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The efFect of polydispersity on the isotropic-nematic phase transition of rigid rods is analyzed in terms
of a second-order perturbation theory, in which the width o. of an arbitrary number fraction is used as a
perturbation parameter. These results show that the isotropic-nematic phase transition takes place at
the isotropic density nI, where nILND=4. 189(1+2.1280. ), and the nematic density nN, where

nNLND =5.336(1+1.6550. ), with D and Lz being the diameter and the number-averaged length of rods
in the nematic phase. At the transition density, the weight- and number-averaged orientation order pa-
rameters have the values S~=0.7922+1.1333cr and SL =0.7922+0.8160; the ratio between the
number-averaged length of rods in the isotropic phase, LI, and that in the nematic phase, L&, is
LI/LN=1 —1.844o . These perturbation results are compared with the numerical solution of the equi-
librium conditions for the isotropic-nematic transition of rods obeying two modeled number fraction dis-
tributions.

PACS number(s): 64.70.Md, 61.30.Cz, 61.41.+e

I. INTRODUCTION

The thermodynamic properties of dilute solutions of
long rigid rods were first treated by Onsager, who con-
cluded that such solutions exhibit a first-order phase
transition between an isotropic phase with no particular
orientational order to a nematic phase with the nematic
order [1]. Owing to the recent interests in rigid and
semiflexible liquid crystalline polymers, theories have
been developed to refine the original Onsager model, pro-
ducing a much clearer physical picture of the isotropic-
nematic transition in these systems [2—14].

In most of these studies, rod molecules are treated as
monodisperse ones. However, the majority of syn-
thesized polymer chains have a certain distribution of
lengths, whose detailed form varies according to the pro-
cess and nature of the polymerization [15,16]. A typical
number fraction distribution can be characterized by
various statistical moments of the distribution, among
them the most important ones being the number aver-
aged length L (the first moment) and the weight-averaged
length Lu, (the ratio between the second and first mo-
ments) [15—17]. It is often considered to be sufflcient to
represent a weakly polydisperse system by experimentally
measuring these two quantities only, regardless of the ex-
plicit form of the fraction distribution. The degree of po-
lydispersity can be measured in terms of the ratio of the
weight-averaged length to the number-averaged length,
Lz, /L:—1+cd, where o. describes the width of the distri-
bution about the mean L.

The effect of length bidispersity on the isotropic-
nematic transition of rigid rods has been examined nu-
merically by Lekkerkerker et al. [18] and Birshtein,
Kolegov, and Pryamitsyn [19] for length ratios
L2/L

&
=2 and L2/L, =5. Among other interesting

features, they demonstrated that when the isotropic-
nematic phase equilibrium is achieved, longer rods prefer

to stay in the nematic phase rather than in the isotropic
phase, and that the biphasic gap (i.e., the diff'erence be-
tween the isotropic and nematic densities) is widened. As
in other studies of similar systems, they also found a
stronger orientational order of longer rods in the nematic
phase. Some of these numerical observations were ana-
lyzed by Odijk and Lekkerkerker [10]. Odijk [3] also
presented a general discussion on the polydispersity effect
based on the approximate technique of using Gaussian
trial functions to represent the orientational distributions.
This treatment is useful for a qualitative analysis, but not
for a quantitative calculation. McMullen, Gelbart, and
Ben-Shaul considered the system of polydisperse micellar
rods [21], whose lengths are determined by the chemical
potential equilibrium condition rather than being fixed by
the system, at the isotropic-nematic transition. This sys-
tem bears many similarities to the system studied in this
paper. In an approach similar to that used in this paper,
Sluckin [22] used a perturbation theory to evaluate the
properties at the transition, using a Gaussian distribution
for the number fraction. The Odijk Gaussian ansatz for
the orientational distributions is used. It should be men-
tioned that the effect of polydispersity on the isotropic-
nematic transition was first considered by Flory and co-
workers within Flory's lattice treatment of rigid rods
[23—26]. The mathematical representation and, there-
fore, physical results are different from the Onsager mod-
el, and the results are restricted to a number of special
models for the fraction distribution; nevertheless, these
theories provided quite an important insight for the fur-
ther study of similar problems.

