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We extend the numerical simulations of She et al. [Phys. Rev. Lett. 70, 3251 (1993)] of highly
turbulent Bow with 15 & Taylor-Reynolds numbers Re& & 200 up to Re& 45000, employing
a reduced wave vector set method (introduced earlier) to approximately solve the Navier-Stokes
equation. First, also for these extremely high Reynolds numbers Re&, the energy spectra as well
as the higher moments —when scaled by the spectral intensity at the wave number k„of peak
dissipation —can be described by one universal function of k/k„ for all Rep. Second, the k-space
inertial subrange scaling exponents ( of this universal function are in agreement with the 1941
Kolmogorov theory (the better, the larger Re& is), as is the Re& dependence of k„. Only around
k„, viscous damping leads to a slight energy pileup in the spectra, as in the experimental data
(bottleneck phenomenon) .

PACS nuinber(s): 47.27.Gs, 47.11.+j, 47.27.Eq, 47.27.3v

I. INTRGDUCTIGN

A. Universal turbulent spectra

Very high Reynolds number turbulence still resists full
numerical simulations. While in experiments Taylor-
Reynolds numbers Rep up to Re~ ——13000 have been
reported [1,2], the most turbulent numerical flow has ——

to our knowledge —been realized by She et al. [3], who
achieve Rep ——200 at a resolution of 512 . These au-
thors find that for all Rep up to Rep ——200 all their
energy spectra coincide when scaled by the spectral in-
tensity at the wave number k„of peak dissipation. That
is, the function

(I~(&)]')/(I~(I v) I') = F'"(klkv)

is universal as assumed by Kolmogorov and Obukhov
[4]—both in the inertial subrange (ISR) and in the vis-
cous subrange (VSR). Note that F(2)(1) = 1 by defi-
nition. The universality is also found in experimental
spectra [5]. For further numerical simulations, see also
[fi]

Kolmogorov and Obukhov [4] not only assumed uni-
versality of F(2)(k/k„), but also its power law behavior
F(2)(k/kz) oc (k/k„) ~' in the ISR with the classical ex-
ponent (2 ——2/3. (The scaling exponent 2/3 in the dis-

crete Fourier transform, which we use here, corresponds
to 5/3 in the continuous case. )

It has been argued in a long lasting debate (see, e.g. ,

[7—9]) that there are small intermittency corrections to
the classical scaling exponent (2 ——2/3. Unfortunately,
even at today's state of the computational art [3],
cannot su%ciently precisely be determined from full nu-
merical simulations so that one could confirm or rule out
deviations from 2/3. The reason is that for the tractable
Rep the available wave number range is quite narrow
(k~/k;„- 5 in [3]; k;„ is the lowest wave number free
of forcing). To obtain an ISR which extends over more
than a decade, k~ must be larger than 50 km;„[3]. To
realize this, a resolution & 1500 is required [3]. The
required computer work increases as Re& log2 Reg [10].
We are thus far away from being able to create devel-
oped turbulence in a numerical How for as high Rep as in
experiment [1]. The huge gap between experiments and
simulations is demonstrated in Table I. We therefore still
need reasonable approximation techniques to numerically
solve the Navier-Stokes equation.

B. Reduced wave vector set approximation
for high Re turbulence

Such an approximation has been introduced by us in
[11,12]. Meanwhile we could considerably improve our

TABLE I. In the first two lines Re, Req, the length of the scaling range k„/k;„, and the number
of contributing modes are compared for the most developed experimental and numerical turbulence,
respectively. In the third line we give the same data for the largest Re of our reduced wave vector
set approximation (REWA).

Method
best experiments [1,2]
best simulations [3]
REWA [here]

Re
1.7 x 10

4 x 10
1.4 x 10

Re
13000

200
45 000

kr/k
—10 000

5
= 2 000

No. of modes

4x10
80 x 3 x 13 = 3120
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approach [13]. Here we employ it to study universal fea-
tures of fully developed turbulence for Reynolds numbers
Re between 730 and 1.4 x 10 (corresponding to Taylor-
Reynolds numbers Rep between 120 and 45000, see Ta-
ble II below). This leads to remarkably large ISR's. For
Re= 1.4x10, the extension of the ISR is k~/k; = 2000,
i.e., more than three decades, compared to k„jk;„=5
achieved in the presently best Navier-Stokes simulation
[3].

