is

a(e(cl))l B(B(Cl))4
G = Gbook - 2 + 4 . (9)

The quantity Gy, =(L%/A?)€? describes the bookshelf
geometry distortion free energy and a,B are expansion
constants given by

2
a=—2772+£'7 €+ l—1’62
A a
=270 —1)=27%0—0,), (9a)
3L? | 1 11,1
=(—l+a)r+— |-+ |——=+—
B=( amt T |y 12 4
+2+L 2 e (9b)

The bookshelf structure is destabilized with respect to the
chevron structure when a = 0, yielding the threshold con-
dition Eq. (6a) for chevron formation. The chevron
structure is preferred by thick cells, strong strain €, high
ratio v, /K, and high smectic order parameter. At the
continuous N-Sm-A transition, when T =Ty,
7(Ty,)=0, and hence o tends to zero.

We note at this stage that experimentally [5,6] € <0.01,
and it is convenient to consider € as a small parameter in
the expressions that follow.

Now the mode amplitude 6\ is determined from
3G /36 =0, yielding
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ol = 979 (10)
. (
30 1 11, 1 5 ola;—1)
—+ |-+ + | S+ e+
2e{1+e[(1/a)—1]} | 4 12 alf a> 3a |° | 2 |
However, at the interface. Experiments [5,6] suggest that slipping

6, =cos (q/qy)=cos 1—e)~V2e .

If we factor out 6, in this equation, what remains con-
tains terms of O (1), O(e), and O(€?). For small € the
terms of O(1) usually dominate. When this is the case
Eq. (10) reduces to

Mo—a,) |

6" ~9,, (10a)

3o

In this form 6! /6, is a universal function of the chev-
ron number o. Terms of O(e) play the leading role in
departures from universality. These corrections have
contributions from a;=K3;/K;; and a=y /vy, The
latter contributions enter in the form 1/a, and this quan-
tity diverges at the Sm-A4 -Sm-C transition [10]. We
therefore expect that there may be departures from
universality in this region of the phase diagram.

We note that Eq. (10a) differs from Eq. (7) by a factor
of ~1.16; the wrong maximal tilt is predicted. However,
this approximation only considers the leading sinusoidal
contribution to the full chevron profile. For large o the
chevron profile changes from a sinusoidal to a solitonlike
form. In fact, it is surprising that in the Landau theory
such a good result is obtained. Nevertheless, we expect
the conclusions about universality to be more generally
true.

In the case y, =y, the threshold condition simplifies to
0,.=0, where

_ergom’l? _ er?

- . (1n
K, 2N '

g9

This condition is equivalent to the result of the Limat-
Prost approach [7]. In the Appendix we discuss in more
detail the relationship between our calculations and those
of Limat and Prost. Recent experiments [5,6] suggest
that € <0.01. Hence for conventional circumstances the
condition o ~o, holds, except near the Sm-A -Sm-C
transition.
The chevron free energy close to the threshold in the
limit € << 1 is given by
G—G. . — o? 2762, (0 —0, )
book ~ 43 3 P
The strain imposed by the surface mismatch can also be
depressed by formation of the tilted structure shown in
Fig. 1. In this structure the smectic layers tend to be
tilted at the angle 6, to satisfy the positional boundary
condition. The elastic deformations are localized at the
substrate-LC interface. In the strong anchoring regime
the free energy of the tilted structure is approximately
half the free energy of the chevron structure [7]. Howev-
er, the tilted structure requires the smectic layers to slip

(12)

is either sufficiently energetically costly or sufficiently
slow that chevron formation is preferred. Only in the re-
gime where the chevron structure cannot exist does the
tilted structure occur [6,7]. In particular, it persists
below o, because of its lower deformational free energy.