In this paper, we use a perturbation method to solve
the phase equilibrium and free-energy-minimization con-
ditions of the Onsager model for polydisperse rods. The
number fraction distribution is assumed to be relatively
narrow so that the relative mean square deviation
o =—((L L) )/L =Ln/L ——1 from the number-
averaged length L can be used as a perturbation parame-
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ter, where L~ —=L /L, is the weight-averaged length.
The explicit form of the number fraction distribution is
not required in this treatment. Sluckin [22] used a simi-
lar quantity as the perturbation parameter, but his ap-
proach is restricted to the Gaussian fraction distribution.
The perturbation theory determines the correction terms
to physical quantities at the phase transition due to the
polydisperse effect.

Most practical examples to which the Onsager theory
may be applied are lyotropic liquid crystal systems con-
sisting of polymers or colloidal particles. Reference [2]
gives an extensive review of these systems. The calcula-
tion in this paper can be extended to study the effect of
polydispersity on semiflexible polymer systems, in which
the molecules are characterized by a flexibility coefficient.
This calculation will be reported elsewhere [27].

This paper is organized as follows. In Sec. II, the nu-
merical solution to the Onsager problem for mono-
disperse rods is reviewed; a generalized free energy based
on the Onsager model for a polydisperse rod system is
proposed. In Sec. III, perturbation expansions for the
chemical potentials and osmotic pressure for both the iso-
tropic and nematic phases, and the minimization condi-
tion of the free energy for the nematic state, are calculat-
ed. The main results are discussed in Sec. IV.

For the isotropic (I) phase, the dimensionless chemical
potential po p——ol(kT) can be written as

po(p) = 1+lnp+ —
p

and the dimensionless osmotic pressure I'o=L DI'0//
(kT),

Po(p)=p+ 4P'

For the nematic (N) phase, the dimensionless chemical
potential and osmotic pressure can be expressed in terms
of the distribution function fo(Q):

po (p) = 1+lnp+ A,o(p), (2.6)

Po (p) =p+ p f 1Q 1Q'f o(Q )fo(Q')
l
siny I . (2.7}

The isotropic-nematic phase equilibrium is determined
by the coexistence conditions

P(pt) =Po (Po )

Numerical calculations to solve the coupled Eqs. (2.2),
(2.3), (2.8), and (2.9) have shown that at the isotropic-
nematic phase transition, the coexisting number densities
have the values [3,12,18,28,29]

II. BASIC FORMALISM

A. Onsager problem for monodisperse rods

po 4 189

po~= 5.336 .

(2.10)

(2.1 1}

The solution to the Onsager problem is used as the
zeroth order approximation in the perturbation treat-
ment. The main results are summarized in this section.

Consider the system of volume V, consisting of X rigid
rod molecules of length l. and diameter D. Let fo(Q } be
the orientational distribution function of finding a rigid
rod pointing at the direction specified by the solid angle
Q, and n =N/V the average number density of rigid par-
ticles in the system. The free energy per particle, accu-
rate to the second order in the virial expansion, can be
written as [1]

F ""s"/NkT=lnp+ f fo(Q)ln[4nfo(Q)]dQ

So = (P2(cos8) ) =0.7922 . (2.12}

For later use, the values of the constants p, and pz at
the transition, defined below, can be calculated

p] =
o 0 ln 4m o 0 =1.6021, (2.13)

p~= f fo(Q)ln [4nfo(Q)]=4. 2499 . (2.14)

The solution of fo(Q) to Eq. (2.2), corresponding to po, is

presented in Fig. 1. As a measure of the degree of orien-
tational order, it is customary to define the orientational
order parameter

+p f 1Q1Q'lsinylfo(Q'}fo(Q)

(2. 1)

2.0 f i ' I I I f
i i I i * I
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i i 'i i I i I
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I

l

I

ln[4nfo(Q)] =Ao 2p f d Q—'lsiny Ifo(Q'), (2.2)

where A.o accounts for the Lagrange multiplier introduced
when the free energy is the minimized subject to the nor-
malization condition

ffo(Q)dQ=1 . (2.3)

where y is the angle between the two unit vectors point-
ing at the directions specified by 0 and 0', and
p=nL /D is the dimensionless density.

Minimizing the free energy with respect to the distri-
bution function fo(Q) leads to a nonlinear integral equa-
tion for fo(Q):
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FIG. 1. Monodisperse distribution function fo(8} and the
correction to the distribution function g(8). The expansion of
the distribution function f(8} is given by fo(8}[1+g(8}o.-
+ . . ]. Note that the scale for g{8)is reduced ten times here.
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Note that p& is the orientational entropic contribution to
the free energy of a nematic state.

