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The dynamics of two-dimensional (2D) turbulence is studied by a stochastic simulation method.
The latter is based on a representation of the random vorticity field and stream function by a
multivariate stochastic process defined by a discrete master equation. It is demonstrated that in the
continuum limit the complete hierarchy of coupled moment equations for the statistical formulation
of the 2D Navier-Stokes equation is obtained. The probabilistic time evolution leads to random
stresses, which can be traced to thermal fluctuations and allow one to disentangle hydrodynamic
and thermodynamic degrees of freedom by some kind of renormalization procedure. The stochastic
simulations at a large-scale Reynolds number of 2.5 x 10° clearly show the existence of a k™3 power
law, where k is the wave number, in the inertial range of the energy spectrum, as is predicted by

the Kraichnan-Batchelor theory.

PACS number(s): 47.27.Gs, 02.50.—r, 02.70.—c

I. INTRODUCTION

Many theoretical and numerical approaches to the
problem of turbulence are based on a statistical descrip-
tion of the flow field. Within the usual description of sta-
tistical fluid mechanics [1], one considers an ensemble of
systems each member of which evolves in time according
to the Navier-Stokes equation. This procedure yields a
special type of Markov process [2] which is distinguished
by the fact that the differential form of the corresponding
Chapman-Kolmogorov equation is the Liouville equation
describing the phase flow of the Navier-Stokes equation.

In this paper, we construct a stochastic formulation of
the problem of turbulence which is based on a multivari-
ate master equation governing the dynamics of the ran-
dom vorticity field w and the stream function v defined
on a discrete lattice. This master equation represents
a more general differential Chapman-Kolmogorov equa-
tion than the Liouville equation for the special Markov
process usually considered in statistical fluid mechanics:
Within our approach, in addition to random initial con-
ditions, the time evolution of the process (w, %) itself is
also intrinsically probabilistic [3]. This means that single
realizations of the Markov process defined by our mas-
ter equation do not obey the deterministic (discretized)
Navier-Stokes equation. However, as will be shown be-
low, the moments of the stochastic process do obey the
infinite hierarchy of moment equations of the turbulence.

It is important to note that the master equation con-
tains an additional dimensionless parameter o which is
not present in the Navier-Stokes equation. This param-
eter measures the size of the intrinsic fluctuations and
will be shown to be related to the temperature of the
fluid. Deriving the equation of motion for the generating
functional of the stochastic process (w,), we demon-
strate that performing the limit « — 0 and the limit of
continuous space, the Hopf functional equation [4] of the
two-dimensional turbulence is recovered. Thus, in the
limit of vanishing intrinsic fluctuations the master equa-
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tion reduces to the Liouville equation of statistical fluid
dynamics.

Furthermore, we show that for finite values of ¢, i.e.,
for finite values of the temperature, the stochastic for-
mulation yields an additional term in the time-evolution
equation for the generating functional which leads to ran-
dom stresses in the equation for the two-point vorticity
correlation function. These stresses can be interpreted
as spontaneous vorticity fluxes which ensure equiparti-
tion of vorticity in the final stage of decay. By means of
a kind of fluctuation-dissipation theorem the strength of
these stresses can be related to the enstrophy tempera-
ture of a canonical ensemble based on the enstrophy as
the constant of motion.

The work to be presented in this paper is based on
a master equation representation of the two-dimensional
Navier-Stokes turbulence which has been developed in
Ref. [5]. We construct a slightly modified master equa-
tion which has the advantage of leading to stochastic
simulation algorithms which are even more efficient. On
the basis of this master equation, we then perform some
stochastic simulations of the two-dimensional turbulence
for very high Reynolds numbers. Our simulation re-
sults clearly show the existence of a k=3 power law in
the inertial range which is precisely the prediction of the
Kraichnan-Batchelor theory [6,7] of the vorticity cascade
in 2D turbulence.

The paper is organized as follows. In Sec. II, we define
the stochastic process representing the random vorticity
field and the stream function by means of a multivariate
master equation. Then we derive the equation of mo-
tion for the generating function pertaining to the master
equation and show that it leads to the Hopf functional
equation of the 2D turbulence in the continuum limit. In
Sec. III, we perform stochastic simulations of the master
equation for high Reynolds numbers and compare our
results with other analytical and numerical theories of
2D-turbulence. Finally, in Sec. IV we draw our conclu-
sions.

