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We present a detailed theoretical study of pattern formation in planar continua with translational,
rotational, and reflection symmetry. The theoretical predictions are tested in experiments on a quasi-
two-dimensional reaction-diffusion system. Spatial patterns form in a chlorite-iodide-malonic acid
reaction in a thin gel layer reactor that is sandwiched between two continuously refreshed reservoirs
of reagents; thus, the system can be maintained indefinitely in a well-defined nonequilibrium state.
This physical system satisfies, to a very good approximation, the Euclidean symmetries assumed in
the theory. The theoretical analysis, developed in the amplitude equation formalism, is a spatio-
temporal extension of the normal form. The analysis is identical to the Newell-Whitehead-Segel
theory [J. Fluid Mech. 38, 203 (1969); 38, 279 (1969)] at the lowest order in perturbation, but
has the advantage that it exactly preserves the Euclidean symmetries of the physical system. Our
equations can be derived by a suitable modification of the perturbation expansion, as shown for
two variations of the Swift-Hohenberg equation [Phys. Rev. A 15, 319 (1977)]. Our analysis is
complementary to the Cross-Newell approach [Physica D 10, 299 (1984)] to the study of pattern
formation and is equivalent to it in the common domain of applicability. Our analysis yields a
rotationally invariant generalization of the phase equation of Pomeau and Manneville [J. Phys. Lett.
40, L609 (1979)]. The theory predicts the existence of stable rhombic arrays with qualitative details
that should be system independent. Our experiments in the reaction-diffusion system yield patterns
in good accord with the predictions. Finally, we consider consequences of resonances between the
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basic modes of a hexagonal pattern and compare the results of the analysis with experiments.

PACS number(s): 47.54.+r, 82.40.Ck, 82.20.Wt, 47.20.Ky

I. INTRODUCTION
A. Prologue

There is a striking similarity in a bewildering array of
natural patterns ranging from cloud streets and patterns
in sand dunes to animal coats, fish scales, and beehives.
The patterns are often regular on a small scale (typi-
cally consisting of stripes or hexagons) but form highly
complex structures on a large scale. The commonality of
patterns generated in disparate systems demands a study
that transcends the microscopic details of the physical
system. Such an analysis of patterns should address sev-
eral questions. Why do pattern forming systems exhibit
only a few distinct structures on a small scale? What are
these possible “local” structures, and what determines
the “small” scale? Can the universality be traced back
to some general features of the pattern genesis and evolu-
tion? What is the origin of the irregularity and nonuni-
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versality of patterns on a large scale? What roles do
thermal noise, boundaries, initial conditions, and dissi-
pation play in pattern formation?

A wide array of controlled experimental systems, in-
cluding chemical reactions [1], Rayleigh-Bénard convec-
tion [2], ferrofluids 3], and magnetic bubble material {4],
have been used to study pattern formation. Figure 1
shows some patterns we have obtained in experiments on
a reaction-diffusion system. The spontaneous formation
of spatial patterns in chemical systems was first predicted
in 1952 by Alan Turing [5] in a classic paper entitled “On
the chemical basis for morphogenesis.” However, despite
much effort, Turing patterns were not observed in con-
trolled laboratory experiments until recently [6-8], fol-
lowing the development of a laboratory reactor in which
reaction and diffusion processes can be sustained while
at the same time advection is inhibited using an inert gel
9,10].

The amplitude equation formalism introduced by
Newell, Whitehead, and Segel [11] is a natural scheme to
extract universal properties of pattern formation. How-
ever, this spatiotemporal extension of the normal form
theory lacks rotational invariance, which is crucial for
an analysis of patterns such as those of Fig. 1. We
take an alternative approach, demanding that the spatio-
temporal extension satisfy the rotational invariance ez-
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actly. The resulting model is identical to the Newell-
Whitehead-Segel theory at the lowest order, but respects
the Euclidean symmetries of the physical system. In cer-
tain limits our model can be generated systematically
by “regularizing” the multiple scale perturbation theory
of Newell-Whitehead-Segel so that the symmetry of the
underlying system is enforced. In the spirit of the nor-
mal form theory, we compare the qualitative behavior of
the model (e.g., the stability of local structures, bifur-
cations between states) to the experiments even beyond
the range of validity of the perturbation expansion.

B. Overview of the paper

Patterns can form via distinct mechanisms such as
symmetry breaking [12] and interaction between kinks

(a)

(b)

(c)

FIG. 1. Chemical patterns observed in a quasi-two-
dimensional reaction-diffusion system with the chlorite-
iodide-malonic acid reaction: (a) multiple domains of stripes,
(b) multiple domains of hexagons of different orientations, and
(c) a pattern with a single grain boundary separating hexag-
onal lattices with different orientations. The reaction occurs
in a thin polyvinyl alcohol layer contained between two reser-
voirs. The wavelength of the patterns are (a) 0.11 mm, (b)
0.12 mm, and (c) 0.18 mm. The region shown is a 6 mm x 6
mm section of the 25 mm diam reactor. The malonic acid
concentrations in reservoir B were (see Fig. 3) (a) 27 mM,
(b) 24 mM, and (c) 32 mM. Other control parameters were
held fixed at [I7]&"® = 2.2 mM, [Na;SO4|&? = 4.5 mM,
[Cl07 )¢ = 22 mM, [H2S04])¢ = 1 mM, [H2S04]¢ = 20 mM,
and temperature 7.0 °C.
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[13,14]. Spontaneous symmetry breaking leads to states
with less symmetry than the physical system, i.e., pat-
terns. The systems we consider are invariant under Eu-
clidean motions in the plane: translations, rotations, and
reflections. The constraints imposed by the symmetries,
together with the assumption of continuity, restrict the
possible structures generated. While our study is re-
stricted to systems that show pattern competition be-
tween hexagons and stripes, the approach is easily ex-
tended to squares and other planforms [15].

Several predictions made on the basis of the theory are
supported by our experiments on a reaction-diffusion sys-
tem involving chlorite ions, iodide ions, and malonic acid
(the “CIMA” reaction [16]) [17]. The reaction occurs in
a thin gel layer contained between two continuously fed
well-stirred (homogeneous) reactors. For some values of
the control parameters (i.e., the reagent concentrations
and reactor temperature), the chemical concentrations
are constant in any plane of the thin gel layer—there is no
pattern—while for other control parameter values, pat-
terns spontaneously emerge and are stable, as illustrated
in Fig. 1. The details of the reactor and measurement
systems will be described in Sec. IV.

Our analysis is not restricted to chemical patterns. Ac-
cordingly, let U(x,t) denote the intensity of any scalar
field that characterizes a two-dimensional pattern. For
the CIMA reaction, U(x,t) could denote the difference
between the local concentration and the mean value of
the triiodide complex formed in the reaction. For surface-
tension driven convection, U(x,t) could represent the
fluid surface temperature or a component of the fluid
surface velocity. Prior to the bifurcation, the uniform
solution U(x,t) = 0 is stable against all perturbations.
The primary bifurcation results in the loss of transla-
tional invariance and typically leads to patterns with a
characteristic length scale.

The planform that lends itself to the most elementary
analysis is a periodic array of stripes. This essentially
one-dimensional pattern (there being no variation along
the the axis of the stripes) can be expanded in a Fourier
series

U(x,t) = Ae’** 4 c.c., (1.1)
where A is the amplitude of the stripes; the magnitude of
k, ko, is determined by the characteristic length scale of
the pattern. The addition of the complex conjugate c.c.
allows the field U(x,t) to be real.

The stability and dynamics of an array of stripes can
be determined via the normal form equation [18] for the
dynamics of the amplitude A(t),

A= f(4) = pA— |14, (1.2)

where A denotes the time derivative and, as we argue in
Sec. II, the parameter y needs to be real to reflect the
invariances of the physical system. The theory describes
bifurcations between the uniform state and a periodic ar-
ray of stripes. Unfortunately, the normal form theory can
be applied to extended structures (via Liapunov-Schmidt
reduction) only when the pattern is exactly periodic [19].
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How can this theory can be generalized to study patterns
that are slowly varying, i.e., patterns that are striped on
a small scale but have a more complex structure on a
large scale, as in Fig. 1(a)? Such an extension has been
developed by Newell, Whitehead, and Segel for the ex-
pansion (1.1) [11], although it has not yet been made
rigorous.

The Newell-Whitehead-Segel theory is based on the
observation that close to the onset of patterns, the uni-
form state is unstable only to perturbations with wave
vectors close to k9. Consequently, the corrections to the
expansion [of, say, (1.1)] are slowly varying with respect
to the basic length scale (2m/ko). The theory is devel-
oped as a perturbation series in the inverse of this scale
by allowing slow spatial variations in A = A(x,t). If k is
chosen along the z direction, the resulting multiple scale
analysis gives for the dynamics of the envelope function
A(x,t):

2
8, A(x,t) = pA — |A]*A + (az - 2%6”) A, (1.3)
0

which is often referred to as a Landau-Ginzburg equa-
tion. This generalization of the normal form (1.2) gives
a clear description of the instabilities of an array of rolls
in Rayleigh-Bénard convection [20]. More importantly,
Eq. (1.3) is independent of the underlying microscopic
equations and depends only on general features of the
system; thus it describes universal properties of an array
of stripes [12]. However, the approach can be applied
only to an array of stripes pointing in a given direction
everywhere in space. According to Eq. (1.3), the behav-
ior of an array of stripes pointing in another direction
will be different. This is unacceptable for a physical sys-
tem that is invariant under rotations. In rotationally in-
variant systems two patterns related by rotation (or the
action of any of the symmetries) have to evolve the same
way. Equations of motion that allow such dynamics are
termed eguivariant [19].

We illustrate, through an example, the need for ampli-
tude equations to be equivariant under the symmetries
of the physical system. Consider a boundary (say, z = 0)
separating two semi-infinite domains of uniform stripes
and let the stripes make the same angle with the bound-
ary separating the domains. Since the original physical
system is symmetric under rotations, there can be no
transverse motion of the domain wall. However, with
nonequivariant Landau-Ginzburg equations, different do-
mains will in general have different stabilities and conse-
quently there can be a transverse motion of the domain
wall. This simple argument illustrates the need for the
amplitude equations to be equivariant under the symme-
tries of the physical system.