B. Free energy for polydisperse systems

Next, consider the system of volume V consisting of N
polydisperse particles at the isotropic-nematic transition;
among these N particles, a fraction of x (a ) molecules has

length L =~Lz where Lz is the number averaged length
of rods in the nematic phase. Instead of Lz, we could
choose the number-averaged length of rods in the isotro-
pic phase, LI, as our basic length scale, but the above
choice greatly simplifies the calculation in this paper.
The orientational distribution function f(a., Q) is now a
function of the rod type ~.

A generalization of the Onsager model to include the
polydispersity yields [3,22]

F/NkT=lnp+ f dvx(a)lnx(z)+ f dax(a) ff(~,Q)in[4m f (~,Q)]dQ

+p f dvx(x)a f de'x(a')a'f dQdQ'~siny~f(z, Q)f(~', Q'), (2.15)

where the dimensionless number density is defined by

p—=—L~D .
V

(2.16)

The distribution functions x(a) and f(z, Q) satisfy the
normalization conditions,

fx(a)d~=. 1,

ff(s,Q)dQ=-1 .

(2.17)

(2.18)

Note that for the asymptotic limit of monodisperse sys-
tems, x(~)=5(a —1), the free energy (2.15) becomes that
of the Onsager model, up to an unimportant constant.

III. PERTURBATION THEORY

A. Number fraction distribution

Since we are dealing with a multicomponent system,
the number fraction distributions xr(~) and x~(~) are
diferent in general, when the isotropic-nematic phase
equilibrium is reached. From Gibbs's phase law, one of
the x(~} functions must be specified; here in this paper,
x~(~) is chosen to be the specified one, for convenience.
The fraction distribution xr(a. } will be determined by the
phase equilibrium condition. In particular, xrr(a) is as-
sumed to have the first and second moments

must be small. Thus, we can represent the ratio
xrr( K ) /xr ( a ) by a Taylor expansion of the parameters
characterizing the weakness of the polydispersity. In
general, this ratio depends on two parameters, 0. and ~.
For a smooth distribution sharply peaked at v=1, we ex-
pect ((a —1) ) =O(o }. Therefore, we may expand
x~(K) /xr(ir } in the vicinity of ir = 1 and o =0:

xr(K)=x~(K}[1+a)rr+a2(z—1)+a3o +a4(tc 1)—
+a~(a —1)o+ ] .

All terms of order cr, o (a —1),o (a —1), and (» —1) or
higher are not important; these terms either have order
higher than cr, or indirectly produce them when the
average over the number fraction distribution is con-
sidered. In a second-order perturbation theory, these
terms can be discarded in the perturbation expansion.

Using the normalization condition (2.17), one can show
that a, =0 and a3= —a4. Redefining the constants leads
to

xr(a ) =xrr(a )[1+a(a—1)+Per
—P(» —1 } +g(z —1)o + ], (3.3)

where a, P and g will be determined below. The parame-
ter a represents the deviation of the number averaged
length of rods from Lz in the isotropic state,

Lr/Lrr =~r =f dKxl(ir)ir I+~~ (3.4)

K~ ——f dKKx~(K) =1

'( KN ~ f dKK xN(K)= 1+o

(3.1)

(3.2)

The parameter p represents the deviation of xr(a. ) from
x~(~) at~=1:

It may seem that in order to determine the phase equilib-
rium boundary, the explicit functional form of x~(a)
must be given [22]; close inspection of the phase equilibri-
um conditions indicates that only the first and second
moments of x&(z) are involved for a relatively sharp frac-
tion distribution.

For monodisperse molecules, the distribution function
xr(~) is identical to x~(a.), and both should be a 5 func-
tion centered at a=1. For weakly polydisperse mole-
cules, the di8'erence between the former and the latter

xr(1)=x~(1}(1+Po ) . (3.5)

B. Nematic orientational distribution function

From the energy minimization condition of the distri-
bution function f(a, Q },

ln[4nf(a, Q)]=A(z) 2pa f, da—'x(a')a'

X f dQ'(siny~f(a', Q'),
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it can be shown in general that [3]

f(~, Q) ~ [f(1,Q)]", (3.6)

Using the minimization condition for the free energy and
the equilibrium condition for the pressure, we can also
show that,

k(~) =aA, —(~—1)p, —(p, —p f )(s —1)'/2+ .