To study the lower limits of the tilted structure ex-
istence we follow the same procedure as for the chevron
structure, lifting the layer nonslip constraint. In this case
0 can be expressed as

0= 6Xsin(2kmp)+ 3 6F'cos[(2k + Lymp] .
k=1 k=0

The mode that first destabilizes the bookshelf structure is
now 6\%'cos(mp). This occurs when condition Eq. (6b) is
fulfilled. The corresponding amplitude 6! evolves ac-
cording to Eq. (10) if we replace o, by o,.

B. The chevron structure at high chevron number

In order to study the chevron structure for arbitrary
values of model parameters we have carried out a numer-
ical study of the solutions of Egs. (5). The chevron struc-
ture in different stages of development is shown in Fig. 3.
With increasing o, the structure of 8(p) changes from a
sinusoidal to a solitonlike solution. For ¢ >>1 the chev-
ron amplitude approaches 8, =cos !(1—e€). Just
beyond the chevron transition the elastic distortions are
spread across the whole cell. For higher values of the
chevron number the distortions become localized at the
substrate-LC interface and in the middle of the cell. This
is evident from the plot of the elastic free energy density
g(p), shown in Fig. 3(c).

In Fig. 3(d) the deviation of our model from the contin-
uum approach is shown. The deviations are strongest in
the middle of the cell and at bounding plates where the
elastic deformations are large. The maximal deviation is
given by H(a,0)=[a —1+1/(1—¢€)]/a. For the case of
equal smectic elastic constants it simplifies to
H(1,0)=1/(1—¢€). We see that for € <0.01 (the regime
in which recent experiments were carried out) the contin-
uum approach is excellent since maximal departure is less
than 1%.

The evolution of the chevron and tilted structure or-
dering is demonstrated in Fig. 4, in which we plot the
spatial dependence of 6./6,, and 6, /6,,. The amplitudes
are given by 6. =6(p=1) and 6,=6(p=0), where 6(p)
denotes the chevron or tilted director profile. Note the
onset of chevron structure at o =o,=1 and the tilted
structure at 0 =o,=+. For o <o, only the bookshelf
structure can exist. Our numerical studies confirm the
analytical conclusions that it is essentially only the chev-
ron number ¢ which determines the chevron structure.
In Fig. 4 we show the effect of a variation in the parame-
ter a;=K-; /K, on the behavior of 8./6,,. The relative



50 LANDAU-de GENNES THEORY OF THE CHEVRON STRUCTURE. ..

deviations from the curves shown caused by a choice of
different y, /v, or € values are much weaker.

IV. WEAK ANCHORING

The results of the previous section are valid in the case
of strong anchoring, in which the surface director orien-
tation is constrained to be planar. In the case of weak an-
choring the director field at the LC-substrate interface is
allowed to come out of the surface plane. The final direc-
tor orientation is now a compromise between LC elastic
and anchoring forces.

There are two physical effects which follow from the
possibility of weak anchoring. First, the departure of 6
from the easy direction, which minimizes the anchoring
term, reduces the distortion field at the bounding plates.
Thus for very weak anchoring the major contribution to
the elastic free energy is localized in the center of the cell.

9/G

2945

Secondly, in the weak anchoring regime it is easier for the
LC to deform its structure at the LC-substrate interface.
The strain threshold value for the chevron formation is
thus depressed. The lower limit of o .(Wy)=0 . (W;=0)
can easily be obtained analytically. For W,=0 the
boundary conditions read 06/3p(—0.5)=086/3dp(0.5)
=0, allowing =3 _, 6F’sin(kmp). The lowest energy
mode, which destabilizes the bookshelf structure, is then
0=0'Ysin(pr), corresponding to the threshold condition
0=0.(0)=1. The amplitude 6"’ ~6, obeys Eq. (10)
where o, =0 (0).

It is convenient to have a nondimensional measure of
the anchoring strength W,. In practice it is more useful
to work with the surface extrapolation length A, < 1/W,
which is zero at strong anchoring. We define the quanti-
ty u=A, /L as a nondimensional measure of W,,.

