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Maxwell equations in nematic liquid crystals
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A complete set of hydrodynamic equations, rigorously describing the behavior of both nematic
liquid crystals and electromagnetic 6elds, is derived and presented. The Seld dissipation in nematics
is rather more complicated than could be accounted for by e and p being complex. The symmetric,
total stress tensor includes Seld anisotropy, Bexoelectricity, and the ponderomotive force. Boundary
conditions and experimental consequences are outlined.

PACS number(s): 61.30.—v, 41.20.Bt

The macroscopic Maxwell equations [1]

D=cVxH —j', B= —coax EM

can be conveniently considered as the equations of motion
for D and B, two fields that are constrained to satisfy
V . D = p', V ~ B = 0 at all times. The 6elds
H and E then need to be expressed in D and B to
render Eqs. (1) closed. Usually, one either takes HM
and EM as real functions of B and D, which neglects
dissipation in insulators, or takes HM = B/(@II + iyl), ,

E = D/(&II + i@I) for a given frequency, valid only in
the linear regime of weak 6elds. Recently, the nonlinear
yet dissipative relationships

H =H —ocV x E, E =E+PcV x H (2)

HM = H+HD EM E+ ED (3)

with D referring to dissipation, E and H are gener-
ally more complicated than in Eqs. (2) and depend on
additional dissipative forces. In nematics, we shall find
the gradient of the temperature VT, the shear Bow v;~,
and the nematic molecular field 4' to contribute linearly
to E and H . Obviously, this fact cannot be accounted
for by the quantities pl and eI, however weak the fields
are. [This more general dependence may be considered

were derived for the stationary, isotropic, polarizable and
magnetizable liquid [2]. Note the difFerence between
HM, EM, and H—:Bs/BB, E—:Bc/BD, respectively, s
being the energy density: The former are the general,
nonequilibrium M(axwell) fields, defined by Eqs. (1), the
latter are equations of state and contain only equilibrium
information. Generally, H and E are nonlinear functions
of all the thermodynamic variables, especially D and B.
The dissipative terms acV x E and PcV x H are of dif-
ferent parity under time reversal than H and E, respec-
tively, and account for damping in Eqs. (1) irrespective of
the constitutive equations. In the linear regime, Eqs. (2)
naturally reduce to a complex e and p, : Expanding H and
E for an electromagnetic wave of amplitude D B and
of frequency (d = cg, oIle obta1I1s @II = B/H) eII = D/E,
Pl = 4PO'PR, El = 4)~ER-

There is another, maybe more important advantage of
Eqs. (2): it can be readily generalized to systems with
broken symmetries. Denoting

ds = pdp+ Tds+ v . dg + Qv dV, n; + p, dn, .

+H dB+ E dD. (4)

(Note that g is not the conserved, total Inomentum den-
sity, gt ~ = g+D x B/c = pv+E x H/c. The difference

as the nonequilibrium extension of fiexoelectricity [3—5],
which accounts for the thermodynamic dependence of E
on V;ns, cf. Eq. (6) below. ]

The experimental consequences of these couplings are
numerous and warrant detailed study. Foremost is the
possibility to create or modify external fields by inhomo-
geneities in temperature, velocity and @; or vice versa,
to alter the latter by applying electric or magnetic fields.
Then there are ramifications for stationary situations, in
which suitable boundary conditions induce finite VT, v;~
or %. Being proportional to these, H~, ED g 0 even
in the absence of applied fields. As a result, the static
Maxwell equations V x H = 0, V x E = 0 are not valid,
yet are customarily employed [6—8].

The derivation, presentation, and consideration of the
Maxwell equations in the nematics, more specifically of
the expressions for H and E, is the purpose of this
paper. However, this task can, and will, only be tack-
led simultaneously with the study of nematodynamics in
the presence of fields. Especially, the total stress tensor
(including field anisotropy, fiexoelectricity, the Maxwell
tensor and its dissipative part) is derived and shown to
be symmetric. As a corollary, a hydrodynamically exact
expression for the ponderomotive force, valid even out
of equilibrium [3,8,9], is obtained. Part of it is, rather
naturally, proportional to the spatial derivative of E
and H+. The paper is divided into four sections: The
introductory part ends here. Next is statics, including
thermodynamics, equilibrium conditions, and the iden-
tification of the irreversible thermodynamic forces, both
for the fields and the nematic degrees of freedom. Dy-
namics is third, with separate considerations for the re-
active and dissipative terms in the hydrodynamic 6eld
equations, including the Maxwell equations. The expres-
sions for E,8, and for the total stress tensor are to
be found here. Finally, experimental consequences and
boundary conditions are brieBy discussed.