Thus, f(~, Q) can be written perturbatively as

f(~,Q)=f(1,Q)[1+(a—1)hf, (Q)

+(a —1) hfdf(Q)+ ],
where

(3.8)

where f (1,Q) is the distribution function for a= 1 satis-
fying

ln[4mf (1,Q)]=A,—2p f dv'x(a')a. '

X f dQ'Isinylf(K Q ) . (3.7)

Here we have simplified the notation by denoting
A,(1)=A, . The Lagrange multiplier A, (x ) can be related to
A, by considering the normalization condition for f (a, Q),
which depend on f (1,Q) via Eq. (3.6). We then have

A, =A,o+O(cr ),
f(1,Q)=f o(Q)+O(cr ),
p'= po+ O(~'»

and,

p' =po+O(o') .

Therefore, we need to perform a second-order perturba-
tion analysis in order to obtain the leading correction
terms topi, p, and f(1,Q).

D. Second-order perturbation

As shown above, we can draw the conclusion that the
deviation of the distribution function f (1,Q) from fo(Q)
is of order 0. . Expressed in terms of the second order ex-
pansion in 0.,

and

b f, (Q) =1n[4nfo(Q) ]
—p, ,

~fr(Q)=[1" [4~fo(Q)] p2]I2 pi&fi

(3.9)

(3.10)

f (1,Q)=fo(Q)[1+g(Q)o. + . ],
X=Xo+X,c ',
P'=Po(1+P i~'»

are known functions of Q. Again, terms of order (s.—1)'
or higher are not important and thus neglected. Finally,
equation (3.7) gives

and

N —x(1+ A 2)

ln[4~f (1,Q)]

=A, —2p dQ' siny 1+ 5 &+5 2
0. 1,0'

(3.11)

Note that Eq. (3.11) recovers the minimization condition
for a monodisperse system at o =0.

C. First-order perturbation

To first order in o., the minimization condition (3.11)
has the same form as that of the Onsager model [Eq.
(2.2)]. The expression for the osmotic pressure is also un-
changed up to this order. The chemical potential for
species ~ can be obtained from the derivative of the free
energy with respect to the number of rods of length aL~.
It follows that for the isotropic phase,

P„(p)=Po(p)+lnx~(x )+a(~—1)+—p(~ —1)+.. .

(3.12)

Equation (3.11) for the unknown function g(Q) can be
rewritten in the form of a linear integral equation

g(Q)=A, , 2pop—, f dQ'Isinylfo(Q')

2po f—dQ'Isinylfo(Q')

x [bf, (Q')+ bf,(Q')+g(Q')], {3.23}

where Af, and b,fz are those functions in Eqs. (3.9) and
(3.10). The above equation must be solved in conjunction
with the condition

o&g
which resulted from the normalization condition (2.18).
The constants p&, p&, and k, are the coefficients of the
correction terms to the isotropic and nematic densities
and the I.agrange multiplier, that must be determined un-

der the phase equilibrium conditions.
For the isotropic phase, the chemical potential of the

species x is given by

p„(p ) —po(po)+1nx~(~)+(Ao p, )(~—1)

and for the nematic phase,

P,„(p)=jo(p)+1nx~(~)+(A, p, )(a.—1)+— (3.13)

+o (p3p, +p4+P) —P(a —1)2+ger{k—1)

—a {x—1) /2.
The coexistence equation for the isotropic and nematic

chemical potentials, p„(p ) =p,„(p ), implies
The pressure can be written as

~ (P )=Po(po)+~ IP3pi+P4]po
jT=A, —p, ——

p = —1.845 . (3.14)
where Po and po are those defined in Eqs. (2.4) and (2.5),
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and the constants p& and p4 are defined in Table I.
For the nematic phase, the expression for the chemical

potential can be simplified when the minimization condi-
tion of the free energy is used. Hence,

p„(p ) =po (pll )+1nx~(~)+(Ao —p, )(lr —1)

TABLE II. Expansion of physical quantities in o. at the

phase transition. In this table, p and p are the isotropic and

nematic number densities at the phase transition; a, P, and rI

appear in the expression for the ratio between the isotropic and
nematic number fractions, Eq. {3.4); see Table I for the values of

po and po .

+(p l
—pq)(K —1) /2+(p l +A, l)cr . (3.27)

The expression for the pressure up to order o is rather
simple,

P (p )=P (p )+p (p, +A, , ) (3.28)

where Po and Po are those in Eqs. (2.6) and (2.7).
Equating the chemical potentials in Eq. (3.25) with Eq.