2795 ©1994 The American Physical Society



2796

II. DEFINITION OF THE MASTER EQUATION

We consider the Navier-Stokes equation on the two-
dimensional plane with coordinates & = (z,y) for an in-
compressible fluid with kinematic viscosity v. Employ-
ing the stream function formulation [8], we represent the
velocity field ¥ = (u,v) by the scalar stream function
Y(E,t) as u = yy, v = —9,1. The vorticity field w(&,t)
is defined by w = d;v — 8,u, whereas the connection be-
tween the stream function and the vorticity appears as
the constraint Ay +w = 0, where A denotes the Laplace
operator in two dimensions. The Navier-Stokes equation
for an incompressible fluid can then be written in terms
of the vorticity w as

Ow 0 Ow o Ow

o g () o () o
To be specific we assume periodic boundary conditions
on a square @ with side length L.

In order to construct the multivariate master equation
which governs the probabilistic dynamics of our formula-
tion of statistical fluid mechanics, we first specify the dis-
crete phase space, that is the set of states of the fluid. To
this end, we partition the position space, i.e., the square
Q, into small square cells (of area §12) labeled by two inte-
gers (A, u). Thus, we write Zx, = (Tau, Yau) = (A8, pdl)
for the discrete position vector, where A and u denote
integers which run from 0 to n, and 6l = L/(n + 1).
Furthermore, for the sake of a compact notation, we in-
troduce the discrete operators d;, d2, and D which re-
place the partial differential operators 8/0z, 8/8y, and
the Laplacian A and which are defined by

dlpr o f>\+1,u - f)\—l,u

261 ’
dafan 1= f,\,u+12—61f,\,u—1 ’
_ f,\+1,y + f,\—1,u + fA,u+1 + fA,y—l - 4f>\p

Df,\u =

812
(2)

where f), denotes an arbitrary function on the discrete
grid introduced above.

The phase space I' underlying our stochastic formula-
tion is given by the space of all 2(n + 1)?-dimensional
arrays

(w,¥) = {wau}, {¥an}) (3)
and can thus formally be written as
I'={(w,¥) | wau, ¥au € R} . (4)

Introducing the normalized joint probability distribution
P = P(w,,t) on the phase space I, the array (w,v) be-
comes a multivariate stochastic process. With the help of
P expectation values of arbitrary functions, F = F(w, ¢)
of the stochastic variables are determined by

(F) = / Dw DY Fw,$) Plw,t) (5)
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where the integral denotes a 2(n + 1)? fold integral over
the stochastic variables:

/Dtz/; = /Hdw,\u dipr, - (6)
Ap

Invoking now the Markov property [2], the stochastic pro-
cess (w, ) is completely defined by a master equation for
the joint probability distribution P which can be written
in the compact form

7] -
§P(w,¢,t) = AP(w,y,t) . (7)
Here, the time evolution operator A represents a linear
operator which acts upon functions of the stochastic vari-
ables,

F(w,¥) — (AF)(w,¥) . (8)

In order to define this operator, we introduce a special
class of linear operators [9]. Consider a map

b: I' =TI, (w,9)+— bw,y) |, (9)
which is assumed to be close to the identity. To any such
map there corresponds an operator b defined by

F(w,¢) = F(b~Yw,v)) . (10)

In the following, we use the convention to denote maps
of the type in Eq. (9) by small letters whereas the corre-
sponding linear operator in the space of functions of the
stochastic variables will be denoted by the same letter in
german letters.

The time evolution operator A is decomposed as

A:Ad+AC+Ap . (11)

The operator Ay which models the viscosity term in the
Navier-Stokes equation is defined by

Ad - a16/12 Z Z (det[( i)‘u)hl]bf\u - I) . (12)

Ap =1

Here I denotes the identity operator and bf\“ is the op-
erator corresponding to the linear map defined by

i . {w,\“ — Wiy — AWy, (13)
Ap Wxi s > Wi u T QWay-

In this equation, (A;,u;) is one of the four nearest-
neighbor cells of (A, 1) and it is understood in Eq. (13)
that all other variables that are not specified are left un-
changed under the action of biu. Furthermore, a is a
small number (dimensionless and positive) the physical
meaning of which is explained below. The nonlinear con-
vection term of the vorticity equation is represented by
the operator

