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Fast, immiscible fluid-fluid displacement in three-dimensional porous media
at finite viscosity contrast
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The crossover from capillary to viscous Sow during immiscible Suid-Suid displacement has been
studied in transparent, three-dimensional porous media. The defending and the invading Suids
have equal densities, so that gravity effects are eliminated. The viscosity ratio of defending Suid to
injected Suid m is moderate m 14. Dense, ball-like displacement structures are generated at high
injection rates. Surprisingly, the Sow appears to be nearly completely stabilized even though the
viscosity of the invading Suid is signi6cantly lower than that of the defending Suid. For the physical
system studied here, fully developed ball-like patterns arise for capillary numbers Ca & 5 x 10
A similar behavior is found in experiments using the same grains and Suids in a two-dimensional
system.

PACS number(s): 47.55.Mh, 47.55.Kf, 05.40.+j, 47.20.Hw

I. INTRODUCTION

Ixnmiscible Quid-Quid displacement processes in porous
media provide a rich "laboratory" for experimental inves-
tigation of a variety of general issues in statistical physics.
The displacexnent fronts are sensitive to the quenched
(local) randomness of the porous medium (variations in
pore sizes, pore neck sizes, wettability, pore wall rough-
ness, and large scale heterogeneities), as well as imposed
(global) fields such as pressure and gravitational fields.
These fields may couple to the instantaneous position of
the displacement &ont. As a result of the competition
between the effects of the local disorder and fields, a va-
riety of front morphologies may be generated. Many of
them are related to growth processes in quite different
physical systems. In some cases the displacement &onts
have a &actal geometry.

Many commercially important processes involve the si-
multaneous Bow of several immiscible Buids through a
porous medium. Important examples include motion of
the ground water table in soils or sands, the Qow of hy-
drocarbons and water through porous rocks during oil
recovery, the drying of amorphous materials, and wa-
ter purification by filtration through sand beds. Many
approximate schemes [1—3], involving phenomenological
concepts such as relative permeabilities, have been de-
veloped to understand Quid-Quid displacexnent processes
like these. However, the results obtained from these mod-
els are often inconsistent with experimental observation
of fractal displacement fronts [4] and our understanding
of front propagation processes is far &om coxnplete.

Here attention is focused on a drainage process (in
which a nonwetting Quid invades a porous medium sat-
urated with an immiscible wetting Huid) at a moderate
viscosity contrast and high displacement rates. Previous
work on drainage, both in certain limiting cases (regimes)
and more specifically at low viscosity contrast (important

for many applications), is discussed below. An advan-

tage of the experixnents to be reported here is that fast
Quid-Quid displacexnent has been visualized in large three-
dimensional porous media, whereas most previous exper-
imental work has been on quasi-two-dimensional systems.
Further, gravity effects are eliminated &om the system
since Buids with equal densities are used. Surprisingly
stable and dense structures are formed at high displace-
inent rates (see Figs. 2 and 3). The patterns are strikingly
different &om the ramified structures which are usually
generated in unstable displacements.

At a finite viscosity contrast crossover morphologies,
with structures that are intermediate between those gen-
erated in the more easily understood limiting cases, are
expected. For a review of difFerent How regimes see
Ref. [5]. Two kinds of forces are relevant for the two-Huid
displacement process considered here: viscous forces and
capillary forces.

The slots (Ca« 10 4) penetration of a nonwetting Huid

into porous medium saturated with a wetting Buid of the
same density is dominated by capillary forces. (The ra-
tio of viscous to capillary forces is characterized by the
capillary number Ca = ~, where p, is the viscosity of the
defending Quid, v a characteristic &ont velocity, and u the
interfacial tension. ) Such a How will be sensitive only to
the quenched randomness associated with the medium.
This process generates patterns with a geometry and dy-
namics that can be described by the invasion percolation
model [6—14].

Viscous effects dominate in gravity-free two-Quid dis-
placement at high displacement rates (Ca » 10 4). If
the viscosity of the defending Quid is xnuch higher than
the viscosity of the invading fluid (m » 1), such as
when a high viscosity liquid is being displaced by a gas,
only viscous pressure drops in the defending Quid are of
importance. This unstable situation leads to ramified
patterns that can be described by the diffusion-limited-
aggregation (DLA) model [15—21]. Both in the fast ex-
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periments and the DLA model the growth of the pattern
is concentrated on its outmost tips [22, 23].

