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Dynamical test of interaction potentials for colloidal suspensions
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An analytical formula for the ratio between the long- and short-time self-diffusion coefficient D; /Dg
is presented as a result of extensive Brownian dynamics simulations for Yukawa systems. In addition,
forced Rayleigh scattering experiments are performed to determine D; /Ds for suspensions of highly
charged latex spheres with a variable low volume fraction immersed in electrolytes of variable concen-
tration. Experimental parameters were precisely controlled using advanced preparational methods.
Comparing experimental data to the analytical formula we perform a sensitive dynamical test of Yukawa
models for the interaction potential. The observed quantitative agreement provides strong evidence for
the validity of the renormalization procedures suggested within the Poisson-Boltzmann cell model [J.
Chem. Phys. 80, 5776 (1984)]. Deviations observed for the Dejarguin-Landau-Verwey-Overbeek poten-

tial and other models are discussed.

PACS number(s): 82.70.Dd, 66.10.—x

I. INTRODUCTION

Transport processes in charge stabilized colloidal sus-
pensions are of major importance both in biological sys-
tems and in industrial processing. Diffusional [1], rheo-
logical [2], and electrokinetic [3] properties have been
studied extensively in systems of so called monodisperse
particles which may be synthesized with well-defined par-
ticle dimensions and surface chemistry. The effective in-
teraction between the colloidal particles can be varied ex-
perimentally by changing the packing fraction &, the
density of screening electrolyte pg, or the particle charge
Z. Highly charged colloidal spheres show pronounced
ordering even at extremely low packing fractions, if pg is
kept sufficiently low; whereas sterically stabilized hard
spheres show a freezing transition at ® =0.494. Changes
in the fundamental processes of diffusional transport due
to the formation of cages of neighboring particles are ob-
servable in such model suspensions with high accuracy by
light scattering techniques.

In the presence of fluid order the time dependent mean
squared displacement {72) of a colloidal sphere of radius
a in a medium of viscosity 17 shows two linear regimes. At
short times the particle diffuses quasi freely. The self-
diffusion coefficient for short times ¢ Dg={r?) /6t takes
the Stokes-Einstein value Dy=kpT /6mna, where kp is
the Boltzmann constant and T the temperature [4].
Corrections to this value may consider hydrodynamic in-
teraction at elevated volume fractions ®>0.01 [5] or
electrolyte friction at typically millimolar salt concentra-
tions [6]. Any direct repulsive interaction with other par-
ticles considerably reduces the diffusional transport. The
structural relaxation of the surrounding cage of neighbor-
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ing particles then becomes the limiting process of particle
diffusion. At longer times, after several rearrangements
of the cage, a second linear regime is reached. The long-
time self-diffusion coefficient D; is found to decrease with
increasing strength of interaction. This has been shown
experimentally for both charge and sterically stabilized
particles by means of different techniques, including dy-
namic light scattering (DLS) [7,8], forced Rayleigh
scattering (FRS) [9-11] and fluorescence recovery after
photobleaching [12]. Most of the experimental work so
far was confined to hard sphere systems. Data on D; in
the fluid phase of charge stabilized systems are rare and
mostly consider a variation of only one experimental con-
dition (¥ or pg).

It is convenient to express the decrease of D; in terms
of the self-diffusion ratio D;/Dg, which is one for a
noninteracting system. It has recently been shown that
this ratio has a universal value of D; /D;=0.098 at the
freezing transition of colloidal fluids [10]. This consti-
tutes a dynamical freezing criterion for Brownian systems
of arbitrary interaction potential.

On the theoretical side, results of Brownian dynamics
(BD) simulations have been compared to analytical pre-
dictions on D;. The theoretical description of the long-
time self-diffusion behavior is based on the memory func-
tion formalism. Kineticlike theories using both two par-
ticle dynamics and the exact short-time behavior of the
friction kernel give the best agreement with BD simula-
tion results [13]. Nevertheless the predicted values for
D, are still off by some 30% from the simulation results.