In Sec. II we take a different approach, demanding
that the spatiotemporal extension of the normal form
be equivariant under rotations. The restriction implies
that spatial derivatives acting on the envelope functions
A(x,t) should appear in the combination

. i
— - — V2 1.4
m) (k v T > (1.4)
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where k is the unit vector k/ko and V is in the two-
dimensional plane of the pattern. Equation (1.3) will
thus be replaced by

Ot A(x,t) = pA — |A|?A + O%A4, (1.5)

which is equivariant under rotations, reflections, and
translations.

In Sec. III we present a variation of the multiple scale
analysis of Newell-Whitehead-Segel that leads to equiv-
ariant amplitude equations. We argue that the multi-
ple scale analysis leads to loss of symmetries only when
the expansion is truncated at a finite stage. When the
perturbation is carried out to higher order, each term
is “symmetrized” to a form that leads to equivariant
dynamics. Thus the term (9, — z—igayy)2A(x,t) of Eq.
(1.3) appearing at the lowest order in perturbation (of,
for example, the Swift-Hohenberg equation [21]) is sym-
metrized to 02A(x,t) when the perturbation is carried
out to higher order. In Appendix A we derive the ampli-
tude equations in a hexagonal basis and show how several
terms that appear in the amplitude equations are sym-
metrized, leading to equivariant dynamics.

The scheme described above “regularizes” the multiple
scale expansion so that the symmetries lost in the trun-
cation of the multiple scale analysis are restored. The
imposition of physical features of a system in selection
of terms of a perturbation series has also been essential
in some analyses of Hamiltonian systems [22] and ran-
dom phase approximations [23]. Given that neither Eq.
(1.5) nor Eq. (1.3) has the rigorous theoretical founda-
tion of the normal form theory, we see no advantage of
retaining terms up to a given order in perturbation at
the cost of losing the symmetries of the physical system.
The equivariance of Eq. (1.5) under Euclidean symme-
tries is a significant advantage we get through the new
scheme. Equation (1.3) describes properties of physical
systems that do not posses rotational invariance, while
Eq. (1.5) models spontaneous symmetry breaking, i.e.,
it describes patterns generated in physical systems with
Euclidean symmetries.

Even though Eq. (1.5) was derived via the multiple
scale analysis, we will use it as a model in its own right. In
particular, the competition between stripes and hexagons
will be examined well beyond the range of validity of the
perturbation analysis. Thus we have less reason to retain
a given order in perturbation at the risk of losing the
equivariance that preserves the symmetries of the physi-
cal system.

The amplitude equations derived in Sec. II admit lin-
early stable solutions that correspond to periodic rhom-
bic arrays. Distortion of a hexagonal array (mediated by
diffusion) leads to these rhombic arrays. The rhombic
arrays are generated in systems that have the Euclidean
symmetries and show several novel features. They oc-
cur for a band of characteristic angles and can point in
arbitrary directions. Thus a random initial state will
generally evolve into a pattern of multiple domains, each
with its own direction and characteristic angle. Figures
1(b) and 1(c) are examples of such states. Several uni-
versal features of the rhombic arrays, derived in Sec. V
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from the theory of Sec. II, have been confirmed in the
chemical patterns. The theory, which is based only on
the symmetries and continuity, suggests that rhombic ar-
rays should be observed in other continuum interfaces,
e.g., Marangoni convection, driven surface waves (Fara-
day crispations), magnetic bubbles, and flame fronts.

Far beyond the onset of patterns, the resonances be-
tween the basic modes of a hexagonal array can lead to
secondary modes, which introduce a nontrivial structure
into the building blocks of the hexagonal array [24]. In
Sec. VI we present experimental observations of these
states, which we refer to as “black-eye” patterns (see
Fig. 8 for example). We describe the transitions to
and from the “black eyes” observed in the CIMA reac-
tion. In Appendix A we show explicitly how the resonant
terms appear in the multiple scale expansion of the Swift-
Hohenberg equation.

As we have already indicated, the rotational invari-
ance of the model is crucial in studying the dynamics of
domain walls. In Sec. VII we examine the behavior of
domain walls between striped regions of different orien-
tations. Numerical simulations indicate qualitative dif-
ferences in the form of boundaries generated by ampli-
tude equations that contain the proper symmetries and
those that lack these symmetries. We also consider the
numerical evolution of a pattern with multiple domains
of hexagons and stripes, and we show that regions of
hexagons and stripes invade each other over long peri-
ods (compared to the diffusion time) before one pattern
dominates. Similar behavior is found in patterns formed
in the experiments on the CIMA reaction.

Finally, we study patterns resulting from the numeri-
cal integration of our model, starting from random initial
states. Qualitative differences are found for structures
generated from variational and nonvariational dynamics.
In the variational case the patterns stabilize and uni-
form arrays of stripes on either side of a domain wall
tend to make an angle close to 60° with the boundary.
This is reminiscent of patterns generated in ferrofluids
[3] and magnetic bubble material [4]. Conversely, when
the dynamics is nonvariational the patterns do not ap-
pear to settle down and arrays of uniform stripes have
less well defined boundaries. Structures that develop in
the CIMA reaction [1] and Rayleigh-Bénard convection
[2] are qualitatively similar to the nonvariational patterns
in the simulation.

In Sec. VIII we discuss some unique features of our
approach to amplitude equations. In particular we note
that the amplitude equations can be generated by insist-
ing only on the equivariance under the Euclidean sym-
metries. Perhaps this approach will lead to a rigorous
basis for the Landau-Ginzburg equations. Our predic-
tions on patterns can be checked in other experiments.
In particular, it will be extremely interesting to see if,
nearly a century after Bénard’s discovery of hexagons and
Rayleigh’s prediction of convection rolls, another type of
periodic array (i.e., rhombic array) will be observed in
fluid convection.

Appendix A describes a multiple scale analysis of two
variants of the Swift-Hohenberg equation in the hexago-
nal basis. In particular, it is shown how terms that make
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the amplitude equations nonequivariant at low order in
the expansion are symmetrized on carrying out the per-
turbation to higher order. These calculations make it
clear why the truncated expansions can be regulated by
carrying out the perturbation expansion to higher order.

A rotationally invariant theory for the study of pattern
formation has been developed previously by Cross and
Newell [25], who analyze patterns that are locally roll-
like almost everywhere in space. Our amplitude equa-
tions are complementary to theirs in the following sense.
The Cross-Newell equations are valid for a larger range of
parameters (from the onset of patterns), but are limited
to the study of slowly varying stripes. Our amplitude
equations are valid only close to the onset of patterns
but can be used to study more general structures, e.g.,
an array of slowly varying hexagons or a complex pat-
tern consisting of stripes and hexagons. In Appendix B
it is shown that the theories are equivalent in the pa-
rameter domain where both are valid. The analysis also
yields a rotationally invariant generalization of the phase
equation of Pomeau and Manneville [26].

II. SYMMETRY AND THE LANDAU-GINZBURG
EQUATIONS

In this section we deduce the form of the equivariant
amplitude equations through an analysis of the symme-
tries. Uniform planar periodic patterns most often seen
in experimental and natural systems are hexagons and
stripes. A scalar field U(x,t) that characterizes them
can be expanded in a hezagonal planform as [12]

U(x,t) = A1e™® 4 Aze™® 4 Aze™3% cc., (2.1)
where k,, are a set of hexagonal basis vectors, e.g.,
V3, 1,
k; = koji ka = ko (—2'1 -3 )
(2.2)

The envelope functions for a uniform array of stripes par-
allel to the = axis are A; # 0 and A; = A3z = 0, while
those for a uniform array of hexagons satisfy 4; = 4, =
Ajs. In the hexagonal basis, the normal form equations
for the dynamics of A, (t) are [27,28]

Ay = fi(t) = pA1 + adrAs

—(|A1]* + plAz2|® + p|As|?) A4,
Az = fot) = pAz + ad34,

—(142)? + pl 43| + p|41]?) Az,
As = fi(t) = pAs + ad, 4,

—(14s]* + pl41|* + p|42|*) As,

where A and A denote the time derivative and the com-
plex conjugate of A, respectively, and, as we argue below,
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parameters p, «, and p need to be real to reflect the in-
variances of the physical system.

The normal form expansion (2.3) allows us to study the
existence and stability of arrays of hexagons and stripes,
as well as bifurcations between these and the uniform
state. Equations (2.3) are based only on the symme-
tries of the interface and thus describe common features
of patterns generated in a large class of two-dimensional
continua. Since ky, k2, and kj can be permuted in (2.1),
Egs. (2.3) are invariant under any permutation of indices.
The reflection symmetry of the physical system requires
that the equations of motion be equivariant under reflec-
tions, i.e., given a pattern U(x,to), the evolution of the
pattern reflected about the y axis, V(x,t) = U(x~1x,to)
(with envelope functions A;, Az, and A,), has to satisfy
V(x,t) = U(k™!x,t) for t > to. This is obviously true
for (2.3). The need for Eq. (2.3) to be equivariant un-
der reflections about the z axis requires (A4;, A2, A3) to
be a solution and restricts pu, a, and p to be real. Fi-
nally, equivariance under a translation xo implies that
Ane~knXo (p =1 2 3) are a set of solutions of Eq. (2.3)
and determines the form of the allowed nonlinear cou-
pling terms (e.g, the terms A; A3 and |A2|?A; in the first
equation).

Figure 2 summarizes the linear stabilities of the uni-
form state and arrays of hexagons and stripes. In this
model, hexagons appear through a subcritical bifurca-
tion while (unstable) stripes are created via a super-
critical bifurcation. Mixed states (which correspond to
A, = A3 # A;) can exist, but are unstable in the model
[28].

The normal form (2.3) can be used only to describe
arrays of hexagons or stripes that are exactly periodic,
while most experimental patterns consist of local periodic
patches that are arranged in a complex mosaic on a large
scale, as Fig. 1 illustrates. External noise and inhomo-
geneity of the initial state can lead to the complexity of
these patterns. The patterns also show defects—points
at which the direction of the rolls is not defined uniquely.
The existence of qualitatively similar patterns in experi-

TAmplitucle
_.--‘hexagons
Mo - — — —uniform
-0.05~. 1 4 I )
\rolls

FIG. 2. The stability domains of the uniform state,
hexagons, and stripes in the normal form equations (2.3).
Solid lines correspond to stable states while dashed lines corre-
spond to unstable states. The parameters a and p are chosen
to be 1 and 2, respectively. The negative direction of the z
axis has been stretched for clarity.
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ments [1-4], mathematical models [12,29,30], and nature
demands a model-independent description of pattern for-
mation.

