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van der Waals theory for solids
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In analogy with the well-known theory for Huids, a van der Waals theory for solids is proposed.
It is shown that, in agreement with recent predictions, the competition between the van der Waals
loop of the Quid and the van der Waals loop of the solid can produce three different types of phase
diagrams for a simple Quid. This could be of relevance to the phase behavior of colloidal dispersions.

PACS number(s): 64.70.Dv, 64.10.+h, 82.70.—y

I. INTRODUCTION

The van der Waals (vdW) theory [1] is remarkable in
that, although based on very simple ideas about the in-
termolecular interactions, it is nevertheless capable of de-
scribing the complex behavior associated with the liquid-
gas transition, including its critical point, with very sim-
ple algebraic means. As such its value cannot be overes-
timated, not only as a pedagogical tool but also because
it did pave the way to the improved vdW-like theories
which lie at the heart of our present understanding of
the liquid state [2].

Recently it was found, both by simulations [3] and by
theory [4], that a vdW loop can develop not only in the
fluid phase, as in the original vdW theory, but also in
the solid phase. This then suggests that there should
be a solid-phase counterpart to the original fluid-phase
vdW theory. In the present study, we will introduce such
a theory for the vdW loop of the solid and explore its
consequences for the phase diagram. The purpose of this
study is hence to yield a better understanding of the more
exact results of [3,4] and to provide a simple analysis of
the phase behavior of colloidal dispersions for which some
of these phenomena could be observable.

In the following, we recall the approximations behind
the vdW theory (Sec. II) and derive the vdW theory for
the fluid (Sec. III) and the solid (Sec. IV) phases. The
resulting phase behavior is discussed in Sec. V, while our
conclusions are gathered in Sec. VI.

II. THE vdW APPROXIMATION

where P = 1/kjsT with T the temperature and ks Boltz-
mann's constant, and H—:H(I'), the Hamiltonian of our
system, is defined over the phase space I' with j dI' e
denoting the usual canonical partition function. Let Fo
denote the free energy of a reference system with Hamil-
tonian Ho = Ho(I') defined over the same phase space
I' and related to Fa by a relation similar to (2.1). Sub-
tracting both relations we obtain, after some rewriting,

(2.2)

where ()o denotes the canonical average over the refer-
ence system. Using the convexity of the logarithm we
have

P(H Hii)—
) ~—

(l P(H Ho))— —
(2.3)

where the right hand side of (2.3) equals P((H —Ho)—)s,
and combining with (2.2) we obtain

F —Fp & ((H —Hp))p (2.4)

which is the announced Gibbs-Bogoliubov inequality.
Equation (2.4) can be rewritten as

F & Fi ——Fo+ ((H —Hp))(), {2.5)

1F & Fi = Fp + — dri dr2 p2(ri, r2) [V(ri2)
2

where F~ is identical to the first-order expansion of F
around Fo. When K and Ho dier only by the nature of
the pair-potential we have for (2.5)

—pr = in f rti' e ~~i", (2.1)

There are many ways to present the vdW theory. In or-
der to obtain a unified presentation for both the fluid and
the solid phases we will start &om the Gibbs-Bogoliubov
inequality [2] but this is by no means the only way to
proceed. The Gibbs-Bogoliubov inequality itself can also
be derived in various ways. A short derivation goes as
follows. The definition of the Helmholtz free energy F
reads

—V, (r»)], (2.6)

where ri2 ——~ri —r2~, while V(ri2) and Vo(ri2) denote,
respectively, the pair potential of the system and of the
reference system, and p2(ri, r2) is the pair density of the
reference system. The vdW theory is based on taking, as
a reference system, a system with purely repulsive forces.
To this end we will split the total pair potential, V =
V~ + V~, into a repulsive (VR) and an attractive (V~)
part and take Vo = V~ so that (2.6) becomes with this
choice of reference system:
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1
F1 —FR +

2
~&1 ~j 2 P2 ~1 &2 VA ~12

(2 7)

where I"~ and p2 (ri, r2) denote, respectively, the free
energy and the pair density of a reference system
with purely repulsive forces corresponding to the pair-
potential V~(ri2). From the exact inequality (2.7) one
obtains the vdW theory by introducing three approxi-
mations. First, one takes the upper bound F1 as the
estimate of the &ee energy F:

where pi (r) is the one-body density of the reference sys-
tem with V~(r) as pair potential. Notice that because of
(2.9) the vdW theory is a mean-field approximation. The
vd%' approximation, F„g~, to the exact Bee energy, F,
of a system with the pair potential, V = VR + VA, reads,
thus,