In Fig. 5 we show a high o chevron structure for
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FIG. 3. The chevron structure for different values of the chevron number: (a) 8(p)/6,,, (b) u(p), (c) g(p)/G [G= f g(p)dp]. In
(d) the departures H (a,p) from the continuum approximation are shown in which H(a,p)=1. Full line: 0 =2, dashed line: =20,
dash-dotted line: o =200. In all cases a;=a =1, €=0.01, and A; =0, corresponding to strong anchoring.
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2 4 6 8 10
g

FIG. 4. The chevron and tilted structure evolution. Depen-
dence of 6,/6,, on o, i={c,t}. Full line: a =a;=1, €=0.01;
dashed line: a =1, a;=10, €=0.01. The dotted lines present
the structure of the chevron and tilted structure amplitude in
the case a =a;=1, as predicted by the approximate universal
curve given by Eq. (10). Strong anchoring.

several different anchoring strengths. In Fig. 6 we plot
the threshold value o,,i ={c,?}, as a function of o,. As
W, is decreased and u is increased the critical chevron
number drops from o ,()=1to o,(0)=1. We note also
that the critical value for the tilted structure drops from
0,()=1 to 0,(0)=0. The significance of this last re-
sult is that if the director at the surface may reorient free-
ly there is no longer any energy barrier to layer tilt, and
consequently the critical chevron number goes to zero.

V. THERMAL HYSTERESIS

There are experiments which suggest that the chevron
and tilted structures in some circumstances experience
thermal hysteresis behavior [5,6]. This seems to depend
on the LC phase sequence, the cell thickness, and the
thermal history of the sample. In this section we show
that the surface memory effect (SME) [15] may be respon-
sible for some of these observations.

Ouchi et al. [6] have studied chevron structure as a
function of temperature in the liquid crystal 40.8. In a
thick cell (L ~25 pum) chevron onset occurs at T =T.(L)
on cooling, and at T =T,(L) on heating, with
T.(L)<T,(L)~Ty,. The chevron amplitude on heating
is approximately twice the amplitude on cooling. As T is
decreased there is a phase transition from Sm-4 to Sm-B
phase. At the phase transition the chevron structure sud-
denly collapses and the bookshelf structure is reesta-
blished. When the cell thickness is reduced the cooling
chevron branch is only weakly influenced. By contrast,
the chevron amplitude of the heating branch is drastical-
ly reduced and T,(L) becomes apparently lower than
T.(L).

This behavior can be partly explained in the following
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(a)

9/G

FIG. 5. The chevron structure for different orientational an-

choring strengths: (a) 6(p)/6,,, b) u(p), ) r(p)=glp)/G
[G= | g(p)dp]. Full line: L/A,=1; dashed line: L /A,=10;
dash-dotted line: L/A,;=100. In all cases L2/A2=10°%

a=a;=1,€=0.01, and o =20.
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g;

20 40 60 80 100

L/As

FIG. 6. The effect of the surface anchoring strength on onset
a; of the chevron (i =c) and tilted (i =t) structures in the case
a =a;=1. Full line: chevron; dashed line: tilted structure.

way. Following Durand [16] and Cagnon and Durand
[17], we believe that the surface positional ordering with
periodicity g is not an inherent property of bounding
plates. But wetting the plates with a smectic phase in-
duces a “fingerprint” surface periodicity. This picture is
consistent with observations of Rieker et al. 1], who find
that the chevron tilt angle is almost independent of the
surface treatment.

Our model of the hysteresis phenomenon is as follows.
On entering the Sm-A phase on cooling, the smectic
bookshelf layered structure establishes a surface potential
of periodicity d, =dy(Ty,)~2.8044 nm. Let us assume
that on cooling the intrinsic smectic layer thickness
dy(T) shrinks, as is indicated by x-ray data [6]. However,
if the smectic compressibility constant is not large
enough it is not possible during the experiment to rear-
range the surface periodicity to match the new minimal
free energy bulk bookshelf configuration. The surface po-
sitional ordering is frozen in with periodicity d;. The
discrepancy between d; and d,(T) imposes strain

€.(T)=1—dy(T)/d,=1—do(T)/d(Ty,) .