The normal form can be generalized to describe slowly
varying structures with envelope functions A,(x,t) by
the addition of suitable spatial derivatives. The form of
the spatial derivatives can be determined by requiring
the resulting equations to be equivariant under arbitrary
rotations. The action of a rotation R on a pattern U(x,t)
leads to a second pattern V(x,t) = U(R™x,t), and we
require V(x,t) to be a solution of our amplitude equa-
tions. The required condition can be deduced by analyz-
ing a uniform array of stripes. Stripes parallel to the z
axis are given by Uy = a,e**1'% while those oriented at an
angle 6 to the z axis can be written as Uy = a;e™*1(®)x,
with ky(0) = (kosin6)i + (ko cos8)j. Rotational invari-
ance implies that a; is independent of 8. The solution
Uy can be expanded in the original basis (ki, kg, k3) us-
ing envelope functions

A1 = aleiAkl.x B A42 = A3 = O, (24)
with Ak; = k;(0) —k; = kosinfi— ko(1 —cos8)j. What
is needed then is a combination 0J; of spatial derivatives
that will satisfy the condition O;e*A¥1'* = 0. It is easy
to check that

B R R 2 )
Dl_<kl v Zkov) (2.5)

is the simplest such combination. Defining Ak,, Aks,
Oz, and O3 analogously, we see, as a consequence of the
invariance of (sin® # + cos? 8), that

O,e'dk»> = (2.6)

for n = 1,2,3. We are thus motivated to introduce an
extension of the normal form equations

AL = fl(x,t) + v D% A + Vﬁz/‘igd3x‘i3, (2.7a)
8¢A2 = fz(x, t) + Y Dg A2 + V[j3A3[-]1A1. (27b)
O Az = _f3(x, t) + v Dg Az + VG1A1g2A2 (27(2)

to describe the dynamics of the spatially dependent en-
velope functions A,(x,t). Here f,(x,t) is the spatio-
temporal extension of f,(t) defined in (2.3) and [J, is
the complex conjugate of (J,,.

Some comments are in order. First, given a pattern
U(x,t), the envelope functions for the rotated pattern
U(R™'x,t) are Al = A,(R ™ x,t)e'dk~x [31]. It follows
from (2.6) that A/, are solutions of (2.7) and hence the
amplitude equations are equivariant under arbitrary ro-
tations, as was required all along. Second, observe that
when v = 0, (2.7) can be derived from a variational prin-
ciple, 8; Ay = —6( [ dzdyL)/5A) with
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3
L=—p Z ‘Anlz — a(A1A2A3 + A1A2A3)
n=1

3
1 4 2 2
+3 2 1Anl*+p 3 1nPlidn]

n#Em

3

+7 ) | On An2 (2.8)
n=1

Thus the last terms in (2.7) are required to capture non-
variational effects on pattern formation. Finally, several
other combinations of spatial derivatives could have been
added to (2.7) without violating the symmetries. The
terms (02 A, were introduced to model effects of diffu-
sion while terms such as [J;A;003A45 ... were added to
model nonvariational effects. Terms such as i (J; A; and
i(A20343 + A30024;) can be added to the first of Egs.
(2.7) (with corresponding terms in the other equations)
without violating the symmetries. However, they can be
scaled away (individually) by suitable redefinitions of ko
and thus cannot lead to qualitatively different behavior.
In Appendix A we give some other combinations of spa-
tial derivatives that lead to equations of motion that are
equivariant under the Euclidean symmetries.

Equations similar in form to (2.7), but with O,, ap-
proximated by (ﬁn - V), have been introduced in Ref.
[32]. Qualitative properties of uniform states such as the
stability of hexagons, and stripes and the existence of
rhombic arrays will be identical in both models. However,
there will be significant differences in the two models that
can be traced back to the absence of equivariance in the
model in Ref. [32]. For example, even though periodic ar-
rays of stripes, hexagons and rhombi are solutions of the
nonequivariant equations, they cannot be oriented in ar-
bitrary directions. In contrast, any solution of (2.7) and
a second solution related by rigid body symmetries have
identical stability properties. As mentioned in Sec. I, the
rotationally invariant formulation will be crucial in the
study of domain walls between stripes pointing in differ-
ent directions (see Sec. VII).

Finally, use of the rotationally invariant formulation
has a significant advantage in the numerical integration
of amplitude equations. If Eq. (1.3) or a nonequivariant
extension of (2.3) is used to study the dynamics of a
spatially slowly varying array of stripes or hexagons, one
has to define a local basis in each neighborhood (with
the two axes pointing parallel and normal to the local
stripes) and study the dynamics via envelope functions
defined in this basis. When the stripes evolve in time, the
local axes have to be changed along with the direction of
the stripes. This is obviously not a practical scheme to
study the dynamics of patterns. With the rotationally
invariant formulation one can define a global set of axes
and study the dynamics of the envelope functions for all
times.

III. MULTIPLE SCALE ANALYSIS

The amplitude equations (1.5) and (2.7) for the dy-
namics of the envelope functions A, (x,t) were deduced
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on the basis of symmetries. In this section we intro-
duce a modification of the multiple scale analysis of
Newell-Whitehead-Segel that leads to equivariant ampli-
tude equations. Specifically, we regularize the truncated
perturbation expansion by enforcing the required invari-
ances by symmetrizing each term of the amplitude equa-
tions. As shown below, the symmetrized form of each
term is deduced by carrying out the multiple scale anal-
ysis to higher order. For example, the lowest order in
perturbation of the Swift-Hohenberg equation via (1.1)
gives spatial derivatives in a combination (12 -V)2A(x,t).
The resulting equations are not equivariant and can be
made so by symmetrizing the term to 0%A(x,t). In this
section and Appendix A, we show how several terms used
in Landau-Ginzburg equations are symmetrized to give
dynamics that respect the Euclidean symmetries.

For clarity and simplicity, we limit our calculations to
a generalization of the Swift-Hohenberg equation [21]

U (x,t) = [ — (1+ V3)?|U(x,t) —v[U(x,1)]®
+€8U (x,t) V32U (x, t). (3.1)

The last term makes the equation nonvariational and
breaks the U — —U symmetry. In Appendix A we pro-
vide the results of the multiple scale expansion of a sec-
ond generalization of the Swift-Hohenberg equation,

8U(x,t) = [¢* — (1 + V2)2|U(x,t) — 7[U(x,t)]?
+eB[VU (x, )% (3.2)

The nonvariational term here is the nonlinear term of the
Kuramoto-Sivashinsky equation [33].

The seminal work of Newell-Whitehead-Segel is built
on the observation that, close to the onset of patterns, the
uniform state is unstable only to perturbations with wave
vectors close to kg. Consequently, variations in A, (x,t)
occur on a scale much larger than the basic scale (27 /ko)
and A, (x,t) can be written in terms of the slow variables

X=e , Y=ey , T=¢%. (3.3)
Unlike the original scaling introduced by Newell-
Whitehead-Segel, we scale the = and y directions by
the same factor. This is equivalent to having the ba-
sic striped state not be parallel to either coordinate axis.
The quadratic maximum of the dispersion relation is re-
flected in the scaling of t by €2 [12,34]. Following the
standard notation, we can write the spatial and tempo-
ral derivatives as

V 5 Vo+eV, 8 — 0y, (3.4)

where Vo = (19, +jO,) operates on the “fast” variations
e’®* and V = (i0x + jOy) acts on the slowly varying
envelope functions. The operator (1 + V?2)?2 is replaced
by

(1+ V2325 Lo+ el + €Ly + L3 +€* Ly,  (3.5)

with
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Eo = (1 + Vg)z,
L1 =4(1+V3)(V,-V),

Lo =2(1+V2V244(V,- V)2 (3.6)
L3 =4V3(V,- V),
L,=¥"

We expand the field U(x,t) as

U(x,t) = ewy(x,t) + €2wa(x,t) + Swa(x,t) +---. (3.7)

The expansions of nonlinear terms U2 and UV?2U in «
are

U(x,t)® = Ew? + 3e*wiw,

+3€° (wiws + wyw?) + O(€9) (3.8)

and

UV3U = 2w, Viw,
+E[wy Viw; 4 2w (Vo - V)w; + w; Viw,)
+e* [ VE(wyws) + 2V - V(wyws)

+U)2V3'UJ2 + wlﬁzwl] + 0(65). (39)

Using the scaling (3.3)-(3.9), we can expand (3.1) in a
perturbation series in €. At order ¢!, we get Low, = 0,
which implies

wy (X, t) = AU(X, T)eik‘x + c.c., (310)

c.c. denoting the complex conjugate, and k| = 1. [We
use the notation in Ref. [35]. Thus A,,, is the coefficient
of en** in a Fourier expansion of w,,(x,t).] At order €2
in the expansion, we get Lowy + £1w; = 0, which gives

wa(x,t) = A1 (X, T)e™ ™ + c.c. (3.11)

Both w; and w, are expanded in the same direction k
because we wish to study modulations of a (locally) peri-
odic array of stripes. At the third order in the expansion
we get

Lows = —Orw; + wy — Lawy — 'wa + ﬁw1V§w1. (3.12)

In order for the function wz(x,t) to be nonsingular, the
right-hand side of (3.12) cannot have a projection on the

operator L} (the Fredholm alternative) [35]. This state-
ment leads to the dynamics

OrA; = A + 4(k . e)zAll — 3’)/|A11‘2A11 (3.13)

of A;11(X,T). The solution ws(x,t) of Eq. (3.12) is
U)3(X, t) = A30 + Agleik'x + A32€2ik'x + A3363ik-x + c.c.,

(3.14)
where A30 = —,3|A11|2, A32 = —%ﬂA%l, and A33 =
—glifyAu:’. Application of the Fredholm alternative to
expansions at order €* and €® gives

rAzn = Az +4(k- V)24, — 4i(k- V)V24,,
—3v(A} A1 + 2|41 |2 A1) (3.15)
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and

O Az, = Asy +4(k - V)2 A3y — di(k - V)V2 4y,
~3v(A3 A3y + 2|A11 [P Az + A3 Agy
+2A11|A21|* + A1 AL))

+VAAL — L6242 AL ). (3.16)

respectively, for the dynamics of A9 (X,7) and
Az (X, T).