2
1 . .
Ac = m E _S_ (det[(cf\u)"lltf\u - I) ’ (14)
Ap =1



30 STOCHASTIC SIMULATIONS OF HIGH-REYNOLDS-NUMBER . . .

where 7 is a small positive constant and the maps ci"

are defined by

Ci : Wrp — Wxp — 'YSA;H (15)
s Wiatl,p > Watl,p + VS
2 . Wian > Wap — 'YTAua
cx, ¢ 16
Au { Wap+l > Wi putl +'YTA;4- ( )

Above we have used the definitions

SA,‘ = N'\“' + N'\+1’” y N)‘“ = UJ,\p.dZ'l/)Aps (17)
Trp = MM ¢ MM+ MR = —wrpd1Pr, - (18)

Finally, the operator .4, represents a multivariate
Poisson-type process which describes the constraint con-
necting the stream function and the vorticity. This con-
straint is implemented by adding the dynamical equation
¥ = (A +w)/e. On letting e —» 0, the stream function
1) becomes a fast variable (enslaved by the slow variable
w) which is confined to the vicinity of the constraint man-
ifold given by A9 + w = 0 (for details see Ref. [5]). A,
is defined by

A= 23 (@etl(@n) Pru=T) 5 (19)

Be &
where 3 is a small positive constant and

dku : 1/’/\51. — 1/)Au + ﬁWX[J. ) ﬁ = 0512 ’ (20)
and

Wiu =DYap+gwru, g=1l—cv . (21)
Having defined the stochastic process (w, 1) by the above
master equation, it is now easy to derive the dynamic
equations for arbitrary moments and correlation func-
tions of the stochastic variables. This can be done most
easily by deriving the equation of motion of the mul-
tivariate characteristic function which is defined by the
expectation value

®(j,2,t) = <exp 812 Z (Fapwrp + 22u¥au) > .

Ap
(22)

Note that the characteristic function ®(j,z2,t) depends
on the two (n + 1)%-dimensional arrays j = {jx.} and
z = {z),} and that the partial derivatives with respect
to jau and z), generate the various correlation functions
of the underlying stochastic process. For example, we
have

(w Ly =(L 9
AN )= G512 By

1 7] .
X (El—z —_3]"\,“,) M Q(.7; Z,t)

j=2z=0

(23)
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The time evolution equation for ®(j, z,t) is immediately
obtained by using the general definition (5) for the ex-
pectation value, differentiating Eq. (22) with respect to
time ¢, and invoking the master equation (7).

The equation of motion for the generating function
® then allows the comparison with the Hopf functional
equation [4] of statistical fluid mechanics mentioned at
the beginning. This is done by performing first an asymp-
totic expansion in « — 0 and by taking then the limit
of continuous space ! — 0. In the continuum limit
the multivariate characteristic function ®(j, z,t) becomes
a functional ®[j, z,t] in the space of functions j(Z) and
z(Z), whereas partial derivatives with respect to jx, and
z)u turn into the corresponding functional derivatives.
Following the procedure in Ref. [5], we obtain including
terms of order O(adl?),

2058 _, [ dmay i@ - a71(@)

) 8 6§ 0 6
X(VAE‘F[-@ZE%E

66064 ])cp(j’z,t)

—Va45l / dl:(iy ‘V "} e @ ( j z t)
i25j2 [

As one can see from this equation, the dominant con-
tribution which is independent of the parameters a, 3,
v, and 6l is precisely of the form of the Hopf functional
equation in the two-dimensional stream function formula-
tion. Thus, we conclude that within the continuum limit
the stochastic process defined by the multivariate master
equation (7) yields a complete description of the stochas-
tic properties of the turbulent fields. In particular, the
whole hierarchy of dynamical equations for the n-point
turbulent correlation functions is correctly described.