R RF gw —+R + dri dr2 pi (ri) pi (r2) VA(+12)
2

(2.10)

d&1 d&2 P2 &1 &2 VA ~12 (2.8)

~&2P2» &2

dr1 dr2P1 r1 P1 r2 VA r12, 2.9

and, second, one approximates the exact upper bound
F1 by neglecting all the correlations within the domain
of V~(ri2), i.e. ,

but for notational facility we will henceforth drop the
subscript vdW on F„gear. The final ingredient of the
vdW theory, which can be considered as the third ap-
proximation, consists in approximating VR by a simple
hard-sphere (HS) potential which leads then to an ex-
plicit expression for FR = FHS when the latter is obtained
by thermodynamic integration of a simple HS equation of
state. We will thus write the pair potential V(r) hence-
forth as, V(r) = e[PHs(z) + P~(z)], where z = r/o' with
o. the HS diameter:

SW

(x) (b)

HS

I P (n=6)

FIG. 1. In the van der Waals
(vdW) theory the repulsive
part (PR) of the total pair po-
tential (PR + P~) is, as shown
in (a), represented by a sim-

ple hard-sphere (HS) interac-
tion. For the attractive part
(P~) we will, for the purpose of
illustration, consider two cases:
(b) a square-well (SW) attrac-
tion of range p, and (c) an in-
verse-power (IP) attraction of
index n [see also (2.11—2.14);
the IP potential shown here
corresponds to n = 6].

(x}

-1
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oo, x&1
4~s(*) =

0 (2.11)

and e the well depth of the attractions described by

(3.5) along an isotherm. As usual in the vdW theory,
fus will be prescribed by adopting an equation of state
for the HS. For the latter we take a simple &ee-volume
approximation:

0, &&1
AA(x) = '4( (2.12) Ppas(p)

p
) g(1

1 —g
(3.6)

( )
1, 1&x&1+p
0, x &1+p (2.13)

as the prototype of a discontinuous potential, and (b) an
inverse power (IP) potential of index n

where P(x) & 0, and P(x) tending to zero as x tends
to inhnity. Below we will moreover illustrate our results
with the help of two simple forms of attraction: (a) a
square well (SW) of range p

so that (1 —ri)V is the average volume freely accessible
to the HS in a fluid of volume V. We write g = p/po, so
that po is the maximum density (p & po) for which the
HS Quid can exist. The precise value of po is immaterial
here but will be discussed further in Sec. V. Notice that
the standard vdW theory follows only when taking po ——

6/pro's, in which case rI is the packing fraction. Using
(3.6), Eq. (3.4) can be easily integrated yielding for (3.2)
and (3.5):

1
4(x) = —;n&3 (2.14) f =t Cz+ln

1 —rl
(3.7)

as the prototype of a continuous potential (see Fig. 1).
Obviously, many other choices are possible.

p, =t Cy+ln +7l

1 —g 1 —g
—2gI', (3 8)

III. THE vdW THEORY OF THE FLUID PHASE

Although this theory is very well known [1], in order
to stress the analogy with the developments of the next
section, we briefly repeat the main steps here. For a
uniform fluid phase we have

p (r) = p
HS (3.1)

f = f~s+ &f

with, on using (3.1) and (2.12),

(3.2)

b,f = — dr V~(r) = 2vrprr — dxx P(x) (3.3)
2E' 1

together with

f„,=t in(pA') —1+ P
~

""',P —1~, (3.4)
o P ( P )

where t = k~T/e is the reduced temperature and A the
thermal de Broglie wavelength of the HS. From f one can
obtain the reduced chemical potential, p = p/e, and the
reduced pressure, p = po' /e, from

where p is the number density of the N particles. Using
dimensionless free energies per particle, f = F/Ne and
f~s ——F~s/Ne, we rewrite (2.10, 2.11) as

p
'7

poo 1 —g
(3.9)

where

Cf = ln(poA ) —1; I' = 2z pocr dx x P(x), (3.10)
1

or

I'sw = —7rpoo' [(1+p) —1] = 2z porr p ~

1+p + —p
2 s s s (
3 )

(3.11a)