The envelope function A;(X,T) of the basic pattern
eik‘x is

Ay (X, T) =€An + €Ay + Az + (3.17)
We now deduce the amplitude equations for the dynamics
of A; at the lowest order O(¢). Using Eq. (3.13) and
scaling back to the original variables x — ¢ 'X and t —
€72T, we get

(9tA1 = 62A1 - 3’7‘A1)2A1 + 4(k . 6)2A1. (318)
Note that A;(x,t) is now considered to be function of
the variables x and ¢t. The amplitude equation for A;
truncated at order O(e3), obtained by using Egs. (3.13).
(3.15), and (3.16) and scaling back to the original vari-
ables, is

OAr = €2 Ay +4kd O Ay — (3y — E5%%) |42 4,
+ 277 A1 Ay, (3.19)

where OJ is the operator defined in (1.4).

The generalizations of the Swift-Hohenberg equations
(3.1) and (3.2) are equivariant under the Euclidean sym-
metries. Let us follow the fate of the symmetries as we
generate the amplitude equations through the multiple
scale analysis. Equation (3.5) is invariant under all the
symmetries, and thus if the perturbation expansion is
carried out to all orders, the amplitude equations will be
equivariant. However, this is generally not the case for
finite truncations of the perturbation, e.g., Eq. (3.18) is
not equivariant under arbitrary rotations. [The equivari-
ance of Eq. (3.19), which depends on the particular form
of the nonlinear term in (3.1), will be lost at the next
order.] The origin of the nonequivariance of (3.18) lies in
the term (k- V)2A4;. But we notice from Eq. (3.19) that
this term is a low-order approximation to k2 0% A;. We
propose in this section to regularize the expansion (3.18)
by enforcing the rotational invariance. This can be done
by replacing the nonequivariant term (k - V)2A; by the
equivariant term k2 (02 A;. The perturbation expansion
truncated at any order can be regularized through this
process, the equivariant form of each term being deduced
by carrying out the perturbation to higher order. We re-
fer to regularizing the perturbation expansion by impos-
ing the correct symmetries on each term as symmetrizing.
Equation (3.18), when symmetrized, gives

D A; = €2 A; — 3v|A112A; +4k2 D2 A, (3.20)
We needed to add some (but not all) terms of order O(¢?)
and higher to Eq. (3.18) to generate amplitude equations
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(3.20) that are equivariant under the required symme-
tries. Given that neither Eq. (3.20) nor Eq. (3.18) has
the rigorous theoretical foundation of the normal form
theory, we see no advantage of limiting the expansion
up to a given order in perturbation at the risk of losing
the equivariance of the amplitude equations. Perturba-
tion expansions are valid only near the onset of patterns,
while the physical system has the relevant symmetries for
all parameters. Perhaps a more thorough analysis of the
symmetry groups will lead to a perturbation scheme that
will explicitly preserve the symmetries at each stage of
the truncation.

In Appendix A we carry out the multiple scale expan-
sion of the models (3.1) and (3.2) in the hexagonal basis
(2.2). In particular we show how several nonlinear terms
appearing in the low-order truncations are symmetrized
by carrying out the expansions to higher order. The mul-
tiple scale expansion of Eq. (3.1) is shown to lead to
amplitude equations that are equivalent to the Landau-
Ginzburg equations (2.7) introduced in Sec. II. The ex-
pansion of Eq. (3.2) leads to different nonlinear coupling
terms, and we show how they can be symmetrized.

The perturbation analysis described above is valid only
when € < 1. As seen from Fig. 2, most of the interesting
behavior, including stripe-hexagon competition, occurs
far beyond this regime. In the absence of an alterna-
tive, we resort to using the Landau-Ginzburg equations
as a model and study its properties for larger values of e.
Our numerical experiments support the assumption that
the qualitative behavior of pattern formation remains un-
changed when higher-order corrections are ignored, pro-
vided the amplitude equations are equivariant. However,
with the low-order truncations we are unable to make any
quantitative statements and we are restricted to making
experimental comparisons with qualitative predictions of
the theory.

IV. EXPERIMENTAL SYSTEM

Reaction-diffusion systems are particularly convenient
for studies of pattern formation in planar nonequilibrium
systems for the following reasons: (i) Large aspect ra-
tios can easily be achieved; hence sidewall conditions do
not strongly influence the patterns in the center of the
reactor. In the present experiments the aspect ratio is
typically 160 (the pattern wavelength is about 0.15 mm,
while the reactor width is 25 mm). (ii) Arbitrary initial
patterns can be generated by using light as a perturba-
tion of a photosensitive reaction. We generate regular
spatial patterns with different wavelengths and symme-
tries on a computer and then photograph these patterns
and project them onto a planar reactor containing the
photosensitive chlorite-iodide-malonic acid reaction. (iii)
The pattern forming process is slow since the diffusion
coefficients are small. Hence the development of a pat-
tern can be followed in detail and the influence of the
sidewalls can be neglected for long times (of the order of
a day in our experiments). (iv) The pattern forms in a
very thin band of the gel; thus the system is essentially
two dimensional.
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Our experiments use an open spatial reactor, as shown
schematically in Fig. 3 [1,9,7,17]. The reaction occurs in
a thin gel disk, 25.4 mm in diameter and 1.0 mm thick,
made of polyvinyl alcohol or polyacrylamide. The gel
prevents mass motion in the reaction medium; hence only
reaction and diffusion processes are relevant for our study
[9,10]. The gels have about 90% void space and an aver-
age pore size of about 10 nm. Thus small molecules such
as chlorite, iodide, or malonic acid can diffuse nearly as
freely in the gel as in water, while large molecules such
as starch are essentially immobile. Different species in
the gel can therefore have significantly different effective
diffusion rates, which is necessary for a Turing insta-
bility [8,36]). To visualize patterns formed in the poly-
acrylamide gel, some soluble starch, an indicator for the
CIMA reaction [6,9], was preloaded into the gel during
preparation. Starch was not needed in the experiments
using a polyvinyl alcohol gel since the gel itself is a CIMA
reaction indicator [9].

The gel in the reactor is sandwiched between two
thin membranes (Vycor porous glass disks from Corn-
ing or Anopore membranes from Whatman) [1,17,37].
The outer flat surface of each membrane is in contact
with a continuously fed well-stirred tank reactor in which
the concentration of chemicals and the temperature are
maintained constant; see Fig. 3. The long time scales for
pattern evolution (typically hours) facilitate the mainte-
nance of uniform reservoir conditions.

The chlorite-iodide-malonic acid reaction exhibits a
rich variety of nonlinear phenomena: bistability and os-
cillations in a batch reactor or in a stirred tank flow re-
actor [16], front structures in a Couette reactor [38], and
Turing patterns in a spatial open reactor [16,39,7,17]. In
the present experiments, components of the reaction are
distributed in the two reservoirs in such a way that nei-
ther compartment is separately reactive. Chlorite resides

VIDEO
CAMERA
\ GEL 0 Ares A
/ d
A —»| Y reservoira — T
PRt patterns
B ——=| D\RESERVORE [ z
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/ 1 ' ' 1 0 ) B
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FIG. 3. Schematic diagram of the reactor for the reac-
tion-diffusion experiments. The reaction occurs in the thin gel
layer between reservoirs A and B. The concentrations Ay,
and B, of the reagents in reservoirs A and B, respectively,
are not separately reactive. Concentration gradients normal
to the surface of the reactor are imposed so that the conditions
needed to generate Turing patterns are satisfied in a layer that
is much thinner than the gel thickness d; therefore the pat-
terns observed in the experiments are quasi-two-dimensional.
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only in reservoir A and malonic acid resides only in reser-
voir B. The other chemical species are contained in equal
amounts in both reservoirs, except for sulfuric acid, which
is more concentrated in reservoir B than in reservoir A.
The chemicals diffuse through the membranes into the
gel where the reaction occurs. The chemical patterns
form only in a thin planar region of the the 1 mm thick
gel, as indicated in Fig. 3. The thickness of the pattern
is comparable to the lattice spacing; hence the patterns
are essentially two dimensional [40]. The patterns are
monitored continuously in transmitted light. The data
presented here are for the asymptotic states, reached af-
ter waiting 1-3 days following a change in control param-
eter. Digitized 480x 512 pixel black and white images are
processed and analyzed on a computer workstation.

V. RHOMBIC ARRAYS

In this section we demonstrate both theoretically and
experimentally the existence of rhombic arrays in pattern
forming systems. The rhombic arrays we consider can
be obtained by stretching an array of regular hexagons
along one of its six symmetry axes. Experimental realiza-
tions of hexagonal and rhombic arrays are shown in Fig.
4. As we argue below, the sixfold symmetry of regular
hexagons is broken to the twofold symmetry of the rhom-
bic array by the diffusion terms of the Landau-Ginzburg
equations (2.7). The rhombic arrays form via sponta-
neous symmetry breaking in systems that are invariant
under the Euclidean symmetries and consequently they
can point in any direction. The characteristic angles of
stable rhombic arrays occur in a band about the 60° of
regular hexagons, e.g., in Fig. 4(d) the angle is 66°. A

rhombic array

regular hexagonal array

e — - . . , v .
©]|® N ° ° g e °* . (d)
° s i L]
* hd * ™ ¢ °
SO TR d
° ] ]
¢ ° . g ¢ q °
P ° L4 hd i
Y o [ ] [ ° Py
a o N . . @

FIG. 4. Examples of (a) hexagonal and (b) rhombic pat-
terns observed in the experiments. Diagrams (c) and (d) show
the local maxima and characteristic angles of the hexagonal
and rhombic arrays, respectively.
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physical system evolving from a noisy initial state will
in general contain multiple domains of rhombic arrays,
each with its own orientation and characteristic angle.
Multistability distinguishes our rhombic arrays from the
“nonequilateral hexagonal patterns” introduced recently
[41].

The general theory is presented in the following sub-
section and the predictions are compared with an exper-
iment in Sec. V B.