In this paper we present extensive data for D; /Dy
from both BD simulations and forced Rayleigh scattering
experiments. The experiments were performed on mono-
disperse charge-stabilized latex spheres of known true
surface charge and precisely controlled particle density
and salt concentration. A comparison between the data
sets of the experiments and BD simulations gives direct
insight into the particle interaction. In particular, a num-
ber of different theoretical descriptions have been pro-
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posed, where the particle interaction is described in terms
of a Yukawa pair potential. The Yukawa parameters,
however, differ for the different theories. In this paper
we will use a dynamical quantity, namely, the ratio of the
self-diffusion coefficients D; /Dg to discriminate between
different Yukawa models.

Usually a comparison of theoretically derived to exper-
imentally determined fluid static structure factors S (k) is
used to judge the validity of interaction models. The
problem then is that S(k) is rather insensitive with
respect to details of the particle interaction. In most
cases S (k) keeps the same shape and it is only the ampli-
tude responding to the average strength of interaction.
On the other hand, dynamical quantities depend much
more sensitively on the interaction and thus provide a
more stringent test for the interaction potential, respec-
tively, the Yukawa parameters. This was demonstrated
in the molecular dynamics of Yukawa systems by Rob-
bins, Kremer, and Grest [14]. They have shown that two
different Yukawa models may lead to practically identical
static pair correlations but qualitatively different dynami-
cal quantities, i.e., velocity autocorrelation functions.
This sensitivity of dynamical quantities with respect to
the details of the particle interaction is here used to
discriminate between different Yukawa models by com-
paring the experimental data of particle self-diffusion to
data from computer simulation.

A similar comparison was recently performed by Hartl
et al. [7]. Our work, however, differs from theirs in two
major aspects. First, our computer simulation is more
extensive, scanning the whole fluid regime of the two-
dimensional Yukawa phase diagram and providing an ex-
plicit formula for D; /D¢ which facilitates a direct com-
parison with different Yukawa models. Second, the true
surface charge of our experimental samples is known. In
contrast to Ref. [7], where the surface charge was ob-
tained by fitting S(k), here there is no fit parameter in
our comparison. A quantitative agreement between
theory and experiment thus provides strong evidence for
the validity of the theoretical model. Consequently the
idea of a dynamical test for interaction potential could
not be pursued in Ref. [7] or other papers.

Our paper is organized as follows: After a brief
description of the simulation procedures and the experi-
mental method we present a detailed comparison between
the results obtained. We finally discuss the impact of the
found quantitative agreement for further developments of
theoretical descriptions.

II. BROWNIAN DYNAMICS SIMULATIONS
OF YUKAWA SYSTEMS

In this chapter we describe the results of extensive
Brownian dynamics (BD) simulations for the long time
self-diffusion coefficient D;. Hydrodynamic interactions
are ignored. The BD algorithm is explained in detail in
Refs. [12,15]. The short-time diffusion coefficient Dy
enters in a natural way into the BD simulations and
determines the time scale. We are considering systems of
particles interacting via a pairwise Yukawa potential:

BITZER, PALBERG, LOWEN, SIMON, AND LEIDERER 50

(n

frequently used to describe the effective interaction be-
tween charged colloidal particles. In (1) 1/k sets the
length scale and U the energy scale. By means of a suit-
able scaling [14,16] for a given particle number density p
and temperature 7, a Yukawa system can be character-
ized by two-dimensionless parameters:

]1/‘3

A=k l! (2)
P
and
_ kgT .
T:LA)\'eh_ 3)
U

Recently, the phase diagram of a Yukawa system as a
function of T and A, was calculated via computer simula-
tion by Meijer and Frenkel [16]. Their range of 3<A <7
coincides with the range of A under consideration in this
work. Interpolating their data by a polynomial fit one
finds the following analytical expression for the freezing
line T/(1) in the(T,) plane [18]:

T/(1)=0.009+0.03031—0.00997A>+0.00351
—0.0002451* . (4)

See also Stevens and Robbins [17], who report a higher
melting temperature at large A.