The systematic changes in pattern morphology with
increasing capillary number has been investigated theo-
retically in the limit in which the invading Quid has zero
viscosity (m )) 1) [24]. Experiments indicate that the
viscosity ratio m has little influence on invasion percola-
tion, but may be important at high displacement rates.
For low m the viscous pressure drops in the two fluid
phases are comparable and must both be taken into ac-
count to understand the dynamical behavior of the inter-
face. Several numerical and a few experimental studies
of the eH'ects of the viscosity ratio on the morphologies
of displacement patterns have been reported.

Numerical approaches include solving for the pres-
sure field in both Quid phases with a homogeneous
medium [25—29] and computation of displacement pro-
cesses in large networks of tubes [30—33]. Encouraged by
the success of the DLA model in dealing with the high
viscosity contrast limit, several workers have consider ex-
tensions of this model incorporating a finite viscosity con-
trast [34—40]. The hope has been that a modified DLA
algorithm could be much faster computationally than
a full solution of the Qow problem. Computation time
is crucial for large simulations on realistic geometries,
e.g. , permeability variations and layers (see Ref. [35]), or
spot configurations. Unfortunately, modifications of the
DLA model to simulate more general Quid-Quid displace-
ment processes tend to increase the computation time
significantly.

The approximations used in the computer models have
not all been sufEiciently justified and detailed experimen-
tal verification is, to a large extent, lacking. Another lim-

itation of most of the models is that they do not contain
any parameter corresponding to the displacement veloc-
ity. Thus they are unable to account for the increasing
influence of capillary effects at lower displacement rates.
Several of the models mentioned above do not contain
interfacial tension. However, some overall features have
emerged from these studies. As the viscosity ratio fall
&om a very large value towards 1 fewer, shorter, and
thicker fingers are generated. In the limit m m 1+ the
pattern formed by the invading Quid is compact. Sim-
ulations [30, 31, 38, 39] detail the fallofF of the effective
surface dimension of patterns as a function of the vis-

cosity ratio. An important dynamical consequence of a
finite viscosity ratio is that the invading Quid structure
continues to evolve after breakthrough to ambient pres-
sure [29].

Dense patterns for the viscous regime were found in
drainage experiments at m 45 in a consolidated quasi-
two-dimensional packing of glass beads [41]. In a series
of experiments in two-dimensional etched networks using
many viscosity ratios and displacement rates a tendency
to form denser patterns as m ~ 1+ was observed, but
the low-m regime was not treated in detail [42—44]. More
dense structures were also generated as m decreased in a
series of experiments in a monolayer of glass beads [45].
Finger patterns generated in three-dimensional porous
media at low viscosity contrasts have been visualized us-

ing index matching techniques [46, 47].

II. EXPERIMENTAL SYSTEMS

The two- and three-dimensional porous media used
were packings of Plexiglas (polymethylmethacrylate)
grains (Rohm Formmasse 7N Glasklar). The grains were
2mm diam, 2mm long cylinders with volumes e~
6.3mm . Dibutyl-phthalate was chosen as the defend-

ing fluid, since it has an index of refraction (n = 1.491)
that matches that of Plexiglas at room temperature. The
porous media constructed in this manner become trans-
parent when saturated with this liquid and a second Quid

phase can be observed directly. The invading fluid (the
fluid to be injected) was a solution of 11.8 wt. % sucrose
in water. This liquid was chosen since it has a density

p equal to that of dibutyl-phthalate (p = 1.047g/cms)
so that the efFects of gravity were eliminated. The in-

jected liquid was dyed black with negrosin 1g/kg in
order to get good visual contrast. A solution of su-

crose in water is highly polar and therefore immiscible
in dibutyl-phthalate. The viscosity of the sucrose so-

lution was p, = 1.45cP and the viscosity of dibutyl-
phthalate was p, = 20.7 cP. The viscosity ratio m between
defending (displaced) and invading (injected) fluid was

m = p/p; = 14. Dibutyl-phthalate is the wetting fluid.
However, wetting properties may vary at grain surfaces
exposed to the sucrose solution for a long period; they
become less preferably wetted by dibutyl-phthalate. The
interfacial tension o. between the Quids was estimated to
be 13+1.5 dyn/cm [48] using a version of the drop weight
method [49]. All measurements were made at 20'C.