For completeness we brieQy repeat the main idea of
our approximation. To deal feasibly with the many scales
present in turbulent Bow, we only admit a geometrically
scaling subset K of wave vectors in the Fourier sum,
K = UtK~, thus u;(a, t) = g„~~u;(Is, t) exp(iIs a).
Ko ——(Ie„, n = 1, ..., n = 80) contains appropri-(p)

ately chosen wave vectors, K~ = (Is„= 2~k„, n =
I, ..., n = 80], E = 1, ..., l „, which are a scaled
replica of Kp. The degree of nonlocality of the ap-
proximate Navier-Stokes interaction is determined by the
choice of Kp. Here we consider triad interactions with a
ratio up to 5 between the largest and the smallest
wave vector, but extended calculations [14] (up to a ra-
tio between —6 and —11) show that our conclusions do
not depend on that ratio. The choice of l „depends
on the control parameter v, the viscosity. The incom-
pressible Navier-Stokes equation is solved on K with pe-
riodic boundary conditions in a box of size (2+L)s. All
lengths will from now on be measured in multiples of I,
so the smallest component of the smallest wave vector is
1. The Bow is permanently, nonstochastically forced on
the outer length scale with energy input rate e. All times
will henceforth be given in multiples of (L /e) /, i.e.,
the energy input and thus in the stationary case also the
energy dissipation rate is e = 1. The type of forcing does
not influence our results sizably [13]. The smallest wave
vectors whose amplitudes are free of forcing have length
k;„=3. The smallest wave vectors at all are +(1,1, —2)
plus permutations and thus have length v 6 = 0.82k
All wave vector amplitudes u(k, t) with ~le~ ) k;„=3
are free of forcing.

II. Re DEPENDENCES

What are the Reynolds numbers Re of our approximate
numerical turbulence? As usual, there is some arbitrari-
ness in the definition of the Reynolds number. We regard
Lo ——A/2 as the outer length scale, where A is the wave-

length of the smallest wave vector, and Up = 2tci ls
the typical velocity difference on the outer length scale.
Thus Re= UoLo/v can be considered as an appropri-
ate definition of the Reynolds number. The data for
five simulations, covering four decades of Re, are given
in Table II. We also list the Taylor-Reynolds numbers

= &1,rms&Taylor/V& where &Taylor = &1,rms/(~1&1)r ms

are the Taylor lengths.
The dissipation rate is balanced by the input rate e

Uo/Lo [17,18]. We therefore write

s =c,Uo /L (2)

where c, is a dimensionless number. Since we choose
= 1, Io ——x/~6, and since we find Up = 2uy from

the numerical solution, we can determine c, from this
equation. It turns out to decrease with increasing Re,
seemingly to a final level somewhere near 6 x 10 . Note
that for laminar Bow, on the other hand, it holds c, oc

Re—1, see, e.g. , [17].
Equation (2) leads to the relation

15
Rep = v Re.

16c,

In Sec. III we confirm iiniversality up to the highest
Re= 1.4 x 10 we can treat, which is our main result.
The form of the universal spectra is discussed in Sec. IV.
Hardly any nonclassical scaling corrections are found in
the rniddle of the k-space inertial subrange, but inter-
mittency shows up in the stirring subrange and in the
viscous subrange. Near peak dissipation k„ there is an
energy pileup due to a viscosity induced bottleneck phe-
nomenon [15,16].

C. Contents of the paper and summary

The paper is organized as follows. In Sec. II we exam-
ine the Re dependence of the Taylor-Reynolds number.

When c, eventually becomes universal, i.e., independent
of Re, the well known large Re limit relation Rep oc /Re
is recovered. In experiment, for smaller Re the measured
Taylor-Reynolds number Rep turns out to be smaller

TABLE II. Results from our approximate solutions of the Navier-Stokes equation for various v.
I a + 1 is the number of rescaled wave number replica ling. The definition of Re is Re= UoLo/v.
Here Lo ——rr/~6, and Uo ——2uz.. . describes the velocity difFerence across the outer scale, being
determined for each v from our numerical solution. (ur.. . depends on v and increases from 1.42
to 2.73 for the v in the table. ) Req = uq.. .AT y~o, /v, as usual. The coeincient c, is calculated
according to Eq. (2). In the last two columns the extension of the scaling range, log~o(k~/k;„)
(found from the numerical solution), is compared with that calculated from Eq. (4'), see text.