(3.27) at order a yields the results for the constants P
and g:

pi
p&

a

'9

Ar J

S)

Sg

Sg

Value

2.128
1.655
—1.844
—0.SSSS
0
1.4824
0.317
—0.391

1.207

Definition

pN —pN{ 1 +pN&2+

Lz /L~ = 1+ao ~+

A.—A,o+A, )u +
ffo{Q)hf,{Q)Pz{cos8)dQ

ff,{Q)hfz{Q)Pz{cos8)dQ

ffo{Q)g{Q)P~{cos8}dQ
P=(Pz —Pl )/2 —a /2= —0.8588,

g=0 .

(3.29)

(3.30)

In addition, it also produces a linear equation for the
variables p&, p&, and A, &,

(3.31)

Another linear equation involving the above variables
comes from the equilibrium condition of the osmotic
pressure, p =1.655 . (3.35)

unknown function g(Q} and variable pl ', these equations
must be solved numerically. Using the previous numeri-
cal results for the distribution function fo(Q), we obtain
the numerical solution for g(Q }as plotted in Fig. 1. The
numerically determined p, has the value

Pspapl Po (P 1 +~1}= P4PO ~ (3.32)
Table II summarizes the results of our calculation.

Elimination of the factor (p& +A, l} by combining Eq.
(3.31) with Eq. (3.32) gives,

I N
— ' =2.128 .

(po po ps
(3.33)

Using Eq. (3.32), we can calculate for pl +A, l,
N

N+gPl 1
po-po

(3.34)

TABLE I. Properties of the Onsager model at the isotropic-
nematic phase transition. In this table, po and po are the isotro-
pic and nematic densities at the transition; So is the orientation-
al order parameter; @I{I = 1, . . . , 4) are the constants used in the
paper.

I
po
po
So

ps

Value

4.1895
5.3362
0.7922

1.6026

4.2499

7.5808
—12.142
6.3389

Definition

ff,{Q)Pz{cos8)dQ

ffg{Q)in[4m fo{Q)]dQ

ffo{Q)ln [4mfo{Q)]dQ

1+—pol

~apo/2
See Eq. {2.2)

Substituting A, , by pl using Eq. (3.34), we obtain a set of
linear integral equations, Eqs. (3.23) and (3.24), for the

IV. DISCUSSION

(nN nI )L~D =—1.147(1—0.072g~+ . ) . (4.1)

Contrary to the observation made by other authors
[18—25], the biphasic difference narrows when the sys-
tem becomes weakly polydisperse. The rather small slope

Equation (3.4) represents the ratio between the
number-averaged length of rods in the isotropic phase
and that in the nematic phase. Since a= —1.844 is nega-
tive, we can conclude that the shorter rods prefer to
remain in the isotropic phase, while the longer rods
prefer to go to the nematic phase, as has been observed in
previous studies of similar problems. The constant
a= —1.844 can be compared with Sluckin's estimation
[22] of —5.8. Shorter rods possess higher orientational
entropy, thus can be more easily fitted in the isotropic
liquid. [18—25].

Equations (3.21) and (3.22} represent the isotropic and
nematic densities at the phase transition, including the
leading correction terms due to the polydispersity effect.
The constants in Eqs. (3.21} and (3.22) are
p0=4. 189, po =5.336, p, =2.128, and p, =1.655. These
results can be compared with Sluckin's

p =4.393(1+2.4a ) and p =6.52(l —2.2o ), where we
have rescaled these quantities using the convention in this
paper [22). Note that the latter contains a negative
correction term, while our solution indicates the oppo-
site. The biphasic difference scaled by I.ND can be writ-
ten as,
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associated with the correction term in Eq. (4.1) indicates
that the narrowing effect can be quite weak. Since we are
dealing with a perturbation series of the biphasic
difference for small o., we are not able to predict whether
or not the broadening effect actually exists for a stronger
polydisperse system.

The nematic orientational order can be measured by
defining an order parameter for species x,

S(K)=j dQf(K, Q)P~(cos8)

=So+s, (K—1)+s2(K—1) +s3a. +, (4.2)

4 6 I I I I I I I I

4.5

4.4

4.3

4.2
I-

41
0.00 0.01 0.02 0.03

where s, , s2, and s3 are the coefficients of the correction
terms, defined in Table II. The number- and ~eight-
averaged order parameters, SL and S~, can be deter-
mined by using Eq. (4.2)

SL =—f dKS(K) =SII+(s~+s& )a +

FIG. 3. Isotropic density at the phase transition. The solid
line is predicted by the perturbation theory (see Table II); the
short-dashed and the long-dashed curves are the numerical re-
sults from solving the phase equilibrium condition for the two
modeled nematic number fractions in Eqs. (4.5) and (4.6).