27rpoo' s 1 ( 1
I'yp = = 2~poo

n —3 1
(3.11b)

Qp t9 p
7 g 2 (3.12)

for, respectively, a SW attraction (a) of range p, and an
IP attraction (b) of index n (n ) 3). It is also seen from
(3.11) that for attractions of short range (p « 1 or
n &) 1) 1/n plays the same role as p. The consequences
of the vdW theory embodied in (3.7—3.9) are well known.
The form of (3.7) leads to a vdW loop. To obtain the
corresponding critical point (rk, t„p,) one solves

~(pf).p= ) p=
gp Bv

(3.5)

which yields on using (3.9)

= —I'.1 8 p 1

27 Cpa 27
(3.13)

where v = 1/pa s. We recall also that (3.4) is nothing but
the exact relation between the (HS) free energy and the
(HS) equation of state or compressibility factor (Ppzs/p),
which results kom integrating the pressure equation of

The complete fluid(Eq)-fluid(Fz) coexistence curve can
also be obtained by solving the two-phase coexistence
conditions:
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p(r)i t) =P(r)2, t), (3.14a) r)2(I —r)i) 27 t,
ln = —(r)2 —r)a)(2 —r)i —i)2): (3.»b)

r)i(l —r)2) 8

p, (r)i, t) = P(r)2, t), (3.14b)

8
(ni+ n2)(I —ni)(I —n2) =

27 —,
— (3.15a)

where gl denotes the value of g for the low-density fluid
phase Fl, and g2 that of the high-density fluid phase I"2.
From (3.8,3.9) we obtain for (3.14)

which since (3.15) depends only on t/t, and r)/rk embod-
ies a law of corresponding states, leading to the universal
coexistence curves in the t —q and p —t planes shown
in Fig. 2. Notice also that the law of rectilinear diam-
eters which states that the midpoints of the coexisting
densities lie on a straight line in the t —r) diagram [5],
r)i + r)2 —2t/3t„although very well satisfied near the
critical point (see Fig. 2) is not an exact property of
(3.15).

1.2

(a)
IV. THE vdW THEORY OF THE SOLID PHASE

0.8-

For a perfect crystal with lattice sites r~, we have in-
stead of (3.1)

0.6— pi (r) = ) ip(r rj!i

0.4-

0.2—

where p(r —r~) describes the normalized (f droop(r) =-- I,'
density profile around the site at r~. Substituting (4.1)
into (2.10) yields for (3.2)

dr' p(r —r, )

(4.2)

1.2—

o.s I

while fHs is still given in terms of the HS equation of state
by (3.4). For the equation of state of the HS solid we will

adopt again a very simple expression [cf. (3.6)]. Like in
cell theory [6], we will use a free-distance approximatiori:

~PHs(P)

p 1 —P/3

0.4 &

0.2 1

0 I I I I I

0 02 04 06 08 1 12

FIG. 2. The universal coexistence curves in (a) the
temperature(t)-density(ri) and (b) the pressure (p)-
temperature(t) planes for the Huid(Fi)- Huid(F2) coexistence
as obtained from the vdW free energy (3.7). Here Fi denotes
the Iow-density Huid (or gas) and Fz the high-density fluid (or
liquid) phase in which the Huid phase F separates for temper-
atures below the critical temperature. All quantitities are ref-
ered to their critical point (full dot) values of (3.13). It is also
seen that the midpoints of the coexisting densities (dash-dot
line) is approximately a linear function of the temperature in
the vicinity of the critical point (the straight line is given as
a guide to the eye). This corresponds to the so-called law of
rectilinear diameters [5] being approximately satisfied.

3P,p 3

p p
—p 1

(4.4)

and we recover the usual free-volume behavior which
holds well [2] for HS at high densities [7] (cf. Fig. 3).
In the opposite limit b ~ 0, (4.3) exhibits a free-particle
behavior [whereas (4.4) does not] so that, (3.4) can again
be easily integrated w'hen (4.3) is used, yielding

so that I' "3(1—6 ~s) is the average distance over which
the HS can freely move in the HS crystal of volume V.
We again write 8 = p/p, p, so that p, p is the maximuni
value of the density p for which the crystal can exist,
i.e., p, p is the density at close packing (cp) of the given
lattice structure. Except for the change from free volume
to free distance, (4.3) is similar in spirit to (3.6), with p,.„
being the equivalent for the solid of po for the fluid. For
p -+ p„p, (4.3) implies
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65

55

45

(4.7) while for a Buid we have p(r) = p and (4.8) restores
(3.3).