5 x 10
5 x 10
5 x 10
5 x 1Q

5 x 10

&mac + 1
5
7
9
11
13

Re
730

1.05 x 10
1.25 x 10
1.37 x 10
1.4Q x 10~

Rep
122
801

3 590
13600
44 800

c,(Re)
46 x 10
15 x 10
91x10
7.0 x 10
65x10

log, o(kp/k ;„)
0.24
0.97
1.79
2.48
3.29

log, o(c„Re ~ )
0.08
0.95
1.75
2.53
3.29
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FIG. 1. Re& (squares) and c, (circles) as functions of Re.
Left ordinate is Rep, right ordinate is c, . For large Re the
power law Req ot: ~Re holds, for small Re there are devi-

ations, as the dimensionless number c, in Eq. (2) depends
on Re. The dependence of c, on Re strongly resembles the
experimental one, cf. [19,22,17].

than predicted by Req oc /Re [19,20], as in fact c, de-
pends on Re. Both the large Re behavior of Re~ with the
power law exponent 1/2 and the deviations for smaller
Re can also be seen in our approximate solutions, see Fig.
1. For a more detailed discussion on the Re dependence
of c, and Rep, see [21,22].

One remark concerning the nominal value of the pref-
actor in Eq. (3). Taking the large Reynolds numbers, we

have (with c, = 6.5 x 10 from Table II) Req = 12/Re,
whereas experimentally it is Req /Re, i.e. , we over-
estimate the Taylor-Reynolds numbers by one order of
magnitude. We explain this as due to our approxima-
tion, as in our reduced wave vector set K the larger
wave vectors are considerably thinned out. So less energy
than ought to be is transported downscale, leading to a
larger uq, , than in real turbulence and thus to a larger
Rep = ui, ,/v(Biui), ~, The sa. me blocking eff'ect by
phase space sparseness at larger k also leads to an over-
estimation of the Kolmogorov constant b in the velocity
structure function D(r) = b(er) ~ as already mentioned
in [13,12] —also by a factor of about 10 (b = 70 in-

stead of b = 8.4 as in experiment, see [13]),because both
Req and D(r) are quadratic in ui, , [Note that the de-
nominator (Biui), , is proportional to +e and thus kept
fixed. ]

III. UNIVERSAL %VAVE NUMBER SPECTRA

The wave number spectra of our approximate solutions
are shown in Fig. 2, which constitutes our main result.
We can confirm that F&21(k/k~) in fact is unioersa/ for
all Re even much beyond Reg = 200 as studied in [3].
In particular we hint at the remarkable universality also
in the VSR. As in [3], the wave number k~ of peak dis-

sipation is found to increase as Re /, i.e., gk~ is con-
stant also for the huge Re we simulated, see Table III.
We find k„= 1/10'. For Re= 1.4 x 10 the ISR ex-
tends as far as 3.3 decades to the left of k„, see Table
II. In k space logio(k„/k;„) gives the extension of the

0.001 0.01 0.1 1 10
k/kp

FIG. 2. Universal spectra Fl l(k/k„) for m = 2 (Hat-
ter) and m = 6 (steeper) for Re = 7.3 x 10 (triangles),
Re = 1.05 x 10 (crosses), Re = 1.25 x 10 (squares), Re
=—1.37 x 10 (pluses), Re = 1.40 x 10 (diamonds). The ar-
rows indicate the smallest wave number free of forcing, k

for the respective Re. The smallest wave number of all k p K
is 0.82k;„, see Sec. I B. The dashed arrow labels k;„ in the
simulation by She et al. [3], the dotted arrow marks k;„ in
the one of Vincent and Meneguzzi [6].

ISR. This extension of the scaling range should also fol-
low from the Reynolds number Re. In r space the scaling
occurs between the outer length scale Io and 10', where
rl = vs~4/ei~4 is the Kolmogorov length scale [17,18]. For
large Re it is [17]

Lo/10@ = c'„Re ~ . (4)

Formally Eq. (4) can be derived from Eq. (2) and one

gets c„' = c,~ /10. Note that thus c'„ is also slightly
Re dependent via c,(Re). Yet our c, is smaller than the
experimental one, see last paragraph of Sec. II. Therefore
we rather define a c„ from the extension of the scaling
range found in our numerical simulation than from (4),
namely, by

k„/k;„= c„Re ~ . (4/ }

This corresponds to (4) since I o is approximately 1/k
and 10' is approximately 1/k~. More precisely we have