The three-dimensional models were unconsolidated
packings in a glass container of size 29 x 29 x 2gcm
or 145 x 145 x 145 bs in terms of the grain size b = 2 mm.
Unconsolidated packings were used in order to be able to
recycle the dibutyl-phthalate. In a consolidated medium
it would be dificult to remove the nonwetting phase af-
ter each run. The changes in wetting properties with
time (see above) is one reason why new grains were used
for each experimental run. In order to avoid trapping
of air bubbles in the medium the packing process was

performed as follows. The necessary amount of liquid
was poured into the container. The grains were slowly
slid down a smooth, inclined surface into the liquid. The
upper parts were slightly stirred during the building up
of the medium. The density of polymethylmethacrylate

(p = 1.18g/cm ) is close to that of dibutyl-phthalate

(p = 1.047g/cm ). A porosity P of 0.37 was measured
for these packings and the medium contained on the or-
der of 2.4 x 10 grains. Using the measured porosity and
assuming that there are as many pores as grains in the
model, the volume of a typical pore was estimated to be
about v„3.7mm . The models used for experiments
were not shaken. The porosities of smaller test packings
were reduced by about 5'%%uo when shaken. Before filling

the container a tube was fixed in position so that the
sucrose solution could be injected &om a "point" source
in the middle of the medium. The packings were loaded
with weights on top of a plate during fast displacement
experiments to prevent grain movements. The spacing
between the top plate and the container waB was about
0.5cm. A sketch of the setup is shown in Fig. 1.



50 FAST, IMMISCIBLE FLUID-FLUID DISPLACEMENT IN. . . 2883

to reservoir or pum

top plate with weight

transparent porous medium

invasion structure

FIG. 1. Experimental setup. A transparent porous
medium is held in a glass container. The plate on top of the
medium is loaded with a weight to prevent grain movements
during the displacement processes. The system is illuminated
from below and through two adjacent faces. Two projections
of the patterns that are generated when a second Quid is in-
jected are photographed.

Special precautions were taken in the case of slow dis-
placement. The displacement process, in this case, is sus-
ceptible to "defects" in the packing and growth will tend
to occur along the injection tube. Therefore a thin (about
0.5mm diameter) and fiexible injection tube was used.
The open end of the injection tube was supported by
thin treads during the packing process described above.

Two-dimensional models were constructed by packing
a monolayer of grains in a circular Hele —Shaw cell, i.e.,
held between two circular plates. An air overpressure was
applied to a plastic 61m below the monolayer to keep all
the grains fixed (see Ref. [21]). The diameter of the mod-
els was 40cm. The injected fluid entered the model via
the center point. The outer rim of the system was open to
the atmosphere. The porosity of these two-dimensional
systems were determined to be P = 0.43 by weighing the
amount of grains used. Assuming that there are as many
pores as grains in the model the volume of a typical pore
was estimated to be v„—4 8mm

III. EXPERIMENTS

Typical displacement patterns generated in two-
dimensional and three-dimensional systems are shown in
Figs. 2 and 3, respectively. In these 6gures each line
shows the structures at several stages in one experiment.
A constant injection rate was used in each run, and the
rates are indicated in the figures. The rates are given
in terms of pore volumes per second, and these pore vol-
umes are the characteristic vob~mes determined in Sec. II
above.