The statics. The energy density c is a function of the
director n, its spatial derivative, the fields B and D, and
of the densities of mass p, entropy s, and momentum g
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results from the Lorentz transformation behavior of the
fields and was discussed in detail in Ref. [9]: H and E
are the respective conjugate variables of B and D only
if g is held constant; holding instead g ' constant, the
conjugate variables would be the respective fields in the
rest frame. ) In equilibrium, maximizing the total entropy
with appropriate constrains, we obtain a constant chem-
ical potential p and the vanishing of all the thermody-
namic forces: VT, n x N, V'xH, VxE, v,-z
[2,4,5]. The following notations apply: the molecular
field 4'; = p, —V~/, ~, the shear flow v,~

= (V, v~ +
V~v;)/2, and the superscript 0 denotes rest frame quan-
tities. Off equilibrium, the rate B of entropy production
is a quadratic function of these forces. In conductors,
E = 0 supplants V x E = 0; in bad conductors both
terms are needed: the latter is more quickly reached,

while the erst accounts for the true equilibrium condi-
tion.

Rotating the coordinate system, or equivalently all the
vectors and tensors of Eq. (4), must not change the en-
ergy density. This yields the useful rotation identity [4],
valid even out of equilibrium:

(E x D+H x B+ v x g+ y x n),

+eijk(glj Vk~l + i/ jlVl~k) = 0 (5)

Assuming weak Gelds, we can obtain concrete expressions
for the conjugate variables O', H, E by expand-
ing the rest frame energy Ae = e —e (p, s) to second
order in V;n~, 0, and 8 .

flge' = [K,,kiV, n, Vkni+(p '),,B,'B'+(e ), D D ]/2+&i 'D' ~ ~+'2

and then taking the respective derivative. [The suscep-
tibilities K;ikt, (p i);~, and (e i);~ have the usual form
[4,5].] The hydrodynamic equations given below, how-
ever, are valid independent of Eq. (6). The flexoelectric
coefficients 8; enter the constitutive equation E(D) and
allow for an E field even if D vanishes [4,5,10]. The flexo-
electric coefficients (along with the field anisotropy) also
enter the molecular Beld 4', rendering it dependent on
D. This fact (the neglect of which conveys the wrong im-
pression that the stress tensor is not symmetric) does not
seem to be widely recognized [8]. Flexomagnetism enters
Eq. (6) in higher than the considered order.

The Dynamics Given the. thermodynamics, Eq. (4),
and the irreversible forces, the hydrodynamic Geld equa-
tions can be derived employing the "standard hydrody-
namic procedures": calculate e via Eq. (4) and require
the result to become V . Q, where Q is the energy flux.
This is indeed how the usual nematodynamics [4,5,11]
and the Maxwell equations for isotropic liquids [2] were
derived. A simultaneous derivation is what has been car-
ried out here. The resultant equations, in addition to the
Maxwell equations, Eqs. (1) and (3), are

where the reactive part of the stress tensor (of the total
and conserved momentum density g

' = g+ D x B/c)
is given as

H,, = (Ts+ pp+ v g+ E D+ H B —r)6,~

+g, v~ —E,D~ —H, B~ + II,"-'- (9)

V;nkQk, + {g,kVkn, —g,kVkn, + n, P, —n, P,

Vk[(n;g—k, —nk@,, )
. + (i m j)])/2

of which the very last term (i ~ j) was added in by hand,
permissible since V~Vk(i ~ j) = 0. With Eq. (5), II,~
now takes the symmetrized form

and as usual, II,"™= V,nkgk, + (4', n, —4,n~)/2 To.
show that II,~ can be brought into an equivalent sym-
metric form, II,~

= II~, , one can rewrite II,"' as

p+ V(pv) = 0, (Ts+ pp+ v g+E D+H B —e)8,~

n x [n+ (vV)n+ n x (V x v)/2] + Y = 0,

s+ V(sv —f ) = R/T,

+(9"Pr~. —E Dg —H Bg + V nkQkg —'Vk[n'Skag

—nkvd;, ]j/2+ {i ++ j).

B&(g + D x B/c), + V, (II,, —IID) = 0, (8)
Equations (1,3,8) can be combined to obtain the proper
expression for the ponderomotive force

Pdt(9'/P) + V;(Ts + PP + v . g —e) + E,V;D, +Hi V,B, . .