A. The theory of rhombic arrays

A rhombic array obtained by stretching a hexagonal
array along one of its six symmetry axes has its point
group symmetry reduced from Dg to D,. In the analysis
below, we stretch a hexagonal array along the z direction,
which is chosen to be one of the symmeiry axes. The
transformation is achieved by the operator

S:(z,y) = (L+68) 'z, y). (5.1)
The field Ugr(x,t) characterizing the resulting rhombic
array can be expanded as

3
Ur(x,t) = Z aneik"’(si X))
n=1
Noting that k; - (S7'x) = k; - x, k- (S7'x)=kz-x+
@51, and k3 - (S7'x) = k3 -x— ?53:, we deduce that
the envelope functions for the rhombic array, expanded
in the hexagonal basis (2.2), are

(5.2)

62, A.g = (Lge_iéz. (53)

Al = ay, A2 = agei
where 6 = @5 . The envelope function formalism is valid
only if the envelope functions A4,, are slowly varying, i.e,
for sufficiently small §. However, we expect the qualita-
tive results to hold for a larger range of parameters.

For simplicity we study the existence and stability of
the solutions of type (5.2) of the Landau-Ginzburg equa-
tions for the variational case, v = 0 in (2.7). The con-
clusions presented below continue to be valid for nonzero
v. The envelope functions (5.3) with a; = const and
as = a3z = const are solutions of (2.7) when a; and a,
are solutions of

pay + aa? — ay(a? + 2pa3) = 0,
(5.4)

2

: 2

M—w([é&qt é—) +aay — (1 + p)as — pa? = 0.
2 2ko

The hexagonal solution can be retained by setting a; =

a;. Below we determine the domain of linear stability of

the solution (5.4).

Let us digress briefly to discuss the relevance of the
linear stability of the rhombic state. The analysis be-
low will show that out of all the linearly stable rhombic
arrays, hexagons have the largest growth rate (starting
from the uniform state). Furthermore, in the variational
case (v = 0), the hexagons will have minimum “energy”
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(as given by (2.8)] among all the rhombic arrays. Then
why are rhombic arrays seen in experiment? We believe
that the initial conditions of the system play a significant
role in determining the equilibrium state of the system.
Thus, if a system with variational dynamics starts in a
rhombic state, it will have to create or destroy cells (via
phase slips) in order to move towards a hexagonal state
of lower energy. In order to do this, the system has to
move over a large local energy barrier. Typically, physical
systems do not change their structure if they are linearly
stable. (An array of rolls in Rayleigh-Bénard convection
can reach stationary states for a band of wave vectors
[42].). What we suggest, and what is supported by the
experimental observations, is that as long as the rhombic
array is linearly stable it will not change its structure.
The relevance of linear stability of the rhombic state fol-
lows.

The domain of linear stability of the rhombic solu-
tion (5.3) is determined by spectral decomposition. The
rhombic pattern is perturbed to 4; = a; + (u1 + iv1),
A, = Laz + (u2 + v7)]e=, and As = [az + (us +
iv3)]e"*® and the perturbations (u,,v,) are expanded
as (Up,vn) = (u$.°),v,£°))ew‘+*K'x. With these substitu-
tions (2.7) reduces to a matrix equation

wwl =M. w7, (5.5)
where w = (ugo), v§°), ugo), v;o)’ ugo)’ v:(,o)) and M = (m;;)
is a 6x6 matrix. We need to find the range of parameters
(u, ) for which the solution is stable (i.e., w < 0) against
all long wavelength perturbations. Except for K = 0 the
domain of linear stability has to be calculated numeri-
cally. In the domain shown in Fig. 5, the eigenvalues of
the matrix M are negative for values of |K| < 0.25k,.
For each set of parameters we have checked the eigenval-
ues for 10 values of |K| < 0.25k¢ and for 20 directions
K.

The calculation of the eigenvalues for K = 0 provide
some insight about the boundaries of the stability do-
main. For K = 0, the nonzero matrix coefficients of M
are

my1 = p — 3a? — 2paZ,
mi3 = aa; — 2pa;az,
Mma2 = 4 — af - 2pa§,
M24 = —Qaz,
(5.6)
2
V3. 8
mes =p—v| -0+ | —3a3 —(al +a3),
2 2kq
m3s = aa; — 2’70§a
Mmaq = m33 + 2a3,
Mmye = —Qay.
Two eigenvalues of M are
W1 = Mygq — Mye,

(5.7)

w2 = M33 — Mm3s,

while a pair (ws,w,) is given by
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FIG. 5. The domain of linearly stable rhombic arrays of Eq.
(2.7) with @a =1, p = 2, and v = 0. The vertical axis denotes
the deviation A of the characteristic angle of the rhombic
array from the 60° angle of regular hexagons. This stability
domain appears in a “third” dimension in the stability domain
for hexagons in Fig. 2.

my — W 2m13
M3 M3z + M35 — W

A; = det ( ) =0. (58)

The final pair of eigenvalues (ws,ws) satisfies

Moy — W 2m
A, = det 22 24
Mag4  Mgq + Myg — W

) =0. (5.9)

wy and one solution of A; = 0 (say, ws) vanish, con-
firming the marginality of the rhombic array under two
translations. wg is always negative. The left boundary
of the stability domain of Fig. 5 is determined by the
existence of the rhombic solution (5.4) while the right
boundary corresponds to w3 becoming positive; ws and
w4 are negative inside the stability domain.

The quantitative form of the boundary of the stability
domain depends on the coefficients of Eq. (2.7) and on
the terms retained. However, some qualitative features
appear to be universal. For example, at each end of the
stability domain the band of stable rhombs collapses to
regular hexagons and the stability band widens as one
moves away from each end of the stability domain. These
qualitative stability properties should hold for rhombic
arrays in a wide range of pattern forming systems. One
might inquire if the stability of rhombic arrays will be lost
on introducing higher-order terms in the perturbation
expansion. It can be shown that this is not the case.
The existence of a stable hexagonal array implies that all
eigenvalues of the hexagonal state are negative, except for
the two that correspond to the translational modes. For
a sufficiently small perturbation of the array (stretching
along a symmetry axis) the negative eigenvalues remain
so, while the marginal eigenvalues continue to be zero.
Thus the only possible motion of the rhombic array is
translation. It can be shown using the theory of relative
equilibria [43,44] that there is no translation of a rhombic
array. Thus rhombic arrays formed by a sufficiently small
stretching of the hexagonal array will be linearly stable.
The result depends only on the group structure and the
continuity of the perturbation.

Why have rhombic arrays not been reported in the
many studies of pattern forming systems (e.g., Bénard-
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Marangoni convection or Rayleigh-Bénard convection in
non-Boussinesq fluids)? The probable reason is that only
regular hexagons would form in experiments where the
control parameter is slowly varied. Beginning in the uni-
form state, a slow variation of the control parameter [e.g.,
p in the model (2.7)] leads to the transition where only
the hexagons are stable at the onset of instability. The
hexagons remain linearly stable as the control parameter
is further increased quasistatically and thus rhombic ar-
rays will not be seen through such a process. One way to
get a rhombic array is to change the control parameter
discontinuously into the interior of the stability domain
of hexagons. This is how rhombic arrays were originally
discovered in the experiments on the CIMA reaction [1].

B. Predictions and comparison with experiment

Figure 6 shows large arrays of hexagons and rhombs
generated by imposing as a perturbation an optical pat-
tern with a particular symmetry. The wavelength of the
perturbation was chosen to be the natural wavelength, as
determined from Fourier transforms of patterns formed
from random initial conditions. The patterns in Fig. 6
are stable—they persist indefinitely after the optical per-
turbation is removed. An arbitrary direction can be cho-

600600 |60° . 58°] 64° 580

===

051 0.5

intensity (arbitrary units)

0 100 200 300 0 100 200 300
angle (degrees)

angle (degrees)

FIG. 6. (a) Hexagonal and (b) rhombic arrays obtained in
the experiments; (c) and (d) show the corresponding angu-
lar intensity distributions in spatial frequency space in bands
centered at an intrinsic wave vector of 5.5 mm™'. The pat-
terns were initially generated by illuminating the photosen-
sitive reaction medium with light in the desired test pat-
tern. After this perturbation was removed, these patterns
remained stable asymptotically. The chemical concentra-
tions in reservoirs A and B on the two sides of the reac-
tor are [CHz(COOH)z]OB = 32 mM, [I“}{;"B = 2.2 mM,
[NazS04)? = 4.5 mM, [ClO; |8 = 22 mM, [H2S04)¢ =1
mM, [H,SO4] = 20 mM, and temperature 7.0 °C. The re-
gion shown is 6 mm X 6 mm.
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sen for the orientation of these arrays, reflecting the in-
variance of our system under rotations. The form of the
envelope functions (i.e., |A2| = |A3| # |A1]) of the rhom-
bic state implies that four of the six peaks in the spatial
Fourier transform for the rhombic state will have equal
magnitude while the other two will have a different mag-
nitude; in contrast, for an array of regular hexagons all
spectral components will have the same magnitude. Fig-
ures 6(c) and 6(d) confirm these expectations. This type
of Fourier spectrum for rhombic arrays has also been ob-
served in numerical simulations [45]. The relative heights
of the amplitudes is model dependent. In our model, it
can be determined from the solution of Eq. (5.4) for a
given characteristic angle.

The predicted form of the stability domain (Fig. 5) was
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FIG. 7. (a) Extended stationary chemical pattern with do-
mains of rhombic arrays with different characteristic angles
in a band near 60°. The control parameters were the same
as in Fig. 6, except [CH2(COOH)2]¥ = 32 mM; the region
shown is 6 mm x 6 mm. (b) Distribution of angles observed
in patterns at two values of the malonic acid concentration.
The narrow distribution, which has a root-mean-square width
of 2.3°, was observed not far beyond the onset of patterns,
[CH2(COOH),]& = 39 mM; the broad distribution, which has
arms width of 4.5°, was obtained further away from the tran-
sition, [CH2(COOH)2]& = 32 mM. (c) The root-mean-square
width of the distribution of angles A#6,.,,, observed in the
chemical patterns as a function of the bifurcation parameter,
the malonic acid concentration in reservoir B.
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tested in the experiments with optical perturbations. For
a given value of control parameter, the gel reactor was
illuminated with intense light in a perfect rhombic lat-
tice of dots, with characteristic angles ranging from 45°
to 75°. (Again, the wavelength of the perturbation was
carefully chosen to be the intrinsic wavelength.) Pertur-
bations with regular hexagonal patterns (characteristic
angles of 60°) were always found to be stable beyond
the bifurcation to patterns. However, rhombic patterns
were stable only if the characteristic angle was not sig-
nificantly different from 60°. Figure 7(a) shows a pat-
tern that formed asymptotically after the removal of an
unstable rhombic pattern, one with a characteristic an-
gle outside of the stable band: the system rearranged
itself into multiple domains, each of which contained a
rhombic array with a characteristic angle inside the sta-
ble band [37]. The distribution of characteristic angles
in such a pattern depends on the control parameter. As
shown in Figs. 7(b) and 7(c), the root-mean-square width
Ab,ms of the distribution increases as one moves away
from the onset of patterns. Figure 7(c) is in good quali-
tative accord with the theoretical prediction in Fig. 5. A
quantitative comparison of experiment and theory would
require the evaluation of the coefficients in the Landau-
Ginzburg equation from the chemical kinetics and diffu-
sion coefficients of the reaction and perhaps the inclusion
of higher-order terms in the perturbation expansion.