The second term on the right-hand side in Eq. (24)
is a functional which obviously vanishes in the contin-
uum limit @ — 0. The second functional derivative of
Eq. (24) taken at j = z = 0 leads to the dynamic equa-
tion for the two-point vorticity correlation function. On
Fourier transforming and assuming spatial homogeneity,
we obtain

(% + 21/1_62) (wiwg) =Wi + k202 , (25)

where the Fourier transform of a function f(&) is defined
by f; = [dzdyf(Z)exp(—ik - £) and W; denotes the
vorticity transfer function defined by

1 *
W= Iz Z (kyg= — kaqy) (Wi Ygwi_g) +cc. (26)
q

and 02 = a(w?)§I2L2%. The second term on the right-
hand side in Eq. (25) is the Fourier transform of the cor-
relation function S(Z;,Z2) of a random vorticity stress
which is given by the second functional derivative of the
last term in Eq. (24):
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S(&2,&1) = —2vL™2V 102V, 6(&, — &) . (27)

The stationary solution of Eq. (25) is given by
(wiwg)stat = ¢%. Thus, the spontaneous fluctuations in-
duced by the random vorticity stress are approximately
related to the fluctuations occurring in the equilibrium

distribution Peq ~ exp(—Q/kpT) provided we identify

fkpTq
(w?)

Here Q denotes the enstrophy (total mean square vortic-
ity) as functional of the vorticity field, Tq is the cor-
responding enstrophy temperature [10,11] and kp the
Boltzmann constant. Furthermore, f = (L/6l)? denotes
the number of degrees of freedom. Thus, we conclude
that the parameter a introduced into the master equa-
tion is equal to two times the ratio of the enstrophy which
is contained in the thermal degrees of freedom to the total
enstrophy of the field. Once the parameter « is fixed, the
parameter v can be chosen, for example, in such a way
that the fluctuations induced by the convection operator
A, are of the same order of magnitude as the fluctuations
given by S.

It is important to note that the form of the random
stress is known explicitly from Eq. (24). It is therefore
possible to disentangle the thermodynamic from the hy-
drodynamic degrees of freedom and to obtain the zero-
temperature quantities by a kind of renormalization pro-
cedure which is explained in detail in Ref. [5]. This renor-
malization procedure has been used in the analysis of the
stochastic simulation data to be discussed in the next sec-
tion.

a=2

(28)

III. STOCHASTIC SIMULATIONS
OF THE MASTER EQUATION

The stochastic simulation technique which allows us
to generate realizations of the stochastic process defined
by a master equation of the type (7) is explained in de-
tail in Ref. [5]. In the following we report on three dif-
ferent runs denoted by R1, R2, and R3, respectively.
In all cases we choose L = 1 and the initial vorticity
field is given by a Fourier series of statistically indepen-
dent modes each of which is drawn from a Gaussian en-
semble in such a way that the initial spectrum is given
by (w%wg)tzo = Ak®? exp(—k/4rm). Here, w; denotes the
Fourier transform of the vorticity field and A = 1/768x3.
We use the Reynolds numbers [12] Re = V2EL /v, R =
E/v(2vP)Y/? and Ry = Q%/2/2vP, where E = (i?)/2
and ©Q and P denote the enstrophy, and the palinstro-
phy (the enstrophy dissipation rate e, divided by 2v),
respectively. The simulation parameters are o = 0.02,
B =25x10"% v = 0.02, ¢ = 10 for runs R1 and R2,
and a = 0.07, 8 = 6.25 x 1077, v = 0.02, € = 50 for run
R3. The physical parameters are summarized in Table I.
In all cases the simulation has been performed from ¢t = 0
to 25, where one time unit corresponds to approximately
one turnover time of the large eddies.

TABLE I. Initial values of the physical parameters of the
stochastic simulations. N, denotes the number of realizations
used.

Run N, Resolution 10°E Q P Re Ry R

Rl 5 2562 0.5472 0.5067 1560 29773 3253 104.0
R2 5 2562 0.5077 0.4799 1533 57360 7653 195.2
R3 3 5122 0.6130 0.5395 1667 252097 57045 855.6

First, we show in Fig. 1 the palinstrophy as a function
of time for the three runs. After a sharp rise indicating
strong nonlinear interaction the palinstrophy reaches a
maximum and then decays. As is to be expected the
higher the Reynolds number the higher is the time that
corresponds to the maximum enstrophy dissipation and
the higher is the value of that maximum.