Io ——3vr/(~6k;„), so Io —— 0.26k;„. The ratia
k„/k;„can be extracted from our numerical spectra
in k space. For the largest Re= 1.4 x 10 we find

k„/k;„= 1950 and thus obtain c„=(k~/k;„)Re
8.52 x 10 . We now disregard the small Re dependence
of c„and calculate the extension of the scaling ranges for
smaller Re from (4') with c„=8.52 x 10 s. The results
are given in the last column of Table II and are found in
excellent agreement with the length of the scaling ranges
seen in our approximate solutions for these smaller Re,
see sixth column of Table II. We find disagreement only
for the smallest Re, as expected, because for Re=730 the
constant c„ in Eq. (4') can no longer be considered as
independent of Re.

Moreover, the Fl 1(k/k ) = ([u(k)] )/([ta(k„)] ),
m=3, 4,6,8,10, are also found to be universal (see Fig.
2 for m = 6). Due to the very extend. ed ISR we can
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5 x 10
5 x 10
5 x 10
5 x 10
5x10

0.656
0.678
0.672
0.669
0.668

(s
1.997
1.986
1.975
1.994
1.990

(k~g)
10.2
10.6
9.2

10.5
9.1

(k"' )
'

11.8
13.6
13.7
13.3
13.3

0.87
0.78
0.67
0.79
0.67

determine the power law exponents ( of the universal
functions F( )(k/k„) oc (k/k„) ~ rather precisely, cf.
Table III. This is still not possible in full simulations,
as the»~iversal scaling range is too small, k„/k~;n & 5

[6,3]. If a power law fit for full simulations is tried never-
theless, one gets scaling exponents ( much smaller than
the classical ones, due to the nonuniversal large scale forc-
ing [6,23] and the bottleneck phenomenon [15,16]. E.g. ,

0.57 is found in [6], which can be accounted for in
[16]

IV. FORM OF THE UNIVERSAL SPECTRA

Having shown universality, we now check several fits to
the universal spectra F( ) (k/k~) that we obtained from
our numerical data.

A. Scaling exponents in k space

The simplest way to determine scaling exponents is to
fit the spectra for all Re by the two parameter function

E( )(k) = k ~
[
—(k —1)/k ],

k = k/k„,
k(na) k(m) /kd d P

(5)

This form has theoretical support [24] and was also suc-
cessfully used to fit experimental spectra [25,26]. The
crossover between the power law behavior in the ISR
and exponential fall oE in the VSR takes place at the
wave number k& . In Table III we list the parame-(na)

ters, obtained from a fit in the range 0 & k & r) /4 or
0 & k/k» & 2.5, respectively. The fit (5) gives t,'s rather
near, but not exactly equal to 1 as it should be accord-
ing to Kolmogorov's structure equation [18]. This tiny
deviation is corrected in Table III by dividing the scaling
exponents obtained &om the fit (5) by (s. The resulting
scaling exponents take their classical values ( = m/3
with high accuracy, see Table III.

Prom the appearance of the classical scaling exponents
= m/3 one might deduce that there is no intermit-

tency in our signal. This conclusion would not be correct.
In fact, for small scales we do observe strong intermit-
tency in the signal [11,13]. We therefore suggested intro-

TABLE III. The fit parameters to our approximate solu-

tions of the Navier-Stokes equation for the same v as in Table
II. k„ is the wave number with peak dissipation, kz the cut-
off Rom our fit (5), if we fit the spectrum in the interval

[O, q /4]. In the last column their ratio kz ——ks /k„ is

given. From the condition k F (k) maximal at 1, the cutoff

should be k&
——3/4.

03-

0.2-

0.1-

0.0-

1 I ~ ~ ~ i ~ ~ e ~ ~ ~ ~ ~
~

~ ~ ~ ~ i-0.
0.001 001 0.1

k/kp

~ ~ ~ I

1

FIG. 3. Scale resolved intermittency corrections —b( (k)
for I, = 2, 4, 6, 8, 10, bottom to top. v = 5 x 10, Re
= 1.4 x 10 . The St range is [k/~10, k~10] for all k.

duction of local ( (k), defined by local fits of type (5) in
the restricted k ranges [k/i/10, ki/10] for all k, keeping

the k& fixed at their global values [13].
The surprising result is shown in Fig. 3. There are

large intermittency corrections h( (k) = ( (k) —m/3 at
small scales (VSR), only moderate intermittency correc-
tions at large scales [stirring subrange (SSR)], but hardly
any deviations from classical scaling in the ISR. This as-
tonishing result was extensively discussed already in [13].
Here it can be confirmed for a considerably larger Re
range.