VI. BLACK-EYE PATTERNS

For experimental conditions different from those used
in the experiments described in the preceding section, a
complex black-eye pattern emerges well beyond the pri-
mary instability; examples of these patterns are shown
in Figs. 8(a)-8(c). We have investigated mainly black-
eye patterns with regular hexagonal symmetry, but at
the end of this section we will mention observations of
similar patterns that form from rhombic patterns.

The black-eye patterns result from a resonant inter-
action between the basic modes of the hexagonal array.
These patterns consist of two hexagonal lattices: one of
white spots and the other of black spots at the center
of each white spot and at the center of the dark region
in each equilateral triangle with three neighboring white
spots at its vertices. The hexagonal lattice of white spots
has a wavelength of 0.15 mm while the lattice of black
dots has a wavelength 0.086 mm. The ratio of the two
wavelengths is /3, suggesting that the lattice of black
spots is a harmonic structure of the lattice of white spots.
The spatial Fourier transform in Fig. 9 supports this in-
terpretation.

A phase diagram showing the transition from hexagons
to black-eye patterns and then to stripes is shown in Fig.
10. The control parameter for these experiments is the
malonic acid concentration in reservoir B; all other pa-
rameters are fixed at the values given in the caption for
Fig. 8. The primary instability of the uniform state
occurs when the malonic acid concentration is increased
above [CH;(COOH);] = 7.0 mM. At a higher con-
centration, [CH;(COOH);|& ~ 8.0 mM, the spatial har-
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monics corresponding to the black-eye patterns become
detectable in the Fourier spectra and faint black dots
become visible in the center of each white dot [see Fig.
8(a)]. The amplitude of the harmonics increases as the
control parameter is increased and becomes quite large,
as the photograph in Fig. 8(b) and the graph in Fig.
10(b) illustrate. The amplitude of the harmonics reaches
a maximum at [CHz(COOH);]& ~ 10.5 mM and then
decreases gradually to zero, at which point the system
undergoes a transition to stripes [see Fig. 8(d)]. The
transition from hexagons to the black-eye patterns is non-
hysteretic within the mesh in control parameter, 0.5 mM,
while the transition from black-eye patterns to stripes is
hysteretic, as illustrated by the hysteresis loop in Fig.
10(a).

FIG. 8. “Black-eye” patterns: (a) Just beyond the transi-
tion point; [CH2(COOH);]& = 8 mM. (b) Fully developed
black eyes; [CHz(COOH)2)¢ = 12 mM. (c) Large array of
black eyes for the same conditions as in (b). (d) Striped pat-
tern that appears when the black-eye pattern becomes unsta-
ble; ([CH2(COOH)2)¢ = 15 mM. (e) and (f) two-fold symmet-
ric black-eye patterns observed with [CH2(COOH)]& = 12.5
mM and [CHz(COOH);]& = 13.5 mM, respectively. The pat-
terns were observed in a 10% polyvinyl alcohol gel disk sand-
wiched between two Vycor porous glass disks. The other pa-
rameters were fixed at the following values: [I7)&'2 = 3 mM,
[Na;S04)5F = 4.5 mM, [ClO; |4 = 22 mM, [H;SO4)§ = 2
mM for (a)-(d), [H2SO4)§ = 1 mM for (e) and (f),
[H2S04]f = 20 mM, and temperature 7.0°C. The regions
shown in (a), (b), (d), and (f) are 1.6 mm x 1.6 mm, while
those shown in (c) and (e) are 6 mm x 6 mm. The funda-
mental and anharmonic wavelengths of the black eyes shown
in (b) are 0.086 mm and 0.15 mm, respectively.
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FIG. 9. Two-dimensional spatial Fourier transform of Fig.
8(b), showing the harmonic wave vectors that are responsible
for the black-eye patterns.

The observation of the harmonic structures indicates
a need to go beyond the “fundamental representation”
in the description of the black-eye patterns [19,24]. Ap-
pendix A presents a multiple scale analysis of the Swift-
Hohenberg equation that shows how resonances between
the basic modes of the hexagonal patterns can lead to the
generation of the secondary modes. Close to the onset,
the secondary modes are negligible and the pattern can
be described using the fundamental representation (2.1).
As shown in Appendix A, the most significant secondary
modes are those observed in our experiments: wave vec-
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FIG. 10. (a) Transition diagram showing regimes with
hexagons, black eyes, and stripes as a function of the mal-
onic acid concentration in reservoir B (all other conditions
were fixed at the values given in Fig. 8). (b) Amplitude of
the spatial harmonics relative to the fundamental. Symbols:
A, hexagons; e, black eyes; W, stripes.
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tors (k; —k;) and 2k; (see Fig. 9). However, the analysis
suggests that the amplitude of the harmonics should grow
continuously beyond the primary instability, while in the
experiments the harmonics were not detected until well
beyond onset of hexagons, as shown in the diagram in
Fig. 10(b). We do not understand this difference be-
tween theory and experiment. We may simply not have
sufficient sensitivity to detect the harmonics closer to the
onset of the primary instability, or perhaps the secondary
modes are not “slaved” to the primary modes.

For other experimental conditions we have observed
harmonic structures arising from rhombic rather than
hexagonal patterns. Figures 8(e) and 8(f) are examples of
these two-fold symmetric patterns with harmonic struc-
ture. We have not examined in detail the transitions
leading to and from these patterns.

VII. DYNAMICS OF DOMAIN WALLS
AND COMPLEX STATES

As indicated in the Introduction, the rotational in-
variance of the amplitude equations is essential to the
study of multiple domains of stripes pointing in arbi-
trary directions. Approximations that do not preserve
the symmetry exactly could lead to qualitatively incor-
rect patterns through the choice of preferred directions.
In this section we demonstrate in numerical simulations
that the behavior of domain walls for models equivari-
ant under rotations is qualitatively different from that for
nonequivariant models. We also present dynamics of a
complex pattern consisting of multiple domains of stripes
and hexagons. Similar behavior has been observed in
patterns generated in the reaction-diffusion system.

The time evolution of the Landau-Ginzburg equation
(2.7) is studied numerically using the alternating di-
rection implicit algorithm [46]. Each nonlinear term
N[A(x,t)] is expanded to linear order in §A4 = A(x,t +
dt) — A(x,t), thus linearizing the equations in A(x, t+4t).
The cross derivatives, such as 9*A4,/9z220y?, are calcu-
lated explicitly. The results presented here are from the
evolution of A;’s on a 32x 32 lattice with periodic bound-
ary conditions. The slow variables A, are interpolated
to a 128128 lattice on which U(x,t) is evaluated using
(2.1). The domain is chosen to have a length of 47 in each
direction and ko is 4.0. Each time step was 0.01 units and
it was checked in several cases that smaller time steps do
not change the conclusions.

The equivariant dynamics is generated by (2.7), while
the nonequivariant dynamics is modeled by the substitu-
tion

0, >k, V (7.1)

in the Landau-Ginzburg equations. This and sev-
eral other nonequivariant models have been studied nu-
merically before [32,47,48]. The domain wall gener-
ated by nonequivariant dynamics [Fig. 11(b)] is very
abrupt, while that generated by equivariant dynamics
[Fig. 11(a)] is smooth, like the domain walls in the ex-
periments. Although the parameters chosen for the inte-
gration are well beyond the range of applicability of the
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(b)

FIG. 11. The shape of domain walls is qualitatively differ-
ent for (a) equivariant and (b) nonequivariant models. In the
initial state, stripes in the upper half plane point in the y
direction, while those in the lower half plane are slanted to
the y direction. The equivariant dynamics is generated by
the Landau-Ginzburg equations with a = 1, p = 2, p = 6,
¥ = 0.1, and v = 0, while the nonequivariant dynamics is
obtained by replacing O, by (k, - V). The pattern of (a) is
reminiscent of the experimental patterns [cf., e.g., Figs. 1 and
8(d)], while the boundary in (b) is abrupt.

perturbation expansion, it appears, at least for this case,
that the symmetrized amplitude equations give qualita-
tively correct patterns. It would be extremely interesting
to determine if this is valid generally.

Figure 12 shows patterns generated by numerical in-
tegration of the Landau-Ginzburg equations (2.7) for a
set of parameters where both hexagons and stripes are
linearly stable. (For the parameters given in the caption
of Fig. 12, the bistable domain is 1 < g < 4.) The
equivariance of the model implies that stripes (as well as
hexagons) pointing in any direction are equivalent; thus
the physical system is not in a simple bistable state. Do-
mains of hexagons and stripes invade each other over a
long time (compared to the diffusion time) before the
pattern settles down. For the example shown, the (ap-
parent) asymptotic state consists of two hexagonal do-
mains separated by a set of stripes. The hexagons in
the two domains have different orientations, but by the
rotational symmetry have the same stability. The do-
main wall between the states consists of stripes, which
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FIG. 12. A sequence of patterns generated by the numer-
ical integration of the equivariant amplitude equations (2.7)
with periodic boundary conditions, random initial conditions,
and parametersa=1,p =2, =6,y =0.1,and v = —0.195.
Hexagonal and striped domains invade each other over a long
time before the hexagons dominate the pattern. In what ap-
pears to be the final (stationary) state (¢ = 4000), a single
line of stripes separates two hexagonal domains of different
orientations.

is the “metastable state.” Qualitatively similar dynam-
ics is seen for a small range of the parameters. We have
observed this complex behavior only in the presence of
nonvariational terms [i.e., v # 0 in (2.7)].