We have performed a series of 40 different BD runs to
calculate the self-diffusion ratio D; /Dg scanning the
whole fluid regime in the (T,A) phase diagram for T> T,
and A<7. In Refs. [10] and [13] only a few discrete
points in the (T,A) diagram were taken. On the freezing
line D; /Dg was previously found to have the universal
value D; /Ds=0.098 [10]. In order to find a simple
analytical expression for D; /Dy in the fluid regime we
have used this fact and tried an exponential ansatz for the
scaled inverse temperature. We found the fit:

Dg I T/(2)
——=0.6286exp | —1.8585—— . (5)
D, T |

This Arrhenius-like fit was also used to fit the long-
time self-diffusion coefficients from molecular dynamics
data of Yukawa systems [18]. Equation (5) is a good fit
with a relative error of less than 3% in D, /Dy, if
D, /Ds =0.6, i.e., at strong particle interaction. We em-
phasize, however, that the Arrhenius-like behavior re-
sults simply from the fit procedure, but does not neces-
sarily imply a physical background of a hidden activated
dynamical process.

A more general fit working for arbitrary D; /Dg with
an error of less than 4% is provided by the formula:

=y + At

D, /Dg=Ae "'+ A,e + 4,5, (6)

with t=T/(A)/T and the constants A;=0.646,
A,=0.318, A4;=0.0360, p,=2.343, pu,=31.702, and
13=6.053. Again the double Arrhenius-like fit is a con-
venient analytical form but does not imply a physical
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background of thermally activated diffusion processes.
Note that in both formulas the dynamical freezing cri-
terion D; /Dg=0.098 for t =1 and the high temperature
or low density limit of D; /Dg=1 for t — o are included.

Equation (6) provides a simple but general result for
the self-diffusion ratio D; /Dg in Brownian Yukawa
fluids. A comparison with experimental data then facili-
tates discrimination between different theoretical Yu-
kawa models used to describe the interaction between
charged colloidal spheres.

III. FORCED RAYLEIGH SCATTERING
EXPERIMENTS

The particles used here were well characterized Poly-
styrene Latex spheres of hydrodynamic radius ¢ =51 nm
(dynamic light scattering) and a number of titrated sul-
fate surface groups of N =1200 (Lot 2010M9R, Seradyn,
U.S.A.). Sample preparations used a recently reported ad-
vanced deionization technique [19]. Salt concentrations
are controlled via conductometric measurements taking
into account the conductivity of the suspending medium.
The experimental parameters were adjusted with a resid-
ual uncertainty of 1% in the volume fraction ® (using
static light scattering) and 2% in the concentration of ex-
cess electrolyte cg. At typical experimental conditions of
both low volume fraction and low salt concentration, the
titration of interaction dependent quantities, yields a true
surface charge number of Z =580 (resulting from incom-
plete dissociation of surface groups) [20].

To determine the self-diffusion coefficients forced Ray-
leigh scattering (FRS) was used [9,11]. A small fraction
of the particles is uv-sensitized with 6-nitro-BIPS (Merck,
Germany). An absorption grid of variable wavelength is
formed in the sample by two crossed uv-laser beams. Its
diffusional decay is monitored via the Bragg reflection of
a He-Ne laser beam. The monoexponential signal is eval-
uated for the self-diffusion coefficient, using independent-
ly measured corrections for the incoherent and coherent
scattering backgrounds and the relaxation time of the
dye.

Up to 20 single measurements are averaged in a run
(statistical error AD <1%) and typically three runs are
taken at each set of experimental conditions. The residu-
al uncertainties of typically less than 3% in D, (cgs,P,Z)
are mainly due to the remaining variations in the experi-
mental parameters.