=0.7922+0.8160 +

S11,—:J dKKS(K)=SO+(sI+s2+s3)a +
(4.3)

=0.7922+1.1330 + (4 4)

1 (K —1)
XJV ( K ) I Gauss

a (21r}1/2 p 220
(4.5)

and

1.00

0.99

Equation (4.2) is valid only for ~K
—

1~ &&1; however, it
can already be deduced from Eq. (4.2) that the longer
rods in the nematic phase are ordered more strongly,
while the shorter rods more weakly. Inspection of the
distribution function in Eq. (3.6) supports this conclusion
[3]

In order to evaluate the accuracy of the perturbation
theory, we also have conducted a numerical study of the
isotropic-nematic phase transition when xIv(K) follows
two modeled number fraction functions [16],

l
xIv(K)

~ Lz = ——, exp
a (21r )

I "K
[ln(K/K ) ]

2g

The latter is the Lansing-Kraemer distribution with
=exp( —a. /2) being the median of the distribution

curve. Both distributions have the ratio

I.~. /L =1+0 +- (4.7)

5 7 I I I I I

The minimization condition in Eq. (3.7) is solved accord-
ing to the iteration procedure described in Ref. [12],with
the additional approximation of discretizing the function
xIv(K). The transition densities p and p are then deter-
mined numerically by implementing the Newton algo-
rithm for the chemical and pressure equilibrium condi-
tions. These numerical results are compared with the
perturbation results as shown in Figs. 2 —5. In these
figures, the solid lines are the physical quantities deter-
mined by the perturbation theory, the short-dashed
curves are those from the Gauss model in (4.5}, and the

0.98 5.6

0.96
5.5

0.95 5.4

0.00
I I I I I I I I I I I I I I I

0.01 0.02 0.03
I I I I I I I i I I I I I I I I I I I I I I I i I I I I I5.

0.00 0.01 0.02 0.03

FIG. 2. Ratio between the mean length of rods in the isotro-

pic phase and that in the nematic phase. The solid line is pre-
dicted by the perturbation theory (see Table II); the short-
dashed and the long-dashed curves are the numerical results
from solving the phase equilibrium condition for the two
modeled nematic number fractions, in Eqs. (4.5) and (4.6).

FIG. 4. Nematic density at the phase transition. The solid
line is predicted by the perturbation theory (see Table II); the
short-dashed and the long-dashed curves are the numerical re-
sults form solving the phase equilibrium condition for the two
modeled nematic number fractions, in Eqs. (4.5) and (4.6).
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I I ~ ~ I I I ~ I
I
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I
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FIG. 5. Weight- and number-average orientational order pa-
rameter S~ and SL defined in Eqs. (4.3) and (4.4). The solid line
is predicted by the perturbation theory; the short-dashed and
the long-dashed curves are the numerical results from solving
the phase equilibrium condition for the two modeled nematic
number fractions, in Eqs. (4.5) and (4.6).

long-dashed curves are those from the Lansing-Kraemer
model. All curves fall into the same asymptotic behavior
represented by the solid lines. As can be seen, our pertur-
bation results describe accurately the asymptotic

behavior of these physical quantities near o =0. Even for
cr =0.03, the perturbation results can still be used to
give reasonable estimates for the numerical results. The
error of the perturbation results are of order 0. at larger
cr, which is consistent with our expectation.

Bidisperse rods are known to exhibit a possible reen-
trant phase transition [19]; two difFerent nematic phases
were also found by Birshtein, Kolegov, and Pryamitsyn
for bidisperse rods [19]. These complications are outside
the scope of the current paper.

In summary, the physical properties of the isotropic-
nematic phase transition of polydisperse rigid rods can be
studied through a second order perturbation theory. For
systems that can be described by small o, the leading
correction terms to the isotropic and nematic densities,
the orientational order parameter, and the ratio of the
average lengths of rods in the isotropic and nematic
phases calculated in this paper, should be adequate for
describing the deviations from those of the monodisperse
system.
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