Similar behavior of the dynamics of a domain wall is
observed in the experiments on the CIMA reaction, as
Fig. 13 illustrates. Each domain invades the other as in
the numerical integration Fig. 12. Again this behavior is
observed only for a narrow range of control parameters
in the bistable region. It is not known if the patterns
in Fig. 13 continue to evolve or reach a stationary state;
continuous evolution would mean that the system is non-
variational.

We end this section with a discussion of patterns gen-
erated from the numerical integration of (2.7) from a ran-
dom initial state when stripes are the only stable periodic
array (i.e., p > 4 for parameters of Fig. 12). The pat-
terns generated by both nonvariational and variational
equations, illustrated in Figs. 14(a) and 14(b), respec-
tively, fail to reach an extended uniform state, in con-
trast to the situation when both hexagons and stripes
are stable. Local patches develop into independent arrays
of stripes pointing in arbitrary directions. The domain
sizes in the patterns increase with the “diffusion coeffi-
cient” 4. When different domains run into each other,
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FIG. 13. This sequence of patterns observed in the exper-
iment shows oscillatory movement of the boundary between
hexagonal and striped domains. This type of behavior was ob-
served in a narrow parameter range near the hexagon-stripe
transition point. The chemical concentrations in reservoirs A
and B were [CHz(COOH),|? = 32 mM, [I7|$"F = 3.0 mM,
[Na;S04)g"? = 4.5 mM, [CIO; )¢ = 22 mM, [HoSO4)g = 1
mM, [H2SO4])¢ = 20 mM, and temperature 7.0 °C. The re-
gion shown is 6 mm X 6 mm.

the isotropy allows for the rolls to bend at the bound-
ary and join smoothly rather than forming sharp domain
walls.

Numerical integration of (2.7) for the nonvariational
case (i.e., v # 0) yields patterns in which the stripes
change direction smoothly and rounded domains are ob-
served; see Fig. 14(a). These patterns apparently never
settle down, i.e., they are time dependent. Close to the
onset of stripes (e.g., u ~ 5) the pattern evolves relatively
fast, while further away from the onset (e.g., u ~ 10) the
evolution is very slow. These properties are reminiscent
of patterns observed in the CIMA reaction (Fig. 1) and
in Rayleigh-Bénard convection.

For the variational case [i.e., v = 0 in (2.7)], the pat-
terns appear to reach a stationary state, even though
U(x,t) exhibits small (~ 0.1%) fluctuations due to the
finiteness of the time step 6t of integration. (These fluctu-
ations decrease with decreasing 6t.) Individual domains

FIG. 14. Patterns generated from the numerical in-
tegration of (a) nonvariational and (b) variational Lan-
dau-Ginzburg equations (2.7) with random initial conditions.
The nonvariational patterns are time dependent and do not
appear to settle down, while the variational patterns appear
to be stationary with neighboring domains making an angle
close to 120° with each other. The domain is of length 4w
in each direction and periodic boundary conditions are im-
posed. Parameter values: (a) ko = 4.0, a = 1.0, p = 2,
v =0.1, u = 6, and v = —0.19; (b) the same as in (a) except
for u =8,y =2,and v = 0.

are defined much better than in the nonvariational case,
and the domain walls appear to be sharper. In most
cases, the stripes in neighboring domains form an angle
close to 120° with each other. Similar qualitative prop-
erties are observed in patterns on magnetic bubbles and
ferrofluids, both of which are governed by variational dy-
namics.

VIII. DISCUSSION

We have presented a theoretical and experimental
study of extended patterns generated through a Turing
bifurcation. The theory was developed in the ampli-
tude equation formalism and was restricted to systems
that are invariant under translations, rotations, and re-
flections. The primary results, deduced on the basis of
the symmetries, are the equivariant amplitude equations
(1.5) and (2.7). These equations should serve as general
models for studies of universal features of patterns in di-
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verse systems in the presence of Euclidean symmetries.

In Sec. III, we introduced a modification of the multi-
ple scale expansion of Newell-Whitehead-Segel that was
constructed to give equivariant amplitude equations. The
expansions were carried out for two variations of the
Swift-Hohenberg equations. We also showed that our
theory is equivalent to the Cross-Newell theory, and we
deduced an equivariant generalization of the Pomeau-
Manneville phase equation.

On the basis of the theory, we deduced the existence
of linearly stable rhombic arrays. These can point in
arbitrary directions and occur in a band of characteris-
tic angles about the 60° angle of regular hexagons. We
demonstrated their existence in a reaction-diffusion sys-
tem with a chlorite-iodide-malonic acid reaction. The
experiments supported several predictions of the theory.
We predict that thombic arrays will be observed in other
pattern forming systems as well.

We needed to move beyond the fundamental represen-
tation (2.1) in order to characterize the black-eye pat-
terns observed in the reaction-diffusion system. Bifur-
cations to and from the black-eye states were described
with Fourier spectra and secondary modes were shown
to appear as “slaved” variables in the multiple scale ex-
pansion of the Swift-Hohenberg equation. Discrepancies
between the theory and the experiments suggest that the
assumption of “slaving” of the secondary modes to the
primary modes may need to be relaxed.

The equivariance of the amplitude equations is essen-
tial in the study of complex patterns such as Fig. 1.
Our deduction of the amplitude equations was forced
by the requirement of the equivariance under arbitrary
rotations. An alternative approach has used models of
the characterizing field [49], such as the Swift-Hohenberg
equation; however, this approach cannot describe indi-
vidual bifurcations such as the Turing bifurcation. In
Sec. VII, we presented the results of numerical integra-
tion of the amplitude equations (2.7). We demonstrated
the necessity of the equivariance by studying the behav-
ior of domain walls, and we observed differences between
variational and nonvariational dynamics.

In conclusion, we hope that our theoretical and exper-
imental study will stimulate further work on the conse-
quences of Euclidean symmetries on pattern formation in
planar systems.
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APPENDIX A: DERIVATION OF AMPLITUDE
EQUATIONS IN A HEXAGONAL BASIS

We outline how the multiple scale expansion is regu-
larized for the generalizations

&U(x,t) = [ — (1+ V2)?|U(x,t) —v[U(x,1)]°
+€8U (x,t)V2U(x, t) (A1)

and

QU (x,t) = [ — (1+ V3)?|U(x,t) — v[U(x,1)]?
+€e8[VU(x,t))? (A2)

of the Swift-Hohenberg equation in the hexagonal ba-
sis (2.2). We will show how the terms appearing at the
lowest order in perturbation can be symmetrized to give
amplitude equations that are equivariant under the Eu-
clidean symmetries. The multiple scale expansion of (A1)
leads to a set of amplitude equations which are equivalent
to Eq. (2.7) introduced in Sec. II, while the expansion of
(A2) gives different nonlinear coupling terms. The scal-

ing

X=ex,Y=ey, T=¢€t (A3)
introduced in Sec. III simplifies the perturbation analysis
considerably. As in Sec. III, we write the scalar field
U(x,t) as

U(x,t) = ew(x,t) + 2wa(x,t) + Ewa(x,t) +--- (A4)
and expand the envelope functions A, (x,t)

An(x,t) = eAD + 240 + AP ..., (A5)

liknx in the Fourier ex-

where Af:,) is the coefficient of e
pansion of w,,(x,t).
At order €!, the expansion of (3.1) gives Low; = 0,

implying

3
wi(x,t) = Z AW eknx 4 o e

n=1

(A6)

with |k,| = 1. At order €2, the expansion gives Lows +
Lyw; = 0, which results in

3
wa(X,t) = Z Ag'l')eik" * 4+ c.c.

n=1

(A7)

As in Sec. III, all expansions are carried out in a single
hexagonal basis {k,} in order to study modulations on

a hexagonal pattern. At order €3 we get
Lows = —Orwy + w1 — Low; — ywi + fw;Viw;. (A8)

The Fredholm alternative implies that coefficient of e*k»*
vanishes for each n. For n = 1 we get

arAY = AW 4 4(k, - 9)240 + 2842 4D

~3y(JAY 2 + 214012 + 2140240, (A9)
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The equations for the dynamics of A(li) and A(ﬁ) can be

deduced by cyclic permutations. The solution ws(x,t)
can be written as

wa(x,1) = Ay + 3 (Ag) e )
1
+ Z(Bnmei(zkn+km)‘x + Cvnmei(Zk,I —km).x)
2
+ Y (AR PR ) £ YA X), (AL0)
1 1

where ), is the summation over n = 1,2,3 and Y, is
the summation over n,m = 1,2,3 with m # n. The co-
efficients A:(,z), Ag’;), Ag’;), B,m, and C,,,, can be written
explicitly in terms of the coefficients defined earlier. A
straightforward but long calculation at the next order in
perturbation gives the symmetrized amplitude equation
[after rescaling through x — €X and ¢t — €27 and using
the definition (A5)]

6,A1(x, t) = €2A1 +4 Df A1 + 26,31‘12/13
=3y(|A1]” + 2|42|* + 2|45*) A
+2i65(z‘i2d3A_3 + Agm_zx‘ig) (All)
and the corresponding equations for A; and As. The last
term can be converted to (J; 4,343 by a trivial rescal-
ing of the basic length scale ky. Notice that the nonlinear
coupling term i[A;(ks - V)A3 + A3(kz - V)A;] that ap-
pears at lower order in perturbation [32] (and renders
the amplitude equation non-equivariant) is symmetrized
to ’i(AgD—;;A;; + Agﬁzﬁg).
The multiple scale expansion of (A2) gives the ampli-
tude equation

BtAl(x,t) = €2A1 +4 D% A1 + 26['3/12/13
—37(|A1]* + 2|A2|% + 2|43 Ay
+2eﬁ{¢(/i2(k2 - V)As + As(ks - V) 4y)

~(VA2)(VAs) (A12)
with corresponding equations for A; and A3. Once again
these amplitude equations are equivariant under arbi-
trary rotations. We also note that the nonlinear cou-
pling term i[A2(ks - V) A3 + A3(ks - V)A,] appearing at
the lowest order in the perturbation expansion can be
symmetrized to give equivariant dynamics. The equiv-
ariance of the nonlinear coupling term in (Al2) can
be traced back to the restriction of the expansions to
hexagonal bases. In contrast, the equivariance of terms,
such as (02 A(x, t), are a consequence of the invariance of
(sin® @ + cos? 6).