For noninteracting systems [static structure factor
S (k)=1] short- and long-time self-diffusion coefficients
coincide: Dg=D;. Due to electrolyte friction at typical-
ly millimolar salt concentration (ka = 1) [6] the measured
short-time diffusion coefficient takes values slightly below
the Stokes-Einstein value measured at large cg:
Dg=Dy=kgT/6mna (where 7 is the viscosity of the
suspending medium). In the following we only compare
the ratio D; /Dg, which is unaffected by electrolyte fric-
tion.

IV. RESULTS

In comparing the experimental data with the theoreti-
cal fit formula for a Yukawa interaction, three different
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theoretical models and an empirically found relation for
the Yukawa parameters are considered. The repulsive
part of the Dejarguin-Landau-Verwey-Overbeek (DLVO)
potential uses the solution of the linearized Poisson-
Boltzmann (PB) equation. It also includes a correction
for the finite particle radius. The number of dissociated
surface groups Z and the bulk values of the total small
ion concentration are used as input for U and «:

exp( KDLVOa) 2

(1+kprLvoa)

Z%?
4me e

Uprvo= (7)

with the Debye-Hiickel expression:
kbrvo=e*(2ps+pZ)/eekp T , 8)

where e is the elementary charge, €g, is the dielectric per-
mittivity of the suspending medium, pg=1000N ,cg is
the number density of monovalent salt ions.

A second approach is to solve the mean spherical ap-
proximation (MSA) analytically in the framework of the
primitive model for both macroions and counterions.
This leads to an effective interparticle interaction which
has the Yukawa form (1) with the same « as in the DLVO
expression but an increased effective charge Zyg, > Z.
Explicitly one gets [21]

U = Z %ASAe : exp( KMSAa ) 2 (71)
MSA ™ dmee | (1+Kysaa)
and
kusa=e’(2ps+pZ)/eepkp T . (8"

The renormalization procedures [22,23] use a Yukawa
fit to the numerical solution of the nonlinearized PB
equation within a spherical Wigner-Seitz cell. This re-
sults in a third version for a Yukawa interaction which is
called the Poisson-Boltzmann cell model (PBC). The sim-
ple analytical form (1) is retained for somewhat smaller
renormalized charge numbers Zpp- <Z:

Z}pce’

UPBC:—417805 . (V)]

The numerically determined electrolyte density at the

Wigner-Seitz cell boundary pyyg is used to calculate the
screening parameter:

Khpc=e’pws/eokpT . (8")

The saturation of Zpgc with increasing Z has recently
been confirmed experimentally [24].

Finally we consider an approximation which is empiri-
cally justified in the case of strongly interacting particles
[20,25]. This so-called “modified DLVO approximation”
(MDA) uses the DLVO potential with the renormalized
charge obtained within the renormalization scheme to-
gether with a k calculated from Zpgc protons plus added
salt ions:

2

z %Bce 2 exp(Kypaa)

(1+Kyppaa)

Unpa= )

4meqe
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and

Kpa=e22ps+pZppc)/eceky T . (8"

To demonstrate the sensitivity of the dynamical prop-
erties to the choice of the potential model we compare
the predicted diffusional behavior from the fit formula (6)
for these four models in Fig. 1. D; /Dy is plotted as a
function of cg for a given set of experimental parameters.
We may clearly discriminate between DLVO and MSA
on the one side and PBC and MDA on the other side.
The differences are most pronounced in the low salt re-
gion, where DLVO and MSA predict a lower self-
diffusion ratio than PBC or MDA. A further discrimina-
tion is not possible due to the combined errors of the
analytical expression and the experimental data. We also
remark that a logarithmic scale in cg causes a plateaulike
behavior in the curves obtained from the fit formula. This
does not have any physical implication, since the curves
are smooth within the given relative error of 4%.