In addition, we fitted Eq. (5) to our spectra, but now

with k& figed at k&
——2k& /m, k&

——(13.5rl)
see below. Again we find only tiny global intermittency
corrections, which clearly decreaae with increasing Re, as
predicted by [19,27]. For Re= 1.05 x 104 we find b(2 ——

0.012, b(s ———0.058, going down to b(2 ——0.002, b(s ——

—0.011 for Re= 1.4 x 107, suggesting that intermittency
might be a finite size eKect. For details and a theoretical
explanation we refer to Ref. [28].

When comparing our scaling exponents to experimen-
tal ones, one should note that all scaling exponents de-
termined in this paper refer to k-Space moments, as our
method clearly is a wave vector space method. In prin-
ciple we can calculate the complete r space velocity field

by performing the Fourier transformation on the reduced
wave vector set K. But due to the sparseness of K at
larger k the small r-space structures will be underesti-
mated and the scaling of velocity structure functions is
less pronounced in r space than in k space [11,14]. Re-
cent calculations [29] show that scaling corrections can
be quite difFerent in r versus k space. So the measured
anomalous scaling exponents of r-space velocity struc-
ture functions [8,30—32] do not contradict our k-space
results, in particular, as the experiments are performed
at relatively low Reynolds number Rep & 2720 [8,30] or
Re& 300000 [32]. On the other hand, recent k-space
measurements [2] (or rather velocity power spectra ob-
tained by Taylor's hypothesis which we do not want to

discuss here) for very high Rep = 12 700 did not show any
detectable deviation from classical scaling. For Re+ oo,
of course, k- and r-space scaling exponents should agree.

We now discuss the crossover scale between ISR and
VSR. From the fit (5) we get (k& )

i 13.5r), i.e., the
crossover scale is one order of magnitude larger than
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FIG. 4. Universal energy dissipation rate s(k)/e(k„) versus

k/k~ for v = 5 x 10, Re = 1 4 x 10 . Also shown are the
fits resulting from (5) (dashed) and (6) (solid).

the Kolmogorov length. This fact has long been known
from experiment [18] and theory [33]. From the maxi-
mum condition for k2FI21(k) at k = k~ it follows that

k&
——1/(2 —(2) = 3/4. In our simulations there are(2)

some Buctuations around this value. The reason is that
we have discrete wave vectors which are not dense in
the VSR. Thus k„can only be determined with limited
accuracy, cf. Fig. 4, where the energy dissipation rate
e(k) = Is ([u(Is)[ ) is displayed. Typically the relative
k distances are hk/k = 1/10, which corresponds to the

= 10% deviations of k& from 0.75 in Table III. Of course,
to increase the accuracy of k„, one could also de6ne it in

terms of k& from the global fit (5) with fixed (q ——2/3
to be k~ = 4k& /3. The resulting small changes are not(2)

visible in Fig. 2.
Where does the crossover from ISR to VSR behavior

take place in higher order moments'? From the fit (5)
we find k& ——2k& /m, i.e. , k& ——3/(2m) to a very
high precision [13]. This means that the ISR is consid-
erably smaller for higher order moments, or, to state it
differently, higher order moments are affected by viscos-
ity earlier than lower order moments.

B. Energy pileup in the crossover region
between ISR and VSR

We also applied fits different from (5), as from Fig.
5 it might seem that (5) only badly fits the spectrum
in the range around kz. The same observation was re-
ported already by She and Jackson [5] when they deter-
mined the universal function FI I (k/k„) from experimen-
tal data. To improve the fit, they suggested use of the
empirical three parameter function

—2 3
FI l(k) = (1+o.k~) exp [

—(k —I)/k~ I'],
1 + 0!