The injection in two and three dimensions was per-
formed using a Pharmacia (Uppsala, Sweden) P-500 cro-
matographic pump for the lowest rates, and a Seybert
k Rahier (Immerhausen, Germany) R 410 LWF mem-
brane pump (an industrial dosage pump) was used for
intermediate rates. The membrane pump outlet was con-

nected to two (partially air-filled) chambers in series for
pulse compensation. By choking the flow after the last
chamber a steady output was obtained. For the high-
est rates hydrostatic pressure was used for injection into
the porous medium and the rate was then determined
from the weight change of the liquid container (reser-
voir) and the elapsed time. In these cases the tube was
choked by tightening a clamp around it before it entered
the experimental system to ensure a constant flow rate
through an experiment. For the fastest three-dimensional
experiments the reservoir was placed three fioors (13m)
above the laboratory. Logging of the container weight
during several experiments confirmed that the injection
rates were constant to a good approximation. Thus a
dominating part of the flow resistance (from the pump
or reservoir to the top of the porous medium; see Fig. 1)
lies before the porous medium, and changes as the experi-
ment develops and the fluid-fluid interface propagates are
insignificant.

The three-dimensional system was illuminated &om
below and &om two "rear" sides and photographed in
two projections; see Fig. 1. The cameras were triggered
simultaneously and manually to adjust the intervals and
compensate for the continuous decrease of the interface
velocity in this radial geometry. The horizontal two-
dimensional system was illuminated &om below and pho-
tographed &om above. To record the time, clocks were
photographed together with the physical models. The
total injected fluid volume at the diferent stages was de-
termined &om the elapsed time and the flow rate.

Some of the complex two-dimensional patterns were
digitized before further analysis; see below. However,
here the main interest was in the limiting case of fast
displacement in the three-dimensional system [the lowest
two lines in Fig. 3], where there is not much structure
left in the pattern. A projection of the main structure
onto a plane is, to a good approximation, a growing cir-
cle. Therefore the diameters for these patterns were de-
termined by direct measurement on 13 x 18cm photo-
graphic prints. Typical log-log plots of structure diame-
ter as a function of structure mass are shown in Fig. 4.
The clocks used had an resolution only in seconds; there-
fore it was difficult to determine the start of the injec-
tion accurately enough for the highest injection rates [the
fastest experiment, the bottom line of Figs. 3 and 4(d),
lasted only 12 sec]. For these experiments the times were
6rst determined on a rough second scale. Subsequently
the data were adjusted by making use of the fact that
the growth should approximately follow a relationship of
the form t oc M oc R . Here t is the time since the start
of the experiment, M the mass, and R the linear size
(radius) of the pattern. A more accurate injection time
was determined from

where Rl and R2 are the radii of the first and second
patterns, tl and t2 are the times corresponding to the
first and second patterns on the approximate scale, and
At is the shift required to obtain times measured from
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the estimated start time. The shifts were found to be in
the interval 0.3 ( At & 0.8 sec. The value D = 2.76, ob-
tained &om the relatively slow experiments [correspond-
ing to Figs. 4(a) and 4(b)], which had a sufficient time
resolution and the times were not adjusted, was used.
As is evident in the plots the time resolution problem is

most serious for the fastest experiment. Figure 5 shows

a similar log-log plot for a very slow experiment. The
cluster sizes were determined from photographic prints.
In all the three-dimensional experiments measurements
of size &om two perpendicular projections were averaged
for each pattern.

In order to compute the capillary and Reynolds num-

bers for these processes a characteristic front velocity

must be defined. The average velocity of the displace-
ment front &om the start of the injection until the diam-
eter of the structure is half the size of the container was

chosen. Up to this size the displacement patterns stay
approximately spherical. The upper line of Fig. 6 shows

(to the right) a displacement structure that fills 80%%up of
the glass container. The overall shape here clearly devi-

ates &om being quasispherical. Figure 6 also illustrates
some other limitations of the experimental method. For
the two-dimensional experiments the capillary numbers
(given in Fig. 2) were determined using the average ve-

locity from the start of the experiment until the structure
diameter had grown to one-half of the cell diameter.

The radial geometry used in these Bow visualizations

0.4 pores/sec Ca 2x 10

30 pores/sec Ca=8
FIG. 2. Fluid-Quid dis-

placement pat terns generated
in a two-dimensional porous
medium, Each line show several
stages in one experiment. The
injection rates and the values
of the capillary number Ca are
given in each case. The physi-
cal Bow rates were 0.007, 0.48,
3.2, and 15.6 1/h.