To proceed we can rewrite the lattice sum (4.7) in
terms of a sum over spherical shells of sites centered
around the site at the origin, with the jth shell containing
n~ sites:

35

25

sites shells

&f = --):4(z. ) = -- ) . n~ &(z~)
2 2

(4.9)

15

5
0.55 0.6 0.65

KG PE

0.7 0.75

FIG. 3. The HS-compressibility factor (Pp/p) vs the
HS-packing fraction (s'po /6) as obtained from the simple
Eq. (4.3) (broken line) compared to the fit to the computer
simulations of a fcc-HS solid (full line) as proposed by Hall
[71.

1
b,f = ——n1 p(z1),

2
(4.10)

which is similar to the approximation already used else-
where [8) for a purely repulsive potential. Notice that
the site (shell) at the origin, zo ——0 and no ——1, does not
contribute to (4.9) because P(0) is a constant which can
always be put equal to zero, since in the presence of a
HS repulsion p(z) need to be defined only for z ) 1 [cf.
(2.12)]. Ordering the remaining shells by increasing radii
(z1 ( z2 ( zs ) we can for a decreasing p(z) only keep
the dominant term:

fHs = t[C, + lnh —3 ln(1 —b / )]
—:t[C, —3 ln(z1 —1)], (4 5)

where n1 is the number of nearest neighbors and x1 the
reduced nearest-neighbor distance of the given crystal
structure as it appears already in (4.5,4.6). The present
vdW theory, (4.5) and (4.10), yields, thus,

where

C, = in(p, pAs) —1; 8 =
pep

(4.6)

so that C, is the analog of Cf [cf. (3.10)], while z1 ——

(p,~/p)1/s is the reduced nearest-neighbor distance r1,
i.e., z1 ——r1/rJ, for a crystal of density p and a crystal
structure of close packing density p,~. To proceed with
(4.2) we distinguish two cases.

1f = t[C, —3 ln(z1 —1)] ——nrem(z1),
2

+1p=t C, —3ln(z1 —1)+
&1 —1

1 1

2
nlrb'(z1) + nlz14 (z1)

6

t n1(V (z1)+
p,pcs z, (z1 —1) 6z,

(4.11)

(4.12)

(4.13)

A. qb(z) is continuous for z ) 1

1&f = — dr &~(r)P (r)
2E'

(4.8)

where p(r) is now the distribution of sites, then for the
crystal we have P(r) = g - h(r —ri) and (4.8) will restore

In this case, we can take into account the fact that
in the HS crystal the particles are strongly localized by
approximating the density profile y(r —ri) of (4.1) by a
delta function, in which case (4.2) simply y1elds

1
N N

1&f =
2,~).).& (I ' — *I) =--, ).&(*')

i=1 j=1 j=1

where we have used (2.12) and taken into account that
in a perfect crystal all the sites are equivalent in order to
reduce the double sum of (4.7) to a simple sum over the
sites j with z~ = Ir~ —r; I/o being the reduced distance
of site j to an arbitrary site i taken as origin (r; = 0).
At this stage it may be useful to notice the similarity of
(4.7) with (3.3). Indeed, if we write

which are the equivalents for the solid of (3.7—3.9). As
usual, P'(z) = dP(z)/dz, etc. Since P(z) ) 0, (4.11)
implies a vdW loop for the solid. From (4.13) we obtain
for the solid(S1)-solid(S2) critical point, using (3.12)

, =
6,
'

[zlzz" (zl) —2&'(zl)l (4.14)

2(2z; —1) 24'(zl) —(zl)'&'"(z1)
(*;—1)(3z', —2) z;4"(*;)—24'(z;)

wlnle the solid(S1)-solid(S2) coexistence curve can be ob-
tained from (4.12,4.13) using (3.14), yielding

2 2
= —'[',O'(.)- ',4'(.)], (416.)

u1 —1 u2 —1 6t

I'u1 —11
u2(u1 —1) —u1(u2 —1) + 3(u1 —1)(u2 —1) ln

I

gu2 —1)

=['.(.-1)-:(.-1)]
ulcc' (u1) u24' (u2) 3[4 (ul) + 4 (u2)]

ul&'(u2) —u2&'(u1)