Let us discuss in some detail the behavior of the en-
ergy spectrum. To this end, we first illustrate the renor-
malization procedure mentioned in Sec. II. Recall that
the structure of the random vorticity stress is explicitly
known from the expansion leading to the Hopf functional
equation. This fact allows us to substract the thermal
fluctuations from the simulation data in order to obtain
the statistical quantities at zero enstrophy temperature
Tq = 0, that is the “bare” quantities. To this end, we
decompose the vorticity field into two parts,

wp =wg +ng . (29)

in such a way that the first part which is denoted by @
obeys the equation

(% + 2uk2) (@rop)e = W (30)
where WE is defined as in Eq. (26) with wj replaced by
Wg- In accordance with our above discussion @ represents
the vorticity field at zero enstrophy temperature. The
second part 7z in Eq. (29) denotes a random field which
is statistically independent from the vorticity and which
obeys

3}
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FIG. 1. The palinstrophy P as a function of time for
the three stochastic simulations R1 (dashed-dotted line), R2
(dashed line), and R3 (continuous line).
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(mg)e =0, (ningde = gz(t) - (31)
Consequently, we have
(wiwide = (@Fdp)e + 9z() - (32)

Inserting Eq. (32) into Eq. (25) and defining the correla-
tion function of the random field 7; by

gz (t) = 2vk? [)t dr a%(1) exp {—2ul_s:'2(t — ‘r)} ,  (33)

we obtain Eq. (30). Thus we conclude that the noise
part in Eq. (25) induced by the random vorticity stress
is removed by the simple transformation (32) which may
therefore be used in order to separate uniquely the zero-
temperature field from the random vorticity governed by
our master equation. It should be clear that the above
transformation removes the thermal noise only on the
level of the two-point correlation functions and that the
influence of the random stresses upon the probabilistic
dynamics is left unchanged.

We shall illustrate this renormalization procedure by
means of our simulation data from run R3. To this end,
we first depict in Fig. 2 the energy spectrum:

1 *

as it is obtained directly from our stochastic simula-
tion by averaging over the three realizations and over 1
turnover time around ¢t = 21.75 (see the continuous line
in Fig. 2). The dashed-dotted line in Fig. 2 represents the
function g;(t)/2L%k (at the same time) estimated again
from our simulation data (the expression for the random
vorticity stress has been determined to one higher order
in 4l than was done above). Figure 3 shows the difference
of both curves, that is the renormalized zero-temperature
energy spectrum

.
7

10 100
k/2m

17000

FIG. 2. Continuous line: Log-log plot of the energy spec-
trum E, [see Eq. (34)] as it is obtained directly from the
simulation data of run R3 by averaging over three realiza-
tions and over one turnover time around the time t = 21.75.
Dashed-dotted line: The spectrum g;; of the correlation func-
tion of the random vorticity stress divided by 2L%k for the
same run at the same time.
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FIG. 3. Continuous line: Log-log plot of the renormalized
energy spectrum Ej [see Eq. (35)] obtained as the difference
of the curves of Fig. 2. Dashed-dotted line: The least square
fit of the data to a straight line giving the spectral exponent
—3.0£0.1.

~ 1 .. 1

B = 5o (0300)e = 57 (Wiwphe—9z)  (39)
together with a least square fit within the range 5 <
k/2m < 80. Figure 3 clearly demonstrates that the energy
spectrum in the inertial range nicely fits to a power law
behavior of the form

Ey=Ck™, C = const. (36)

The least square fit gives for the spectral exponent m =
—3.0 + 0.1 which is in perfect agreement with the pre-
diction of the Kraichnan-Batchelor theory [6,7] of the
vorticity cascade in 2D turbulence and is also consistent
with experimental measurements [13] and other numeri-
cal methods [14,15]. The error indicated above has been
estimated by choosing different intervals within which the
fit is perfomed.