190pores/sec Ca=8x10

930 pores/sec Ca=4x 10
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0.3 pores/sec Ca= 2 x10-0

93 pores/sec Ca 3 x 10-4

1600pores/sec Ca=3x10 3

Ca 3 x1016000pores/sec
FIG. 3. Fluid-Quid displacement patterns generated in a three-dimensional porous medium. Each line show several stages

in one experiment. The injection rates and the values of the capillary number Ca are given in each case. The physical Bow
rates were 0.004, 1.24, 21, and 210 1/h.

allowed direct observation of the outer surface of the
three-dimensional structures. An important limitation,
however, is that the capillary number is not constant
throughout an experiment but falls off rapidly. The val-
ues for the capillary number given in the figures were de-
termined from the averuye &ont velocity. Since the How

rate was constant, the cluster mass always grew linearly
with time t and the instantaneous value for the capillary
number Ca behaved like

C 1/D 1/D —1 t 0 6daocv= oc —t =t
dt dt

where B is cluster radius and the exponent value D =
2.74 has been inserted. In two dimensions the falloff of
Ca with time will occur with a different exponent. Conse-
quently, some caution should be shown when comparing
Ca values in two and three dimensions (the Ca values
referred to elsewhere in this paper were obtained by av-
eraging as described above).

IV. DISCUSSION

Figure 3 summarizes the main results; it shows the
projections of patterns generated during Quid-Quid dis-

placement in three-dimensional porous media at a series
of injection rates. For comparison a corresponding series
of experiments using the same grains and Quids to con-
struct two-dimensional systems is shown in Fig. 2. These
experiments serve as a reference in the present context
and have not been analyzed in detail. The qualitative
changes in two and in three dimensions are the same as
the injection rate is increased. The patterns at low rates
grow in sudden bursts (i.e., neighboring pores tend to be
invaded in sequence) [12—14] and they show no memory of
the injection point [11]. At higher rates structures cen-
tered around the injection point are generated and the
patterns become increasingly symmetrical and dense as
the rate is increased. The surface roughness gives a mea-
sure for a characteristic length, which is seen to decrease
with increasing rate. For the very slow experiments this
length is in principle infinite, whereas it is quite short for
the fastest three-dimensional pattern (the bottom line in
Fig. 3). The main interest in the present paper is in the
crossover to ball-like displacement structures generated
at high rate in three dimensions, but the low rate pat-
terns will be discussed Grst.

The two-dimensional low rate patterns in the upper
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FIG. 4. Log-log plots of the cluster mass M ss a function of the linear size 2R of their projections (averages from two

projections) for fast Iluid-Iluid displacement in a transparent, three-dimensional porous medium. The diameter 2R of these

almost spherical structures was used as the measure for linear size. The mass is given in terms of the characteristic pore volume

v~, and the diameters in terms of the grain size 6. The exponent D, where M/v~ oc (2R/b), was estimated in each case. In

(c) and (d) both adjusted (see Sec. III) data (filled circles) and unadjusted data (open triangles) are plotted. The injection
rates, the capillary numbers Ca, the Reynolds number, and the values of the exponent D were:

(a) 720 pores/sec = 9.6 1/h, Ca 1 x 10;Re 1.0, snd D = 2.77+ 0.04.
(b) 1 600 pores/sec = 21 1/h, Cs 3 x 10, Re = 2.3, and D = 2.75 + 0.04 (third line in Fig. 3).
(c) 5400 pores/sec = 72 1/h, Ca 9 x 10, Re 8.3, snd D = 2.56 6 0.04.
(d) 16 000pores/sec = 210 1/h, Ca 3 x 10, Re 24, and D = 2.98+ 0.07 (fourth line in Fig. 3).

line of Fig. 2 develop holes of many sizes. The pattern
was observed to grow in bursts similar to those associated
with the invasion percolation model. A dimension D =
1.82+ O. l was found by analyzing digitized images from
two experimental series using the formula M B . Here
M is cluster mass and Rg is the cluster radius of gyration.
This value for D is consistent with that found in Ref. [11]
for invasion percolation experiments.