(4.16b)
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X1 2

(zc —l)2
n, n(n+ 3)
6t (z )"+'' (4.17)

2(2z, —1)
(z; —1)(3z., —2)

(4.18)

From (4.18), one easily finds zi as

CX$

Qn2+ 16n+ 16+ 5n+ 4 2 4
+ + o ~ e

6n n n2

(4.19)

where uz and u2 denote, respectively, the value of xz for
Sq and S2. We will assume u~ ( u2 so that S~ is the
high-density solid and S2 the low-density solid. As an
illustration, we will consider now the case of an IP at-
traction, P(z) = 1/z" (cf. Fig. 1). Equations (4.14,4.15)
reduce to

which, on substitution of (4.19) into (4.17), yields for the
critical temperature t .

2n, ( 3t~= 1
3e ( n

(4.20)

to dominant order in 1/n. Substituting (4.19) and (4.20)
into (4.13) yields for the critical pressure p, /ep, „
nt, /4, for n )) 1. The exact behavior of zi and t, vs 1/n
is shown in Fig. 4. From (4.16) one can also obtain the
coexistence curve; a few examples are shown in Fig. 5.
Notice that here there is no law of corresponding states,
nor of rectilinear diameters. Also, when 1/n decreases„p,
and t, increase towards an upper limit, respectively, p,„
and 2ni/3e, whereas for the Quid p, remains constant
while t, decreases towards zero [cf. (3.13)].

1.6-

1.5—

Xc 1.4-
1

0.3-

I
I

I
I

I

l)

0.9 +————--
0 0. 1 0 2 0, I

0.1 0.2 0.3 0.4 0.5 0 6 0.7 0.8

1.2 p
—————

40
t

0 8

0.4—

0

0.2

FIG. 4. The critical point values of (a) the nearest-neighbor
distance (z', ) and (b) reduced temperature (t, ) for the
isostructural solid-solid transition predicted by (4.11) for an
IP attraction (2.14) of index n The full lines corre. spond
to the exact results obtained from (4.17,4.18) and the bro-
ken lines to the asymptotic expansions (4.19,4.20). Here
tp —2ny/3e, with nq the number of nearest neighbors and
hence to 1.08 for a fcc structure (nz ——12).

0.2

I IG. 5. A fever examples of coexistence curves in

the (a) temperature(t)-density(p) and (b) the pressure(p)-
temperature(t) planes for the fcc isostructural
solid(Sq)-solid(S2) transition as obtained from (4.16) for an
IP attraction of index n = 50 (dashed line), 100 (dash dot
line), and 200 (full line).



50 van der WAALS THEORY FOR SOLIDS 2919

B. P(x) is discontinuous for z ) 1 (2/i)/s') Jp dh e ), while yi and y2 are given by

(4.21)

Substituting (4.21) into (4.2) and taking into account
that the convolution of two Gaussians yields a Gaussian,
we obtain for (4.2):

shells

Af = —) n, J drv~(r) y (, (~r —r, ~)
26

(4.22)

In this case, we cannot use (4.7) because the discon-
tinuity of P(z) will be transferred to the free energy f,
which is not allowed by thermodynamics. To cope with
this case we have to maintain finite the width of the den-
sity profile )p(r —r~) of (4.1,4.2). We observe that it has
been shown [9] that in the HS crystal y(r) is very nearly
Gaussian and we can hence approximate it as

(4.26)

y3 z, —1

2L zg

i/3 xi —(1+p)
2L

By definition L vanishes at close packing (p = p,~ or
zi ——1), while it has a finite value of the order of 0.15 at

To proceed, we eliminate the inverse width of the
Gaussians, a02, in terms of the Lindemann ratio, L =
g(r )/ri. For the Gaussian (4.21) we have, (r ) = 3/2n
and hence L2 = 3/2z~io. 02. This allows us to rewrite
(4.26) as

or comparing with (4.8), p(r) = P )p /2 (~r —r~ ~), where

in (4.22) we have put a site at the origin and sum over
the spherical shells of sites around the one at the origin.
Using (2.12) and (4.21) we can reduce (4.22) to

shells t'

~f = ) n, , dzzP(z)2, (2 z )