The chevron structure forms when the condition o =0,
is satisfied. Near the threshold a maximal chevron_tilt
angle 0,, is strongly dependent on €[0,,(€ <<1)~V2¢].
Thus even a relatively small imposed strain can cause a
pronounced chevron tilt. Once the chevron structure is
formed, the tendency of the liquid crystal to rearrange
the surface periodicity is decreased.

We now estimate T,.(L) corresponding to the chevron
onset condition. We assume the following simplification
in the Sm-A4 phase: (i) we suppose strong anchoring,
A, =0; (ii) we set y =y, =7, (iii) we assume that close to

Tys MT)~nV(Tyy—T)/Ty,, and (iv) the layer
thickness  shrinks  linearly  with  temperature:
dy(T)=dy(Ty,)—8(Ty,—T). The strain €(T) is now
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given by €~8(Ty,—T)/dy(Ty,). We introduce the

quantity Ay=An= V'K n/ly “q% ), whose temperature
variation can be neglected. The chevron forms when

o=eL?/(2m?A3)

=(Ty,—T,)8L* % /(Ty 4do2m*A3)=1, (13a)
yielding
172
_ 77')\.0 2TNA do
AT, =Ty, T‘_noL 3
203
(13b)

=T —_—,
N e (T, )ym3L?

where €, describes the strain e at T=T,.
On entering the Sm-B phase K;; and hence A, diverges
[18]. The chevron number

log ~00=(ey”q(2,772L2)/(2172K” )

drops abruptly to zero. Now o <o, and the chevron
structure is replaced by the bookshelf geometry. In the
Sm-B phase the equilibrium smectic layer spacing sud-
denly increases [6] to d =dz ~2.8317 nm. The compres-
sibility in the Sm-B phase is larger than in the Sm-A4
phase. If it is large enough it rearranges the surface to
exhibit periodicity d; ~dp minimizing the Sy bulk free
energy, and in fact this does occur experimentally.

If the sample is then heated it reenters the Sm-A4
phase. However, because of the relatively weak layer
compressibility in the Sm-A phase, it is the surface
periodicity established in the Sm-B phase, with d,=dp,
which is now frozen in. On heating the strain imposed is

e (T)=1—dy(T)/dy>€,(T) .

In this case we neglect its temperature variation. The
chevron onset requires

o=¢€,L*n?/(2m*\3)

=€, LTy, —Ty)/(Ty 2703 =1, (13c)
yielding
ATh=TNA—Th=TNA—27—?%7 . (13d)
€xMoL

Equations (13) are consistent with the following experi-
mental observations for thick cells (L >20 um): (i) since
€,>€. we expect T,>T,., (i) for large L values
T,~T.~Ty,,and (ii) 6,,(€,)>0,,(€.).

To estimate the temperature shift AT, we set A;~2.5
nm, 7,~1, §~0.007 nm/15°C, Ty ,=63°C and d,~3
nm. For this reasonable choice of parameters [6,17,19] in
a cell with L =25 um we find the temperature shift
AT_.~0.5°C which is in agreement with the experimental
result. The experimentally determined chevron ampli-
tude evolution suggests

em(eh )/em(ec)N‘/eh /6c~2 .

Therefore €, ~4¢€,. and
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AT, (25 um)/AT.(25 #m)~~zi~T
h
in accordance with experiment.

With decreased cell thickness the chevron amplitude of
the heating branch decreases and approaches the ampli-
tude of the cooling branch. This suggest that the bulk
Sm-B influence is losing its dominance over the surface
positional ordering. This is understandable since the
bulk elastic free energy of the bookshelf geometry is pro-
portional to L while the surface interaction is indepen-
dent of the cell thickness. The surface ordering is deter-
mined by a compromise between the Sm-B phase requir-
ing dg and the surface tendency to keep the memorized
pattern d,~dy(Ty,). Experiment indicates that the
latter influence becomes dominant at L =20 ym.