It is instructive to take a more detailed look at the
behavior of the analytical formula under typical experi-
mental conditions. The dependence of the self-diffusion
ratio on the true surface charge Z and on the volume
fraction ® is shown for the PBC model in Figs. 2 and 3,
respectively. D; /D¢ is more sensitive to the packing
fraction than to the true surface charge Z. This is due to
the renormalization procedure which at high true surface
charges yields very little variation in Zpgc [22-24]. Nev-
ertheless the diffusional behavior responds very sensitive-
ly to all three input parameters of Eq. (6). Therefore we
may discriminate the four Yukawa models by accurate
dynamic measurements with precisely determined experi-
mental parameters.

The experimental data were recorded for three
different volume fractions ® between 0.000 65 and 0.0041
and salt concentrations cg between O and 107* mol 17",
We show the comparison to the analytical formulas for
the PBC and the DLVO potential models in Figs. 4 and
5.

D, / Ds

Cqt [ pmol /1]

FIG. 1. Comparison of the salt concentration dependent
diffusional behavior as calculated from Eq. (6) for the four Yu-
kawa models characterized by Egs. (7), (7), (7"), (7""') and (8),
(8"), (8"), (8""). Parameters: Z =580, ®=0.002.
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FIG. 2. Influence of the charge number on the diffusive

behavior for the PBC model used with Eq. (6). Parameters:
$=0.002 and (——): Z=300; (- ) Z=400; (— — —)
Z =500.

10 T

T T rrry T T T

08 -

D, / Ds
AN

04 Pz

T
\
\
N
!

02 — e

A

WS W S—

f—
-
-
-
-

N L
o

05 1 2 5 10
Cogit [ pmol /1]

FIG. 3. Influence of the volume fraction on the diffusive

behavior for the PBC model used with Eq. (6). Parameters:
Z =400 and ( ): &=0.0005; (— — —): &=0.001; (-
$®=0.005.
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FIG. 4. Comparison of three systematic series of experimen-
tal data to Eq. (6) used with the PBC model. Experimental pa-
rameters: Z =580 and open diamonds: $=0.000 65; squares,
®=0.0012; filled diamonds ®=0.0041. Hatched areas: Predic-
tions using these parameters in Eq. (6) with 4% uncertainty.
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FIG. 5. As Fig. 4 but for the DLVO model.

In Fig. 4 we observe an excellent overall agreement of
the predictions for the self-diffusion ratio with the FRS
data in the case of the PBC model, Egs. (7”') and (8"’). We
note that the MDA, Egs. (7""') and (8'""), leads to equally
satisfying predictions for D, /Dg. Significant deviations
are found in Fig. 5 for the DLVO description, Egs. (7)
and (8). These deviations are comparably smaller at low
potentials but reach a factor of 2 in the low salt region.
Also, the MSA, Egs. (7) and (8'), leads to results which
are practically identical to those of the DLVO model and
thus fails to describe the data.

V. DISCUSSION

We have performed extensive BD simulations and ob-
tained a fit formula for the self-diffusion ratio D; /Dg of a
Yukawa system with an accuracy of better than 4%. Fur-
thermore, our experimental system was well character-
ized with respect to the particle radius (Aa <1%), the
true surface charge (AZ <2%), the salt concentration
(Acg £2%), and the volume fraction (A® <19%). On this
system D; was measured by FRS with a statistical error
of less than 1%.

The achieved accuracy enables the prediction of abso-
lute values for the self-diffusion ratio from Eq. (6) and
safe comparison to the experimental results. We note
that for the first time there are no free parameters left in
the description of the long-time self-diffusion of dilute but
strongly interacting Yukawa systems. This allows for a
clear discrimination between different models of Yukawa
potentials. To appreciate the advantages of this pro-
cedure we have to compare it to other tests of the interac-
tion potentials.

Measurements of the static structure factor S (k) have
been performed on similar systems [26] and a good
discrimination between the PBC and the Poisson-
Boltzmann-Jellium model was achieved in favor of the
former. Nevertheless, the particles used there were not
characterized with respect to their true charge number.
The renormalized charges used with the PBC model were
still used as fit parameters.