1.6

1.4-

1.2-

—acr (a—x.) /2 —ncr (a+a ) /2 (4.23) 0.8-

where, as above, n~ denotes the number of sites in the
jth shell located a distance, z~ = ~rz ~/o, from the site at
the origin. Since in a solid the Gaussians of (4.21) are
very narrow, i.e., no' is very large, we again keep only
the dominant contribution to (4.23). We find that the
contribution to (4.23) from the site at the origin (np = 1,
zp = 0) is exponentially small, while ordering the shells
as before (zi ( z2 ( zs . . ) we find that (4.23) is again
dominated by the shell of nearest neighbors, i.e.,

b,f ——ni
~ 2 ~

dzzQ(z)e
1 ( oo2 l '

&
2s'zi )

0.6

0.4

0.2

140

0.4 0.5 0.6

3nap
6

0.7 0.8

(4.24)

where we took moreover into account that in (4.23) the
contribution of the second exponential is always small
with respect to the first. We will illustrate here the use
of (4.24) for the case of the SW potential of (2.13). For
this case (4.24) reduces to

i/2
ncr (a—u 1 ) /2

2 (27rzi)
1= ——ng erf yg —erf y24

112-

84-

56-

28-

0.3 0.7 1.5
t' 2 i '/'

KCl0 X~

2 2
e "& —e ~2 (4.25)

where erf denotes the error function [erf x

FIG. 6. The same as in Fig. 5 but for a SW attraction of
range p = 0.003 (full line), 0.01 (dash dot line), 0.03 (dashed
line) as obtained &om (4.29,4.30) with Lp ——0.477 (see text).
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melting [2]. For HS it was found elsewhere [10] that L
varies approximately linearly with the density in between
these two limits. We will write, hence,

g2 = gx
xg 1

Qo = gi = Op
2Lo

'

X2
1

Xl++1+ 1

(4.30)

L=L =Lp (4.28)

1f = t[C, —3 ln(zi —1)] — ni er—fyi —erfy2

1 —1
+

~vrziyi
(4.29)

with

1.15

where Lo = L /(1 —g ) and L and g are, respec-
tively, the value of I and g at melting of the HS crystal.
Combining (4.25—4.28) with (4.5) we obtain, thus, finally
for (3.2):

where yp is a constant to be borrowed from the HS freez-
ing theory (yo 1.81, see Sec. V). Although the SW
potential is simpler than the IP potential, the resulting
vdW free energy (4.29) is more complicated than (4.11).
This is due to the fact that the discontinuity of Psw(z)
at x = 1+ p did prevent us from considering the limit
o. m oo, where the density profile p (r) becomes a sin-
gular b function. The results obtained from (4.29) are
nevertheless very similar to those obtained &om (4.11).
A few examples are shown in Fig. 6. Notice that the
critical density corresponds very closely (see Fig. 7) to
the value of zi for which y2 of (4.30) changes sign, i.e. ,

zi = 1+p. Therefore the critical density p, = p,p/(zi)
increases towards the upper limit p,~ when p decreases,
just as in the IP case. Notice however that the critical
temperature t, of the SW case has a behavior opposite
to that of the IP: here t, decreases when p m 0 (see Fig.
7).
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0.04

1.4

1.36-

t
1.28-

0.01 0.02 0.03 0.04

FIG. 7. The same as in Fig. 4 but for a SW attraction
of range p = 0.001,0.003, 0.01,0.03, 0.1 (dots). The bro-
ken lines correspond to the'small-7 6ts: x& 1 + p and
t, 1.514+ 0.038 lnp. Notice that while our values of 2:&

correspond closely to those of [3], our values of t, do not seem
to have a small-p limit.

V. PHASE DIAGRAMS IN THE vdW
APPROXIMATION

The basic macroscopic e8'ect of the presence of an at-
traction is, according to the vdW approximation, to pro-
duce a vdW loop in the free energy for subcntical temper-
atures. It is well known that this is the case for the Quid

phase, as we recalled in Sec. III, but occurs also for the
solid phase, as shown in Sec. IV and in Refs. [3,4]. As is

well known, this loop separates the free energy of a given

phase into two branches, say a low-density branch and
a high-density branch, separated by an unstable part,
corresponding to a negative compressibility, where the
free-energy curve turns from a convex into a concave
curve. Performing Maxwell's double tangent construc-
tion on such a loop of f versus U = 1/pos one finds, at
the two points of tangency, the phase of the low-density
branch which can coexist at the given temperature with
the phase of the high-density branch, i.e. , two phases
having equal pressure and equal chemical potential. For
instance, below the critical temperature of the Quid, the
fluid phase (F) will undergo a Fi F2 transition resu-lting