This competition in the Sm-B phase can be roughly
studied by expressing the free energy per unit surface in
the bookshelf geometry as

F(g)= f,,{‘:z/wf(r)dx~L7’B772(q —qp)’+W,(qg—q,)
(14)

where g, is the frozen-in periodicity at the surface, v,
describes a compressibility in the Sm-B phase, and
gg=2m/dy. The second term in Eq. (14) models the sur-
face positional anchoring. Its strength is measured by a
constant W), tending to match g with the frozen pattern
qr~2m/dl TNA ). We can now define a length scale
A=W, /(y gn?), and a dimensionless ratio k=L /A, If
K>>1 bulk effects should dominate, whereas if k <<1 sur-
face effects are stronger.
The value of ¢ minimizing Eq. (14) is

_ qpk T4y,
1+«k

(15)

Thus, from Eq. (15) we see that for large values of k the
interface experiences periodicity ¢ ~¢ and for small «
values ¢ ~q,. We emphasize, however, that these con-
siderations are only qualitative and do not in any sense
constitute a detailed theory, which would require con-
sideration of local potentials.

The picture outlined in Egs. (13) no longer works for
thin samples in which the periodicity is determined by
the surface rather than by the bulk Sm-B phase. In fact
experimentally this is also the case. For thick samples
AT.> AT,, whereas for thin samples AT, <AT,. We do
not have a detailed calculational scheme to describe this.
However, we believe that the fact that substantially more
defects are observed on heating than on cooling may be
relevant. This may weaken the smectic phase, or
equivalently 7, may be reduced. Now from Eq. (13d)
T,(L) will be reduced. The observed difference in the
number of defects such as focal conics indicates that at
any given temperature the configuration is subject to
larger strain when it is heated. This is consistent with
our numerical experience. We find that on approaching
the o ~ o, regime the numerical calculations proceed ex-
tremely slowly, indicating a shallow potential. It seems
possible that the experiment does not track the minimal
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energy configuration, at least close to o.. This “retarda-
tion” can cause a substantially more strained structure on
heating than on cooling. The strain is partially relieved
by defect formation.

VI. THE ENERGY BARRIER BETWEEN THE CHEVRON
AND THE TILTED STRUCTURE

In our calculations the free energy of the tilted struc-
ture is always lower than that of the chevron structure.
Experimentally, nevertheless, it seems that if the LC is
subjected to strain € it always adopts the chevron
configuration. Only in the case that the chevron cannot
exist (o <o) is the tilted structure realized. The realiza-
tion of the tilted structure would require slipping of
smectic layers at the LC-substrate interface. We believe
that slipping causes rigid shifting of the surface positional
ordering. The surface pattern follows the slipping of the
LC, retaining periodicity g. This picture is consistent
with the experimental observation [6] demonstrating con-
tinuous evolution of the tilted structure with tempera-
ture. Either the energy required for this process is very
high or the slipping procedure is extremely slow. In any
event chevron formation dominates.

In order to demonstrate that the formation of the tilted
structure is very unlikely we estimate the upper bound of
the energy barrier between the chevron and the tilted
structure by considering another possible channel for the
chevron-tilted transition. The chevron structure can con-
tinuously transform to the slipped structure via an inter-
mediate state in which a part of the chevron structure is
melted. This enables continuous rearrangement of parts
separated by the melted region to the tilted structure.
The most probable melting location is either the chevron
tip or the interface region where the elastic deformation
is high. Since the surface is believed to enhance [16,17]
smectic ordering, the melting is more likely to take place
in the middle of the cell. This process has been observed
to occur when two sides of a cell containing Sm- 4 ma-
terial are sheared with respect to each other [17].

To study this intermediate state we add to Eq. (1) the
bulk smectic free energy contribution f%":

Fio=—at|y)? +BW' /3’77 (16)

—atn+
Here t =(—T +Ty,)/Ty, and a,B denote material con-
stants. The minimum bulk smectic contribution corre-
sponds to n=1, =V at /B, yielding f!*'= )2/(2P).