= (p'E+ j' x B/c); —V, (II,". ' —II, ) + (B x V x H + D x V' x E );. (10)
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The 6rst term on the left, with the material derivative
dq

——Oq + v;V'i, contains both the acceleration and the
Abraham force [3]. The second term appears to be the
simple generalization of the pressure, while the third and
fourth act, respectively, as part of the electric and mag-
netic ponderomotive force. This interpretation, however,
is far from unique: These three terms combine to yield

DEi = pijlvjl + where (14)

of classification, therefore, becomes somewhat pointless.
However, one should note that a 6nite equilibrium E 6eld
allows a coupling that invalidates the above block diago-
nal form,

V;(Ts+ pp+ v g —e) + E~V;D, +H. zV;B; 0jl P1Eh 1+0'2En nl+p3(E h) +El' )
+@4(Ezn;nt + Etn'nq) + ysE EqE'I. (15)

= sV,T+ pV;@+g~V;v~ —/A~V;~ni, —y, V;n~,

another innocuously looking generalization of (the gra-
dient of) the pressure. (The formula, of course, remains
unique and is not adversely affected by the ambiguity
in identifying the pressure, not really a useful concept in
the presence of fields. ) New are the last two terms on the
right of Eq. (10), containing H+ and ED, respectively,
which may be interpreted as the dissipative part of the
ponderomotive force; (cf. Eqs. (12) below for the explicit
forms of HD and E+). The counter part in condensed
matter of the I orentz force is obviously given by the first
term, so the force a charged object experiences is E
rather than EM [12].

The explicit form of the dissipative terms in
Eqs. (1,3,7,8), all denoted with superscript D, are ob-
tained from the rate R of entropy production,

R=f VT+II v;, +V . (rix%)+j E'
+E (cVxH ) —H (cVxE ) (11)

of which the fiuxes are expanded in the forces. (The ex-
pression for R is also a result of the hydrodynamic stan-
dard procedure; j = j' —p'v is the dissipative electric
current in the rest kame. ) In the limit of vanishing equi-
librium fields, where only the anisotropy of the nematic
director needs to be considered, a first order expansion
yields

(ED
yD

I' n.,
0

0 ) ((cVxHo), )
I ij Pij V~T-)& E,'

(12)

j —HD
Y.
IID )

rjhT,

h~h'i
—C~'a

( (cV x Eo)~ )
(n x @),.

)
(»)

where h;. —:h;~ —n;n~, A,~~
= A(e;~zn&n& + [j e+ &]),

and C;~t = (p2/2pi)(~ii anent + [j ++ I]), v;y~~ have the
usual forms [4,5,11]. All second rank tensors remain of
the structure o.;j = o.~b,-j + o;~~ninj. Of special interests
are g, A, (~, and

$~~ of which only g is dissipative. They
couple thermodynamic forces to the Maxwell equations,
and vice versa, the 6eld dissipation to nematodynamics.

In the presence of finite equilibrium 6elds, arbitrarily
oriented with respect to n, the system is biaxial and pos-
sesses many more independent elements in the force-Aux
relation. In the absence of ordering and clarifying ex-
perimental data, or of model calculations, the exercise

A finite H field is not as consequential.
Finally, we turn our attention to the experimental con-

sequences and outline the qualitative features here. First,
we examine the boundary conditions: Given Eqs. (1), it
is clear that (baring singular surface charges or currents)
the usual condition of continuity holds for the normal
components of D, B and for the parallel ones ofE,H
A direct consequence of this is: If the nematic surface is
parallel to E,H, it is possible to produce fields out-
side the nematic liquid even if E, H vanish within; alter-
natively, one may modify any pre-existing fields. For in-
stance, to produce or modify an E Geld outside, one may
either enforce a temperature gradient or a shear Bow.
As Eqs. (12) and (14) indicate, these two effects are pa-
rameterized, respectively, by the transport matrices (;~
and pij~. Flow alignment is easily seen as contributing
to p;j~. A static E 6eld sustains a nonvanishing polariza-
tion, say along the director n. A shear fIow perpendicular
to n with a gradient along the field will rotate the polar-
ization somewhat out of the equilibrium orientation and
induce a perpendicular component, which in turn pro-
duces the desired perpendicular electric 6eld E~ outside
the nematics. Assuming a simple relaxation equation for
the polarization P,

P+P x A =hP/7. ,

where 0 is the vorticity and bP the deviation from equi-
librium, one finds eoE& = Pj~7.V~~~vz/2, with P~~ the
equilibrium polarization. Given a large enough value
of the relaxation time 7, the perpendicular field E~
should be easily measurable. If the fIow alignment is the
only mechanism contributing to the transport coefficient
p3 we may identify it with P~~~7 /2eo, which reduces to
E7 (eo —e)/2ee for a linear constitutive relation.