in the coexistence (see Sec. III) between a low-density
fluid phase (Fi) and a high-density fluid phase (F2), as is
well known from the liquid(F2)-gas(Fi) transition. Sim-

ilarly, below the (different) critical temperature of the
solid, the solid phase (S) will undergo a Si-S2 transition
resulting in the coexistence (see Sec. IV) between a high-

density (Si) solid and a solid of the same structure but
of a lower density (S2). This transition was called the
expanded (S2) to condensed (Si) transition in Ref. [3].
Besides, one can always perform a double tangent con-
struction between the &ee energy of the Buid and that
of the solid. The corresponding Quid-solid transition will

be indicated here as I -S, where it is understood that, in
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general, we have F g Fi g F2 and S g Si g S2. Not all

these transitions are thermodynamically stable however.

Only those phases are stable which belong to the convex
envelope constructed with the aid of the four &ee-energy
branches (Fi, F2, Si, S2) and the three double tangents
(Fi-F2, Si-S2, S F).-A closer inspection of the trian-

gles formed by the three double tangents indicates that
the competition between the above two vdW loops can
only produce three distinct types of phase diagrams (see
Fig. 8). Notice also that for P(z) expressions more com-

plicated than those considered here there could be more
than one vdW loop in the solid &ee energy but we will

not pursue this possibility here and stick to the two cases
(2.13,2.14).

Before we can construct the phase diagrams, there re-
mains to fix the relative position of the &ee energies. As
seen &om Sec. III, the free energy of the HS Quid depends
only on the scaled density variable, p/po, where po fixes

the stability limit (0 ( p ( po) of the fiuid. Similarly,
in Sec. IV we show that the &ee energy of the HS solid
depends on the scaled density variable, p/p, ~, where p,~
fixes the stability limit of the solid (0 ( p ( p,~). When,
as before, each phase is taken separately the value of the
two constants, po and p,~, is immaterial except for the ob-
vious geometric restrictions, 7ro po/6 ( 1, vrcr p,~/6 ( 1.
When constructing the phase diagram the two phases are
required and the relative &ee energy depends then on

ln(po/p, ~), which requires that we first fix the value of
these constants. From the derivation in Sec. IV it is ob-
vious that p,p is determined by the value of p at close
packing of the crystal structure considered. For exam-

ple, for a face centered cubic or fcc structure we have

p,~o = ~2 and ni ——12. As to po, the only restriction
is 0.494 & vr poo s/6 ( 1 since we know f'rom the computer
simulations [2] that the HS fiuid is stable at least up to
the freezing density xpf ns/6 = 0.494. Here we will fix po

in such a manner that the HS &ee energies, in the absence
of any attraction [P(x) = 0], cross at mpcrs/6 = 0.515 in
agreement with the results obtained elsewhere [10]. This
is seen to imply z poa /6 = 0.5157, i.e., the HS fiuid be-
comes unstable shortly after it becomes metastable with
respect to the fcc HS solid. When improved HS equations
of state are used, the HS &ee energies will automatically
cross at this density but notice that one cannot simply
improve the equation of state of one phase, and keep
a simple &ee-volume approximation for the other phase
because some of these combinations are void of HS &ee-
energy crossing. In order to keep the proper HS &ee-
energy crossing, one usually will have to improve both
the description of the Quid and of the solid. As long as
the proper HS crossing is guaranteed the results are qual-
itatively similar whatever the HS equations of state used.
Here we have introduced an po parameter in the descrip-
tion of the HS Quid in order to be able to use very simple
(free-volume) equations of state, just as in the original
vdW theory, and then chosen the value of n poo /6 to be
approximately 0.52 so as to secure the proper HS free
energy crossing. Once these constants (po, p,~) are fixed,
the phase diagram of the system depends only on the
range of the attractions, i.e., the value of p (SW) or 1/n
(IP) in (2.13,2.14). Notice that in the particular case of

(a)

S-

(c)

S-
1

FIG. 8. To construct the convex envelope of f vs v we

consider the 12 possible triangles formed by the three double
tangents (Fq-Fq, Sq-Sq, and S E) of negative -slope (positive
pressure). For only six triangles will the S Fdouble tangent-
always belong to the convex envelope. For only three of these
six triangles do we have that the pressure of the coexisting
solids is larger than the pressure of the coexisting Suids . The
latter three triangles generate (when changing the tempera-
ture) the three types of phase diagrams found. An example
of each of these three situations is shown in the figure (the
double tangents belonging to the convex envelope are the full

lines while the dashed lines correspond to metastable coexis-
tences). The three cases shown belong to attractions of long

(a), intermediate (b), and short (c) range.
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the discontinuous SW attraction we also need the value
of I,o [cf. (4.30)]. For the fcc-HS crystal, we have (see

[2]) I = 0.126 and g = 0.545 x (3y 2/vr) 0.736, and
hence I0 0.477.