We simplify the problem by setting y =y =y, and
K =K;;=K,,| and assume a strong anchoring condition.
The total free energy per unit surface F, already mini-
mized through du /dx, is then

L2
F= fAL/Zf(x,”r])dx

:fL/Z K |06 + £ +ynPqd(1—e—cosh)?
-L2| 2 |dx
+y dn de . a7
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We assume that the intermediate state of the
tilted—chevron-structure transition consists of the melted
(nematic) region in the center of the cell extending over
the size 2£. The distance over which the smectic order
parameter is recovered is of the order of the smectic
coherence length [9] £=V'y/(at)=(1/79,)Vy/B. The
remaining part of the cell is set to be in the bookshelf
configuration with n=7,. Finally we approximate the
last term in Eq. (17) by [ (d7n/dx)%dx ~2£(n,/€)*. The
corresponding approximate expression for the free energy
F ... per unit surface of the melted structure is

2
M
Fran = [r"(m,)+vadmie’ (L —28)+2v¢ E
=Lf"n,)
2.2 2 2§_ 3__£
*traomlL (€ |17 ETEN (18)

We are going to compare F, ., relatively to the free ener-
gy per unit surface F ., of the chevron structure. To es-
timate F_., we assume (i) a well-developed chevron
structure, (ii) that 6 recovers linearly from 6=0 at the
bonding plates and in the middle of the cell to its saturat-
ed value 8=~V'2e on the scale described by the smectic
penetration depth A=(1 /MV'K/ (yq3), and (iii) that
n=1, in the whole cell. With this in mind we obtain

2
L/2 K | 36
Fchev~f_L/2 f(nb)+2 Ax
LSy )+ 2
— 7 pb) 2.2 A
=Lf"(n,)+vqsnsL 4ef] . (19)

We define

_ Fmelt_Lfs(b)(nb)

* Feper—Lf®An,)
€X(1—2&/L)+(3/q3L2*)L /€)

- 4er/L

as a measure of the energy barrier between the tilted and
chevron structures.

We further assume the A=(1/7, )\/K/(yq(z)) and
£=(1/m,)V'y /B values to be the same. Defining dimen-
sionless quantities y =L /E=L /A, §=1/(q3L?), the ex-
pression for B can be rewritten as

_ Ay —2)+38%?
de '

(20)

B (21)

The barrier ratio B (y) is plotted in Fig. 7. The value of y
extends from y =0 at T =T 4 to y > 10* deep in the Sm-
A phase. The chevron condition o =1 translates to a
condition that y >4 /¢, and we only plot B(y) in this re-
gime. The energy barrier is evidently relatively large
compared to the chevron free energy, indicating that this
process is unlikely to happen in practice.
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FIG. 7. Plot of B(y) measuring the energy barrier for the
chevron-tilted-structure transformation via melting of the tip
of the chevron structure. In the calculations we set d =3 nm
and €=0.01. Full line: §=10"* (corresponding to L ~5 um);
dotted line: §=10"° (L =50 um).

VII. SURFACE DISLOCATIONS

In this paper we have discussed the smectic structures
induced in a thin layer caused by a mismatch between
spatial periodicities favored by the surface and by the
bulk. The mechanism for this mismatch is that the sur-
face periodicity is in some sense frozen in, whereas the
bulk periodicity is—at least weakly—temperature
dependent.

Only in Sec V, and then not in detail, have we dis-
cussed the process whereby the surface periodicity can
affect a bulk structure. In Sec. V we have introduced a
surface potential W, which favors a periodicity at the
surface with wave number g,. We have suggested that
the smectic periodicity ¢ in a cell will involve a
compromise between surface and bulk tendencies.