The tests of different Yukawa models by comparing

2825

calculated to measured phase diagrams in principle is
more sensitive. On the theoretical side both molecular
dynamics simulations and perturbation theory treatments
based on a Yukawa potential [Eq. (1)] have been per-
formed [14,16,27], showing good qualitative agreement.
These were compared to a number of experimentally
determined phase diagrams (cf. Refs. cited in [27]) and
very satisfying agreement could be achieved if the Yu-
kawa parameters were taken as fit parameters. It has
been noted [1] that for systems at both low volume frac-
tions and salt concentrations the PBC model generally
yields better results than the DLVO description which
performs better at high volume fractions and elevated salt
concentrations. The major difficulty in performing an ex-
plicit comparison of different Yukawa models again lies
within the uncertainty concerning the particle charge.

The charge dependent phase diagram of a Yukawa sus-
pension was recorded for a system of variable but precise-
ly measured surface group number N [24]. It was shown,
that a self consistent description of the phase behavior
could be reached using the PBC model and Eq. (4) [14],
only if the surface chemical details of the particles were
accounted for. Most often, however, only the number of
surface groups is known without any information about
the degree of dissociation.

Only very recently we reported a technique to deter-
mine the true surface charge in situ [20]. Consequently
comparisons of phase diagrams so far only had limited
possibilities to discriminate between different Yukawa
models, although they are much more sensible to the Yu-
kawa parameters than, for example, the static structure
factor S (k).

A second, more fundamental point may be raised con-
cerning the polydispersity of the samples. Static light
scattering is a method highly sensitive to contributions of
polydispersity both of charge and of size [28,4,5]. The
theoretical predictions of S(k), however, are less sensi-
tive to variations in the potential form. If large values of
polydispersity are suspected, a drastic increase in the re-
normalized charge number is needed, in order to explain
low k data and the height of the first maximum in S (k)
[28].

In contrast to this, dynamical quantities have a high
sensitivity to the potential of interaction and a much less
pronounced influence of polydispersity. We have tested
their dependence on both charge and size polydispersity
in the BD simulations. A polydispersity of 5% in the
effective charge is needed to produce significant devia-
tions from Eq. (6).

From electrophoretic mobility measurements the
charge polydispersity of our sample is estimated to be less
than 5% in the number of true surface charges. The re-
normalized charges Zpg show a much smaller variation,
since their value already approaches saturation; charge
polydispersity reduces to less than 19%. The values for the
standard deviation of the particle radii are found to be
less than 2% by electron microscopy. The influence of
polydispersity is therefore negligible both on the ground
of the sample data and on its impact on Eq. (6). Note,
however, that a change in the mean value of Z by some
10% leads to a change in D; of more than a factor of 2 in
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the low salt region.

A final comment concerns the many-body interaction
between the particles induced by nonlinear counterion
screening which requires a description beyond the level of
an effective pair potential as given by Eq. (1). However,
based on an ab initio description which explicitly treats
the counterions [29], it was recently shown [30] that the
many-body forces can satisfactorily be fitted by an op-
timal pair potential whose shape is very close to the Yu-
kawa form. Unfortunately there is no simple analytical
formula for the corresponding Yukawa parameters, in
contrast to the models discussed in Sec. IV. Still, once
these parameters are known, our fit formula provides a
simple, direct determination of D; /Dg.

In conclusion, the validity of the PBC model has been
verified with high accuracy absolute measurements of a
dynamical quantity and without any free parameters.
This is a major extension as compared to former tests.
Note, however, that the MDA also provides an excellent
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description of the data. Belloni gives a value for the max-
imum renormalized charge number as Zpgc
<4a(1+ka)/Ly, where Ly=e?/4mecpky T is the Bjer-
rum length [31]. Saturation qualitatively consistent with
this prediction was recently verified on a system of ionic-
nonionic mixed micelles with a maximum structural
charge of 75 [32] from fits to static neutron scattering
data. In the case of highly charged colloidal spheres and
of the renormalized charge approaching saturation, the
MDA together with our fit formula then provides a quick
estimation procedure for the self-diffusion ratio.
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