In contrast to the two-dimensional systems, where
there is access to the complete structure geometry, it is
necessary to work with the structure projections in three-
dimensional experiments. The upper line in Fig. 3 shows
typical projections of three-dimensional patterns gener-
ated during slow flow. Their shapes are irregular, par-
ticularly in the early stages. As more and more of the
structure is shielded, the projection appears more regu-
lar. The early projected patterns contain more holes than
the later patterns. The growth appears to come in the
form of added "blobs." Traces of burstlike growth can
also be seen as steps in Fig. 5, which shows the cluster
mass (or time) as s function of cluster size.

Figure 5 gives an estimate D 2.7 + 0.1 for the di-

mensionality of the slow experiment in three dimensions
shown in Fig. 3 (upper line). This value is higher than
the dimension D = 2.52 found for three-dimensional in-
vasion percolation clusters [10]. The value of the expo-
nent obtained from a single experiment is quite sensitive
to fluctuations in the growth process. Further, slow flow

without gravity is very sensitive to imperfections in the
medium, such as the wetting heterogeneity mentioned in
Sec. II. Indeed, less preferable wetting by the defend-

ing fluid after long exposure to the invading fluid should
lead to facilitated invasion in the interior of the structure
and more compact growth. In general, a slow fluid-fluid
displacement will be dominated by any inhomogeneity in
the medium, such as a more loosely packed layer. It is

not possible to be certain that a pattern formed by slow

flow in three dimensions was not dominated by inhomo-
geneities. A better approach is therefore to introduce a
controlled perturbation as a parameter. This perturba-
tion will introduce a length scale and therefore a cutoff
into the problem. For a range in this parameter the in-

troduced perturbation may dominate unknown pertur-
bations and account for the cutoff in the process. It may
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FIG. 5. Log-log plot of the cluster mass M as a function
of the linear size 2R of their projections (averages from two
projections) for very slow fiuid-fiuid displacement in a trans-
parent, three-dimensional porous medium (first line in Fig. 3).
The average of two perpendicular diameters was used as the
measure for linear size 2R. The mass is given in terms of
the characteristic pore volume v„and the diameters in terms
of the grain size b The. injection rate was 0.3pores/sec =
0.004 l/h, and the capillary number Ca 2 x 10 . The
exponent D, where M/v~ oc (2R/b), was determined to be
D = 2.7 + 0.1.

be possible in this way to quantify unknown perturba-
tions (at the borders of the range where the controlled
perturbation governs the process) and extrapolate to the
disturbance-&ee limit. This approach has been used with
both gravity [50] and permeability gradients [51] as per-
turbations.

At higher rates growth takes place simultaneously all
over the &ont at a more or less steady rate instead of the
localized and sudden bursts observed during slow Bow.
The patterns become more centered around the injection
point and denser. The two-dimensional patterns seem to
forxn many loops at high as well as low injection rates.
This is different from the patterns generated at high rates
using high viscosity contrast fiuids [17,18], where most of
the growth occurs at tips and the branches almost never
touch.

The crossover structures generated in the three-
dimensional system at intermediate rates are highly ram-
ified. In an earlier study [47] a characteristic length R~
was obtained as a measure of cluster linear size froxn

the projected area A by setting mR& ——A. Rg scaled

with cluster mass M as M R&", with the expo-
nent D~ 2.5. This value was found to be consis-
tent with the exponent for three-dimensional diffusion-
limited-aggregation clusters analyzed the same way. The
second line in Fig. 3 is taken &om one of the experiments
analyzed previously [47].

The lower line in Fig. 3 show patterns generated during
fast displacernent in the three-dimensional system. The
structures look very different &om the ramified clusters
obtained at lower injection rates. In contrast, these struc-
tures are ball-like, almost spherical, and have a rather
sharp interface to the defending fluid phase. Froxn this
sharp interface thin "threads" of invading Buid extend
out into the defending Quid. Whereas the advance of the
main front is steady, these threads come in sudden local-

ized bursts. The projections shown in Fig. 3 may give a
misleading impression of the surface structure. The pat-
terns in the second line (intermediate ra,te) were more
ramified than they may appear in the projection shown.
The sharp interface of the structures in the bottom line
(high rate) was more evident when it was observed in the
laboratory than the projections are able to show. These
structures were fully developed for Ca & 5 x 10,but al-
ready the patterns with Ca & 1 x 10 were similar both
qualitatively (they were quite spherical, but had rougher
surfaces) and in quantitative estimates (discussed below);
see Fig. 3 and the caption of Fig. 4.