We now consider, as an illustration, the calculation of
the phase diagrams, within the present vdW approxima-
tion, for the particular case of a SW attraction (2.13),
since this is a case for which simulations are available
[3]. The two phases considered are, a fluid phase de-
scribed by the free energy (3.7) and a fcc crystal described
by the free energy (4.29). For a fcc structure, we have

nq ——12 and n p, &o' /6 = m/3y 2. As explained above,
the two inputs are vrpoo /6 = 0.5157 for the fluid and
Io ——0.477 for the solid. Using the reduced tempera-
ture, t = Ic~T/e, and the reduced pressure, p = pa /e,
the phase diagrams will depend only on p, i.e. , the range
of the SW-attraction relative to the HS repulsion. In
agreement with the other, more rigorous, calculations of
Refs. [3,4] and with the general argument above, we find
three diferent types of phase diagrams. For large p val-

ues we find the usual type of phase diagram with a Fi-F2

critical point and a Fq-F2-S triple point. Lowering p we
find that for, 0.3 ) p ) 0.2, there is a first crossover
(say for p 0.25; see Fig. 9) to a phase diagram with-
out the high-density (liquid) F2 phase. For still lower p
values, we find, for 0.02 ) p ) 0.01, a second crossover
(say for p 0.015; see Fig. 10) to a phase diagram
with a Si-S2 critical point and a Si-S2-F triple point.
The first threshold, p 0.25 for the disappearance of
the dense Quid (liquid) phase, corresponds to the Fq-F2
coexistence curve "disappearing" into the inside of the
F-S coexistence region, as a result of the lowering of the
Fq-F2 critical temperature when lowering p. The second
threshold, p 0.015 for the appearance of the expanded
solid, corresponds to the Si-S2 coexistence curve "emerg-
ing" &om the interior of the F-S coexistence curve as a
result of the increase of the Si-S2 critical density when
lowering p. There is thus a remarkable solid-Quid sym-
metry with respect to the low-high values of p. These
vdW results are in complete qualitative agreement, and
to some extent also in quantitative agreement, with the
more exact results of Refs. [3,4]. Indeed, the coexistence
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FIG. 9. Phase diagrams in
the temperature(t)-density(p)
and the pressure(p)-tempera-
ture(t) planes for the case of
a SW attraction of range
Shown are two cases bracket-
ing the threshold (p 0.25)
for the disappearance of the
high-density fluid (or liquid)
phase. [p = 0.3 for (a), (b) and

p = 0.2 for (c), (d)].
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of p bracketing the threshold
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panded) solid phase. [p = 0.02
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(d)].
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curves found here are very similar to those of [3,4] while
the thresholds and critical points are also comparable.
Similar results are obtained for the IP attraction: here,
the threshold values of n are, 7 & n & 8, for the first
threshold and, 90 ( n & 100, for the second threshold.

VI. CONCLUSIONS

We have shown that the recent results [3,4] concerning
the eEect of the range of the attractions relative to the
range of the repulsions of a simple Quid on its phase di-
agram can be semiquantitatively understood in terms of
the competition of the standard vdW theory of the Quid
phase with the alternative [12] but equally simple vdW
theory of the solid-phase introduced above. In particu-
lar, we have shown that this competition leads to three
diferent types of phase diagrams with a remarkable solid-
Buid symmetry. For the case of a square-well attraction
of range p it was shown, in agreement with other find-

ings [11,3,4], that the liquid phase disappears as a stable
phase for p values below p 0.25, while a new stable
solid phase appears for p values below p 0.015. As
discussed elsewhere [13,3,4] such small values of p can
perhaps be realized in well-prepared colloidal dispersions
where the depletion forces due to the added polymer will
account for the attraction between the colloidal particles
allowing for a simple nuid" description to be used for
this otherwise complex system.
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