Finally, we notice from Eq. (A10) that ws(x,t) and
hence U (x,t) contain Fourier components other than 4,
We thus have to go beyond the “fundamental representa-
tion” in order to describe such patterns. (See case study
4 of Ref. [19].) The spectral components closest in mag-
nitude to the ezcited modes correspond to the wave vec-
tors of type 2k, and (k, — k,,). As we move beyond
the onset, we expect to see the effects of these spectral
components. They give additional structure to the basic
building blocks of the hexagonal array [24]. We believe
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that the black-eye patterns described in Sec. VI are the
first reported experimental observations of these states.

APPENDIX B: COMPARISON WITH
CROSS-NEWELL EQUATIONS

The Cross-Newell theory [25,34] describes patterns
that are locally roll-like almost everywhere. The pat-
tern U (x, t) is assumed to be of the form U(x,t) = Ae,
where k = V@ is normal to the local orientation of rolls.
The perturbation parameter is the ratio 72 of the roll size
to the size of the container, with 0 < n?> < 1. The slow
variables are defined by

X=nx, T=n%, 0X,T) =n%0(x,t). (B1)
As shown in Ref. [25], for the Swift-Hohenberg equation,
the perturbation expansion up to order O(n%) gives

©7A% + V- (kB) + n*A(Dy - Dy + Dy - D1)A = 0,
(B2)

where B = Az%:—. The operators D; and D, are de-
fined by D; = 2k -V + (V - k) and D, = V2. Like
the model (2.7), the Cross-Newell theory is equivariant
under rotations and is complementary to it in the fol-
lowing sense. It is valid for a larger range of parameters
(from the onset of patterns), but is limited to the study
of slowly varying stripes. In contrast, the model (2.7) can
be used to study more general structures, e.g., an array of
slowly varying hexagons or a complex pattern consisting
of stripes and hexagons. In this appendix we will out-
line a proof that the Cross-Newell theory is equivalent
to (1.5) in the common domain of validity. We make no
pretense at completeness and freely use the results and
notation of Ref. [25]. In fact, a knowledge of Sec. 2 of
Ref. [25] is essential to follow the rest of the appendix.

As argued in Ref. [25], the “amplitude” A of a slowly
varying array of stripes can be considered to be constant.
In contrast to Ref. [25] and in the spirit of the work de-
scribed here, we let the normal to the stripes point at an
angle 1o to the local coordinates (£,{). A neighboring
point has a wave vector k (perturbed from kg) pointing
at an angle ¢ with the local basis. Then the variable ©
is given by [see Eq. (2.46) of Ref. [25]]

© = ko[£ cos(%o) + Csin(¥o)] + 1°¢(€,¢,T),  (B3)
from which we deduce that
O¢ = ko cos(¥o) + N’ e,
(B4)
@C = ko Sin(dlo) + 1]2¢<.
The variation in the wave vector is now given by
(k* — k3) = 2n°ko(ko - V$) + n* V74, (B5)
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where ko = £ cos(¢o) + ¢ sin(vo) and V is expanded in
the local basis. More algebra leads to

V- [k(k® - k3)] = 2k3n* (ko - V)?6
+kon*[2(V2¢) (ko - V)¢
+(ko - V)(V¢)? + (ko - V)$V29)
+1°[(V2)(V$)? + (V) - V3¢].(B6)

Finally scaling variables back according to t — n~*T and
x = 772X gives
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¢e = 4k2(ko - V)20 + 2ko((ko - V)$)(V24)
+2ko(ko - V)(V)? + 2ko(V28)((ko - Vo)
—4ko(V¢)((ko - V) V) — 2(V?¢)(V)?

—(V%9). (B7)
This is easily seen to be the imaginary part of
W =402 W + eW — W)W (B8)

with W (x,t) = A(x,t)e!**?), This is what we set out to
prove. Note that (B7) is the rotationally invariant gener-
alization of the phase equation of Pomeau and Manneville
[26].
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(b)

(c)

FIG. 1. Chemical patterns observed in a quasi-two-
dimensional reaction-diffusion system with the chlorite-
iodide-malonic acid reaction: (a) multiple domains of stripes,
(b) multiple domains of hexagons of different orientations, and
(c) a pattern with a single grain boundary separating hexag-
onal lattices with different orientations. The reaction occurs
in a thin polyvinyl alcohol layer contained between two reser-
voirs. The wavelength of the patterns are (a) 0.11 mm, (b)
0.12 mm, and (c) 0.18 mm. The region shown is a 6 mm x 6
mm section of the 25 mm diam reactor. The malonic acid
concentrations in reservoir B were (see Fig. 3) (a) 27 mM,
(b) 24 mM, and (c) 32 mM. Other control parameters were
held fixed at [I7]3% = 2.2 mM, [NaxSO4® = 4.5 mM,
[ClO7 ] = 22 mM, [H2S04]§ = 1 mM, [H2504]% = 20 mM,
and temperature 7.0 °C.



(b)

FIG. 11. The shape of domain walls is qualitatively differ-
ent for (a) equivariant and (b) nonequivariant models. In the
initial state, stripes in the upper half plane point in the y
direction, while those in the lower half plane are slanted to
the y direction. The equivariant dynamics is generated by
the Landau-Ginzburg equations with & = 1, p = 2, u = 6,
v = 0.1, and v = 0, while the nonequivariant dynamics is
obtained by replacing O, by (k. - V). The pattern of (a) is
reminiscent of the experimental patterns [cf., e.g., Figs. 1 and
8(d)], while the boundary in (b) is abrupt.



FIG. 12. A sequence of patterns generated by the numer-
ical integration of the equivariant amplitude equations (2.7)
with periodic boundary conditions, random initial conditions,
and parametersa =1,p =2, p = 6,y = 0.1, and v = —0.195.
Hexagonal and striped domains invade each other over a long
time before the hexagons dominate the pattern. In what ap-
pears to be the final (stationary) state (¢ = 4000), a single
line of stripes separates two hexagonal domains of different
orientations.



FIG. 13. This sequence of patterns observed in the exper-
iment shows oscillatory movement of the boundary between
hexagonal and striped domains. This type of behavior was ob-
served in a narrow parameter range near the hexagon-stripe
transition point. The chemical concentrations in reservoirs A
and B were [CHz(COOH),]& = 32 mM, [I7]"% = 3.0 mM,
[Naz804)5"% = 4.5 mM, [CIO; ¢ = 22 mM, [H,SO04J3 = 1
mM, [H2S04)¢ = 20 mM, and temperature 7.0 °C. The re-
gion shown is 6 mm x 6 mm.



(b)

FIG. 14. Patterns generated from the numerical in-
tegration of (a) nonvariational and (b) variational Lan-
dau-Ginzburg equations (2.7) with random initial conditions.
The nonvariational patterns are time dependent and do not
appear to settle down, while the variational patterns appear
to be stationary with neighboring domains making an angle
close to 120° with each other. The domain is of length 4w
in each direction and periodic boundary conditions are im-
posed. Parameter values: (a) ko = 4.0, a = 1.0, p = 2,
¥=0.1, p =6, and v = —0.19; (b) the same as in (a) except
foruy=8,y=2,and v =0.
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FIG. 4. Examples of (a) hexagonal and (b) rhombic pat-
terns observed in the experiments. Diagrams (c) and (d) show

the local maxima and characteristic angles of the hexagonal
and rhombic arrays, respectively.
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FIG. 6. (a) Hexagonal and (b) rhombic arrays obtained in
the experiments; (c) and (d) show the corresponding angu-
lar intensity distributions in spatial frequency space in bands
centered at an intrinsic wave vector of 5.5 mm™~'. The pat-
terns were initially generated by illuminating the photosen-
sitive reaction medium with light in the desired test pat-
tern. After this perturbation was removed, these patterns
remained stable asymptotically. The chemical concentra-
tions in reservoirs A and B on the two sides of the reac-
tor are [CHz(COOH).)? = 32 mM, [I7)3® = 2.2 mM,
[NazS04)2% = 4.5 mM, [ClO; ] = 22 mM, [HaSO4]8 =1
mM, [H2804])8 = 20 mM, and temperature 7.0 °C. The re-

gion shown is 6 mm x 6 mm.
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FIG. 7. (a) Extended stationary chemical pattern with do-
mains of rhombic arrays with different characteristic angles
in a band near 60°. The control parameters were the same
as in Fig. 6, except [CH;;(COOH);]UB = 32 mM; the region
shown is 6 mm x 6 mm. (b) Distribution of angles observed
in patterns at two values of the malonic acid concentration.
The narrow distribution, which has a root-mean-square width
of 2.3°, was observed not far beyond the onset of patterns,
[CH2(COOH),]§ = 39 mM; the broad distribution, which has
a rms width of 4.5°, was obtained further away from the tran-
sition, [CH2(COOH);]& = 32 mM. (c) The root-mean-square
width of the distribution of angles A, observed in the
chemical patterns as a function of the bifurcation parameter,
the malonic acid concentration in reservoir B.



(c)

(e)

FIG. 8. “Black-eye” patterns: (a) Just beyond the transi-
tion point; [CHz(COOH);])# = 8 mM. (b) Fully developed
black eyes; [CH2(COOH),]Z = 12 mM. (c) Large array of
black eyes for the same conditions as in (b). (d) Striped pat-
tern that appears when the black-eye pattern becomes unsta-
ble; [CH2(COOH),]¥ = 15 mM. (e) and (f) two-fold symmet-
ric black-eye patterns observed with [CHz(COOH)2)# = 12.5
mM and (CH2(COOH),)# = 13.5 mM, respectively. The pat-
terns were observed in a 10% polyvinyl alcohol gel disk sand-
wiched between two Vycor porous glass disks. The other pa-
rameters were fixed at the following values: [I7]3"% = 3 mM,
[Na2804)5"% = 4.5 mM, [Cl0;]¢ = 22 mM, [H2S04) = 2
mM for (a)(d), [Hz804)8 = 1 mM for (e) and (f),
[HzSOq]gB = 20 mM, and temperature 7.0 °C. The regions
shown in (a), (b), (d), and (f) are 1.6 mm x 1.6 mm, while
those shown in (c) and (e) are 6 mm x 6 mm. The funda-
mental and anharmonic wavelengths of the black eyes shown
in (b) are 0.086 mm and 0.15 mm, respectively.



FIG. 9. Two-dimensional spatial Fourier transform of Fig.
8(b), showing the harmonic wave vectors that are responsible
for the black-eye patterns.