Rather dense morphologies are to be expected dur-
ing fast Quid-fluid displacement at low viscosity contrast.
The most striking and surprising observation in these
three-dimensional experiments is that the structure is so
close to spherical and the interface is so sharp. This fea-
ture is less pronounced in the fast two-dimensional Bows
(bottom line of Fig. 2), but even here the patterns ap-
proach a circular shape with random offshoots. Some of
the difference between two- and three-dimensional sys-
tems could be due to the different boundary conditions.
In the two-dimensional system all of the rim is open
to atmosphere, whereas only a thin channel around the
top plate is open in three dimensions. In the previous
study [47] patterns at intermediate rates resembled DLA
patterns. Also the two-dimensional patterns at interxne-
diate rates show features in common with DLA clusters
(see the second line in Fig. 2). In comparison, the near
compact structures generated at high displacement rates
are surprising. It may be that the value for the viscosity
ratio m 14 in our system leads to a particularly rich
series of patterns as the injection rate is increased.

Stability arguments seem to predict instability for the
present system. Peters and Flock [52) incorporate fi-
nite viscosity ratio, system size (an instability with wave-
length larger than the system is irrelevant), and medium
properties such as permeabilities and wettability, but not
the pore level structure of the medium or interfacial ten-
sion, in a stability analysis for a cylindrical geometry.
This argument predicts instability, quite clearly, for all
the experiments in Fig. 4 (obviously caution should be
exercised since the experiments in the present case had
radial geometry). We take this as an indication that cap-
illary effects may be important in determining the pat-
tern morphology even at high displacement rates.

Visually, the three-dimensional ball structures gave an
impression of being filled with invading Quid. However,
comparison of the amounts of injected liquid to the ap-
parent displacement structure volume (calculated from
the diameter) indicated that the structures contain a
large &action of displaced Quid. The same conclusion
was also reached by breaking one displacexnent structure
into pieces. This was possible after the model had been
kept for many hours at —25'C. At this temperature the
dibutyl-phthalate is a liquid whereas the sucrose solution
&oze and the structure could be dismantled. However, it
was not possible to obtain details of the internal geometry
or the saturation in this way. From data on injected Quid
voluxnes and cluster sizes in seven fast dispacement ex-
periments [spanned by Figs. 4(a)—4(d)] the saturation 8
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of invading Quid was determined to be S = 0.42+0.02. In
other words, a surprisingly low &action of the pore space
inside these seemingly compact structures was filled with
invading Quid. The values for S were determined in each
experiment at the stage where the invasion structures
filled half of the container. For the experiments in the
first and second line of Fig. 3 saturations of 0.1 and 0.2
were estimated, respectively.

The values for the saturation S of the ball structures
were determined in an alternative way from the fits in
Fig. 4. Writing M/8 = A(R/b), where M and R are
the mass and the radius of the cluster and b the grains
size, the saturation is

M b's

as function of radius. The fits in Fig. 4 were made accord-
ing to M/v„= A(2R/b), where v~ is a characteristic

pore volume (see Sec. Il), so A is related to the mea-
sured amplitudes A in a simple way. With R/8 = 37.5
(the cluster fills about half of the container), and the
measured values for A and D in the same seven experi-
ments, a value S = 0.47 + 0.04 was obtained, consistent
with the value above.

Measurements of the fractal dimension D for these
structures gave D = 2.6 —3.0; see Fig. 4. The dimen-
sions determined this way should be taken as estimates
since the range in sizes is small. There was also some
uncertainty in the determination from photographs of
precisely when the injection started in these fast exper-
iments. However, these values for D are consistent with
rather dense patterns that still contain much of the dis-
placed Quid. Further, the values are higher than D 2.5.
found for the ramified structures at intermediate rates.
Using the same seven fast experiments as above, an av-
erage value of D = 2.74 + 0.16 was determined. Also the
S values given above indicate that denser structures are
generated as rate is increased.