In order to give an impression of how this asymptotic
value of the spectral exponent is reached, we plot in Fig. 4
the spectral exponent m for the three different Reynolds
numbers of our three runs as a function of time. The

]
-6 . . L L 3

0 5 10 15 20 26

FIG. 4. The spectral exponent m [see Eq. (36)] obtained by
least square fits to the renormalized spectra as a function of
time for the three stochastic simulations R1 (dashed-dotted
line), R2 (dashed line), and R3 (continuous line).
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exponent m has been estimated from the renormalized
energy spectra by least square fits within the range 10 <
k/2m < 60 for R1 and R2 and within the range 5 <
k/2m < 80 for run R3. The Reynolds number Rj, for
run R2 is 2.3 times higher than for run R1 and it is 7.4
times higher for run R3 than for run R2. Thus, Fig. 4
clearly shows that the asymptotic value m = —3 of the
Kraichnan-Batchelor theory is indeed reached for very
high Reynolds numbers after a certain transient time.
Note that we do not observe any hints of a transition of
the spectral exponent from —4 to —3 [14] nor do we see
anything special about the exponent 25/7 =~ 3.57 as has
been speculated by Polyakov [16] on the basis of a theory
employing methods from conformal field theory.

According to the dimensional analysis of the
Kraichnan-Batchelor theory the k-independent constant
C in Eq. (36) is given by

C = Cgp/e?/® | (37)

where ¢, is the enstrophy dissipation rate. We estimate
from the data of run R3 that the dimensionless constant
Ckp is about 0.5.

IV. CONCLUSIONS

An appropriate description of the problem of turbu-
lence often requires in addition to the Navier-Stokes
equation a statistical approach in terms of ensembles.
For example, the Kraichnan-Batchelor theory of 2D tur-
bulence is an application of the Kolmogorov theory of 3D
turbulence to the idea of a vorticity cascade. Thus, as in
the Kolmogorov theory the predictions of the Kraichnan-
Batchelor theory are based upon statistical arguments in
an essential way. In particular, the notion of universality
is a consequence of the assumption of statistical indepen-
dence of the small scale motion from the large eddies and
is thus intimately connected to a statistical description
of the flow field.

As has been mentioned in the Introduction, our mas-
ter equation approach introduces one further stochastic
element since the time evolution itself is also made in-
trinsically probabilistic. Therefore, the realizations of
the Markov process defined by our master equation are
not smooth and do not obey the Navier-Stokes equation.
However, as has been demonstrated in Sec. II, the equa-
tion of motion of the generating functional of the stochas-
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tic process (w, %) defined by the master equation leads in
the continuum limit to the Hopf functional equation of
the two-dimensional turbulence. This means that within
the continuum limit the total hierarchy of moment equa-
tions is correctly described by the stochastic process de-
fined by our master equation.

Furthermore, the probabilistic character of the time-
evolution gives rise to an additional term in the equation
of motion for the generating functional which reflects the
presence of random stresses in the equation for the two-
point vorticity correlation function. The explicit form
of the spectrum of these random stresses is known from
the asymptotic expansion leading to the Hopf functional
equation. It is thus possible to subtract the energy con-
tent of the thermal degrees of freedom from the simula-
tion data in order to obtain the energy spectrum at zero
temperature. This renormalization procedure has been
explained in detail in Sec. III and has been illustrated by
means of our simulation data.

It is important to emphasize the differences of our ap-
proach to other methods of simulating two-dimensional
turbulence in which random noise is present. For exam-
ple, in contrast to lattice-gas simulations [17], our master
equation formulation is a true mesoscopic one since it in-
volves the same set of dynamic variables as the hydrody-
namic macroscopic description. Within direct numerical
simulations with spectral codes, one often includes the ef-
fect of random stirring forces (see, e.g., Ref. [18]). These
random forces represent an external source of noise the
statistical properties of which (e.g., the correlation spec-
trum) are assumed to be given. The random noise con-
tained in our master equation description, however, is to
be referred to as internal noise which results from the
thermal fluctuations of the hydrodynamic variables.

The stochastic simulations presented in Sec. III exhibit
basic properties which are known from numerical and
theoretical investigations of two-dimensional turbulence.
In particular, the simulation results clearly demonstrate
the existence of a k~3 power law in the inertial range of
the energy spectrum for the run with Reynolds number
Re = 2.5 x 10° (R = 5.7 x 10*). We conclude that
the stochastic simulation technique based on our mas-
ter equation is a suitable and powerful method for the
estimation of statistical quantities of the turbulent flow
field. In particular, it might be important to note that
the stochastic simulation method suggested in this paper
leads to numerical algorithms which can easily be imple-
mented on a parallel processor {19].
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