In fact it seems likely that the equilibrium
configuration can be more complicated still and involve
domain structures which are inhomogeneous in the z
direction as well as the x direction. Such structures,
which will have some solitonlike properties, will be
affected by bulk constraints in the center of the cell but
surface constraints close to the walls. This will lead to lo-
calized layer bending and squashing close to the wall.

In the cases we consider e=1—d,/d; >0 and some
strain can always be relieved by bending layers. Howev-
er, if € <O this is not a possibility and we can use this case
to consider in principle general classes of surface
configuration.

Depending on the strength of W, it seems likely that at
least three qualitatively different configurations exist.

(i) When positional anchoring is not present the layers
adopt an undistorted bookshelf layer configuration. With
increased W, one possible way to release the imposed
strain is by local layer rearrangement at the bounding
plates. The resulting layer displacement field experiences
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a solitonlike profile at x ~=*=L /2 in the z direction ena-
bling a partial satisfaction of the positional boundary
condition.

(ii) When W, is further increased the LC distortion at
the surface progressively increases. At a critical value
W,~W," edge dislocations are incorporated into the
layer structure. Dislocation axes, surrounded by a core
of nematic liquid, are running along the y coordinate.
The density of dislocations per unit length in the z direc-
tion is roughly n(e)~e/d,.

(iii) At W, ~ Wlﬁz) > W[‘,” the surface potential is strong
enough to unbind dislocations from the bounding plates
towards the cell interior. In this strong positional an-
choring regime the shift Ax(W),) of edge locations from
the bonding plates depends on W,. If Ax(W,)~L/2
dislocations originating from different bounding plates
might merge, forming again a dislocation-free bookshelf
structure.

This general scenario is reminiscent of wetting, in
which strong surface potentials induce a new surface
phase [20]. The picture we have just outlined may also
occur if €>0, but now there are extra complications
caused by the competition with layer tilt. We shall re-
turn to this problem in a future publication.

VIII. CONCLUSIONS

In this paper we have made a careful study of the way
in which surface strain, or mismatch between the layer
periodicities in the bulk and the surface, can induce chev-
ron and tilted structures in smectic- A materials. Using
the Landau-de Gennes free energy, we have shown that
the formation and evolution of structures exhibits almost
universal behavior as a function of a dimensionless pa-
rameter o which we call the chevron number, where

N

Y1

_ 57’||q(2)"72L2
o=—017

5 1+e€
27K |,

1

We have found threshold values o, and o, for the for-
mation of the chevron structure and the tilted structure,
respectively. Despite the experimental observation that
chevron formation is more common than layer tilt, in
general o, >o0,.

Chevron and tilt formation is favored, evidently by
high strain, but also by high smectic order parameter,
high cell thickness, low nematic splay elastic constant,
and proprinquity to the onset of the smectic-C phase.
The underlying physical reason for chevron formation is
that this is a mechanism to localize and hence reduce the
strain caused by the layer mismatch.

The relative  amplitude 6,/6,, behaves as
6:/6,,~V (d—0,)/0, where i={c,t} refers to the
chevron and the tilted structure. The chevron number o
experiences drastic temperature variation near (i) the
Sm-A - N second order transition where 7 tends to zero,
(ii) the Sm- 4 —-Sm-C transition where y /v, diverges, and
(iii) the Sm- 4 —Sm-B transition where K, diverges. The
threshold values o.,0, do not depend on K3, since the
structures form via splay deformation. The bend elastic
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constant becomes important at later stages of the evolu-
tion.

For strong anchoring 0. =1 and o,=. Weaker an-
choring strength diminishes elastic distortions at the
bounding plates. As a consequence the threshold values
o, and o, decrease. In the limit W,—0 they tend to
o.=+ando,=0.

Since the triggering parameter o depends on 7, the
structures can even form discontinuously at a first order
N -Sm- A phase transition. However, the necessary re-
quirement for this is that at the phase transition the
strain is already imposed and that o >o; this presup-
poses some sort of surface memory effect.