k = k/k„,
(2)I (2)&

k~ = k„ /k„,

(6)

and found n = 0.8, P 0.7, i.e., near k = k„ the decay
of the spectral power is diminished. Their physical inter-

klkp

FIG. 5. Universal spectrum F~ ~(k/k~) for v = 5 x 10
Re = 1.4 x 10 . The fits (5) (dashed) and (6) (solid) are com-
pared, both with the same (q = 2/3. Inset: Quality pf uni-
versality in the log-similarity description for the second mo-
ments, see text. The symbols mean Re = 1.25 x 10 (squares),
Re = 1.3? x 10 (pluses), Re = 1.40 x 10 (diamonds).
On the abscissa we plotted P Iogio[k/(2k„)], on the ordinate
P Iog, o[([u(k)[ )/([u(2k„)[ )] with P = 0.9/Iog, o(Req/75), cf.
[»]

pretation is a pileup of excitation around kz, possibly due
to coherent vortex structures. Note that Eq. (6) results
in a nonmonotonous local slope dlnF(k)/dink.

We also tried the fit (6) and found n = 2, P = 1.8, and

k&
—0.4, all slightly depending on Re. Thus the en--(2)I

ergy pileup at k —k„ in our approximate Navier-Stokes
solution seems to be even stronger than in the experi-
ment [5], as we have an additive correction term with a
larger exponent. Of course, Fl21(k/kz) does not increase
with k/k„as the correction term is strongly damped by

exp( —k/kz ) with k& much smaller as k& before. The(2)' . (2)i (2)

energy pileup can also be observed in Fig. 5, where we

replotted FI21(k/k~) with the two fits Eq. (5), where we

fixed (2 ——2/3, and Eq. (6). For k k~ the fit (6) is
slightly superior to the fit (5).

The energy pileup, according to Falkovich [15], may be
explained by the so called bottleneck phenomenon [15].
This phenomenon can be described as follows. Imag-
ine a triad Navier-Stokes interaction between the am-
plitudes u(ki), u(k2), and u(ks), ki + k2 + ks ——0,
ki ( k2 s, so that u(k2) and u(ks) are already con-
siderably damped by viscosity, in additon to the power
law decrease oc k / . So the turbulent energy transfer
downscale kiu(ki)u(k2)u(ks) would be reduced and
stationarity could not be achieved, if u(Iei) did not in-

crease, i.e., an energy pileup at kq is established. The
effect is strongest if ki is around k~, because there u(k2)
and u(ks) are already considerably damped. Of course,
there is also viscous damping around kq, which would

counteract the bottleneck effect, but for kq ( g the
damping by viscosity v is weaker than the damping by
the eddy viscosity [15].

In Ref. [16] the bottleneck phenomenon has been con-
nected with the relatively sharp crossover &om VSR
to ISR in the r-space velocity structure function D(r)
The numerical and experimental D(r) [32] with a
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monotonously decreasing local slope dlnD(r)/dlnr lead
to spectra of type (6) with a = 2.6, P = 2, very near to
our above result [16].

The same pileup as for E(2&(k) also appears in higher
order velocity moments (]ts(k)] ) with m ) 2, leading to
smaller local scaling exponents ( (k) for k near the VSR.
Possibly this effect mimics intermittency corrections to
classical scaling in experimental data or simulated data
with shorter scaling ranges which in fact would not show

up in suKciently long ISR for large enough Re. This
interpretation is also supported by the behavior of the
scale resolved intermittency exponents, g (k), see Fig. 3
above and Ref. [13].

Plogm(k/ko) is claimed to be universal. ko is a wave

number which has to be fitted to the experimental data.
In [19] ko --2k„= (6rl)

~ is found. For large Rep it
is P = 0.9/logM(Rep/75) [19]. We plot the spectra for
our three largest Re in this parametrization, see inset of
Fig. 5. As Taylor-Reynolds number we simply take +Re,
because our approximatiog, overestimates Rep, see the
discussion in Sec. II. For smaller Re the function P(Req)
behaves quite differently, so it is not reasonable to show

also the spectra for smaller Re in the plot. The quality
of the superposition of the spectra might improve if one
readjusted the &ee parameters of this description.

C. Log-similarity description of the spectra

Finally, besides the normalization of the spectra (1)
another procedure has been suggested to get a universal
description of the experimental data, namely, the log-
similarity description [19]. This claims that the loga-
rithmic spectra coincide for different Rep, when both
the abscissa and the ordinate are multiplied by some
function P(Rep), i.e., Plogm[]tt(k)~2/)u(ko)~ ] against
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