This effect vanishes if the static E field does, but the
analogous H-field effect, given by A;~~ of Eq. (13), does
not. One mechanism for the zero-Beld efFect could be of
steric origin, as in Qexoelectricity; another would arise
from the alignment of the director's permanent magnetic
moment by the vorticity of the shear fIow. The magni-
tude of the first is difficult to evaluate, while the second
is probably much smaller than the finite-field efFect, al-
though detection is possibly facilitated by the absence of
any equilibrium fields.

If, on the other hand, the nematic surface is perpendic-
ular to D or B, then the 6eld outside is strictly given by
the one inside, independent of any thermodynamic forces
such as temperature gradients or shear fIows. So inter-
estingly, in the hydrodynamic theory outlined here, the
variables D and B pair up with the more complicated
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E and H, containing both thermodynamic and dissi-
pative information, to yield the respective vacuum 6elds.

Clearly, it is physically and experimentally rele-
vant to distinguish E from EM, and H from H
Two more examples: The Ohmic current is driven by
E = E+ v x B/c, cf. Eqs. (12), so is the Lorentz force
of, and discussed below, Eq. (10). On the other hand, if

B=0, wehave VxE = Vx(E+E ) =Oandthere
is always a potential 4M, with EM = —V@M. (How-

ever, if V x E does not vanish, this potential must

not be taken as proportional to the Coulomb potential
—f dsxp'/4vrr. )

In more general situations, one has to solve the hy-

drodynamic equations for a given set of boundary con-
ditions —for all hydrodynamic variables including the
electromagnetic Geld. Even if these boundary conditions
are all stationary, oscillatory instabilities occasionally set
in if the deviation from equilibrium exceeds a threshold

[6,7]. As a result, the static Maxwell equations no longer
hold yet are usually employed. (The rationale presum-
ably stems from the constitutive equation D = s(T, n, )E.
So even if T or n, are time dependent, the eKect on D

or E is nonlinearly small. However, as should have be-
come clear by now, this constitutive equation is incorrect,
since D and B participate fully in the linear hydrody-
namics. ) What is more, even in the basic, unstructured
stationary state, before any instability sets in, the clear
ramification of Eqs. (12—14) is that despite stationarity
V x E g 0, V x H g j', rather, one must include V x E
and V x HD.

Two concluding remarks: (i) The approach chosen
here to study the electromagnetic field in nematics is
rather general, based solely on the concepts of irreversible
thermodynamics and broken symmetries. Therefore,
the qualitative features of most results pertain to other
anisotropic systems as well, such as smectics, cholester-
ics, crystals, or the two phases of super6uid He. The
speciGc symmetry of a given system will of course per-
mit different thermodynamic and transport tensors. (ii)
The Maxwell equations presented here are only valid in
the hydrodynamic regime, conGned to ~7;- (& 1, where v;
includes any microscopic relaxation time, especially that
of the polarization and magnetization. This clearly ex-
cludes relevance to optical &equency phenomena.

[1] The Heaviside-Lorentz system of units employed in this

paper is by far the most convenient one in the present
context. It is essentially the Gaussian system, but with all
four 6elds reduced, and all four sources increased, by the
factor of 2~m. In other words, B = B /2~m, similarly
for D, 0, E; while p = 2~zp, similarly for j, P, M.

[2] Mario Liu, Phys. Rev. Lett. 70, 3580 (1993).
[3] L.D. Landau and E.M. Lifshitz, Electrodynamics of Con

tinuous Media (Pergamon, Oxford, 1984).
[4] P.G. DeGennes, The Physics of Liquid Crystals (Claren-

don Press, Oxford, 1975).
[5] S. Chandrasekhar, Liquid Crystals (Cambridge Univer-

sity Press, London, 1992).
[6] L. Kramer, E. Bodenschatz, W. Pesch, W. Whom, and

W. Zimmermann, Liq. Cryst. 5, 699 (1989).
[7] M.C. Cross and P.C. Hohenberg, Rev. Mod. Phys. 65

851 (1993).
[8] U.D. Kini, J. Phys. (France) 2, 2089 (1992).
[9] K. Henjes and M. Liu, Ann. Phys. 223, 243 (1993).

[10] L.M. Blinov, Electro Optical and -Magneto Optical P-rop

erties of Liquid Crystals (John Wiley, New York, 1983).
[11] P.C. Martin, O. Parodi, and P.S. Pershan, Phys. Rev. A

6, 2401 (1972).
[12] The discussion in this paragraph pertains to any continu-

ous media, irrespective of broken symmetries. The differ-
ence to the formulas of Ref. [9], which predates Ref. [2],
arise from the fact that the two terms E and 0 were
conventionally and erroneously set to zero.