We have also made a qualitative analysis of hysteretic
behavior associated with chevron formation and disap-
pearance observed in recent experiments [5,6]. Our ex-
planation is based (i) on the assumption that the smectic
phase can establish a spatially periodic surface potential
[16] and (ii) on the surface memory effect [15]. However,
the clarification of the observed phenomena requires a
more profound study.

The mechanism of the tilted structure formation is still
unclear. Although its LC deformation is far lower than
the chevron one, in practice the chevron structure is ob-
served if it can exist. This indicates that it is kinematical-
ly difficult to reach the tilted structure. We suggest that
formation of the tilted structure would require sliding of
the established surface positional potential. This is either
extremely slow or energetically costly so that the chevron
structure is formed instead. In order to estimate the
upper limit of the energy barrier separating the chevron
and tilted structures we have considered the case when
the transition between them is realized via melting at the
chevron tip.

There are also other ways through which LC’s can at
least partly relax the mismatch between the surface po-
tential anchoring and the spatial periodicity favored by a
Sm-A phase. We have discussed the case where the
strain imposed is relieved by forming domainlike struc-
tures. The qualitative appearance of these structures de-
pends on the strength of the surface positional potential.
In contrast to the chevron and tilted configurations, the
domainlike structures are also possible for € <0. These
phenomena, which bear some resemblance to the statisti-
cal mechanics of wetting, require extensive further
analysis.

There are many other systems which relax imposed
strain in a chevronlike way. In our paper we have em-
phasized the similarity with Freedericksz transitions in
nematic liquid crystals [9]. Limat and Prost [7] pointed
out the analogy to Helfrich deformation in a Sm- 4 film.
This problem has been recently studied in detail by
Singer [21], who has observed that such phenomena are
characteristic of all two dimensional systems whose in-
herent one dimensional order parameter spatial variation
is perturbed.

In the future we shall extend this study to consider
chevron formation in Sm-C materials. This case, al-
though in principle similar to the case considered in this
paper, presents considerable technical difficulties result-
ing from the increased number of relevant variables. This
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case, however, is of considerable interest in view of its
significance in the context of ferroelectric liquid crystal
display device construction.
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APPENDIX: THE LIMAT-PROST MODEL

In this Appendix we briefly describe the relationship
between our free energy formulation Eq. (3) and the for-
mulation used by Limat and Prost [7]. Assuming strong
anchoring boundary condition the (scaled) local free ener-
gy density is

g=8,(p)+gp), (A1)
where
1|98 2 .2
8.(p) 2 |9 (cos“0+a;sin®G) , (A2)
L2
gs(p)———?{a(w cosf—sinf)}(1—e)?
+[(1—€)w sinf+cosh)—11?} .  (A3)

We first consider the nematic contribution g,(p). If 0 is

assumed small
cos?0+a;sin’0~ 1+(a; —1)6? (A4)

and hence to leading order in 6 the nematic contribution
to the free energy is simply given by
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2
_1 a0

3 (A5)

This term favors a uniform director.

The smectic contribution consists of two parts, the first
of which is proportional to a=y,/y and is concerned
with local departures of the director from the layer nor-
mal. We simply ignore this by supposing that these
departures are not present and w =tanf everywhere.
Technically, however, this involves taking the limit
a— o, and it is not clear how the formal product of a
large elastic constant and small consequent fluctuations
will work out. We are left with the second part, which
comes from departures of the layer thickness from its
equilibrium value. We substitute w =tan6 to obtain

2
L? sin%6
== |(1— + —1
g(p 32 (1—e) os0 cosf
2
L? |1—¢
=— -1 . A
A2 | cosO ] i
In the limit of small 6
92
(cos6)_1~1+7, (A7)
and hence Eq. (A7) reduces to
_L*|¢
g(p)= 2 |2 € (A8B)
Combining Egs. (A5) and (A8) we obtain
1{ae ), 2| &)
= | — + —_ —_—
glp 2 |3 P € 5 , (A9)

which is the free energy used by Limat and Prost.
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