The nature of the structures seems to be stable to per-
turbations of the fiow field. Figure 6 (middle line) shows
elongated structures generated in an experixnent in which
a top plate with many holes in it was used. As indicated
in Fig. 6, the pattern tends to grow more in the (easy)
upward direction than in the standard experiments. But
the structure surface still shows the same features; it is
sharp with threadlike ofFshoots. After a fast experiment
was completed the generated structures could be kept
essentially unchanged in the laboratory for many days.

FIG. 6. Displacement structures in this
figure illustrate various limitations of the ex-
perimental technique used. Each line shows

several stages in the same experiment. The
experiment in the upper line was carried out
with the standard setup described in Sec. II.
The patterns shown are from late stages of
the fastest experiment [bottom line in Figs. 3
and 4(d)]. The rightmost structure fills about
80% of the glass container, almost touches
the top plate, and deviates from a spherical
shape. In the experiment in the middle line

a perforated top plate (see Fig. 1) was used.
This leads to a more asymmetric fiow Geld

and more distorted shapes. The rightmost
structure in this experiment is very close to
the top plate. The lower line illustrates what
happens if there is no loaded top plate at all

during a fast experiment. Part of the medium
is lifted and a jet develops upward from the
injection point. The scale for these three se-
ries of structures is close to identical, so the
pattern sizes may be directly compared.
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The discussion above may indicate that the structures
are close to compact. But there is also the possibility
that they have dense radial xnorphologies and perhaps
also &actal geometry. Dense radial patterns are gener-
ated in some modified DLA models [53, 54] (as well as
several different physical systems). In a radially biased
DLA model [54] the dense patterns had the same fractal
dixnension D as the unbiased ones and all the striking
changes in morphology were accounted for by the ampli-
tude A (M = AB ). In analogy it is conceivable that
Quid-Quid displacement structures have a &actal dixnen-
sion D = 2.5, which is the value for three-dimensional
DLA clusters. Grier et ul. [55] have argued that a resis-
tivity, no matter how small, along the growth "channels"
of the structure should give rise to dense, radial patterns,
and a similar idea may apply to viscous resistance along
(possible) long, thin fingers in the present case. An im-
portant feature of the present system, however, is the
existence of threshold values for growth (invasion) along
the finger due to the pinned interface. The invading fiuid
might overcome these thresholds at high injection rates
(with large viscous pressure drops), giving rise to a com-
pactification of the structure. This may explain the rami-
fied DLA-like patterns observed at intermediate displace-
ment rates [47] since the pressure drop in the invading
Quid structure in this case is too small that most of the
threshold values can be overcome. On the other hand, the
Reynolds numbers (see caption to Fig. 4, Re = pub/ts;,
where p and p; are density and viscosity, respectively, of
the invading fiuid and b the grain size) indicate that in-
ertia forces dominate over viscous forces, at least in the
fastest experiments. A different prediction comes &om a
real space renormalization group calculation [56]. It was

found that for any finite viscosity contrast the pattern
will eventually cross over to coxnpact growth. However,
a xnedium without structure was assuxned in that study;
thus all pore level mechanisxns were neglected.

V. SUMMARY

Fluid-Buid displacement patterns generated in large,
three-dimensional porous media at a series of different
Bow rates at a low viscosity contrast have been visu-
alized. The lixniting morphology in fast displacement
(Ca ) 5 x 10 s) was found to be ball-like and rather
dense structures. Still these structures contain much of
the displaced Buid. Reference experiment in two dixnen-
sions showed a similar behavior. The experiments may
indicate that capillary effects are important in determin-
ing the pattern morphology also at high displacement
rates since the pressure drops in the two phases are com-
parable. The nature of the patterns formed during fast,
immiscible Quid-Buid displacement in porous xnedia at a
finite viscosity ratio is still not fully understood and there
is a need for more theoretical and experimental studies.
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