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Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in
macrodynamic equations
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We present a thermal lattice Bhatnager-Gross-Krook (BGK) model in D-dimensional space for

the numerical simulation of Quid dynamics. This model uses a higher-order velocity expansion

for Maxwellian-type equilibrium distribution. In the meantime, the lattice symmetry has been

upgraded to ensure isotropy for the sixth-rank velocity-moment tensor. These manipulations lead

to macroscopic equations without the nonlinear deviations, from which conventional thermal or

nonthermal lattice BGK models suffered. We demonstrate the improvements by conducting classical

Chapman-Enskog analysis and by the numerical calculation of the structure of the shock wave front

and the decaying rate of the kinetic energy in the shear wave Bow. Parameters in the velocity

expansion are explicitly given for example models in one, two, and three dimensions. The transport
coeRcients of the modeled one-dimensional (1D) and 2D Huids are numerically measured as well.

PACS number(s): 47.11.+j, 51.10.+y, 47.40.Hg, 47.40.Nm

I. INTRODUCTION (Navier-Stokes equation) + oc)pc)~(pu upu~) . (1)

Since the proposal of lattice gas automata (LGA) [1]
for the simulation of Huid How, much attention has been
paid to the discrete kinetic theory. The governing equa-
tion in this theory is called as the lattice Boltzmann equa-
tion (LBE). The LBE describes the dynamics of particle
motion in the LGA model under the molecular chaos ap-
proximation. Later this equation was explicitly solved in
simulation, in place of the Boolean dynamic equation of
the LGA model, and formed an alternative method [12] in
the lattice hydrodynamic field. Although being a deriva-
tion of the LGA model, the LBE method became popular
rapidly among the enthusiastic researchers because it is
noise &ee and so Hexible that most of the physics of the
real Huid could be recovered. These advantages may well
be observed from the lattice BGK model [2,3], which, by
introducing the elegant Bhatnagar-Gross-Krook (BGK)
collision operator [4] into the lattice Boltzmann equation,
was the latest development of the LBE method. Today,
main reasons that can be forwarded to persuade a Huid

dynamic expert to adopt the LBE method or the lattice
BGK model as an alternative tool for numerical simula-
tion lie in threefolds: the simplicity of the algorithm, the
ease of dealing with the complicated geometric bound-
aries, and the high level of parallelism in the implemen-
tation.

Recent topics about lattice BGK models are concerned
with the nonlinear deviations in the compressible regime
and models in which thermal effects are included.

The term in the macrodynamic equation, which causes
nonlinear deviations, was first derived for the non-
thermal lattice BGK model by gian and Orszag [5]. This
term appears to be an additional dissipative expression in
the right-hand side (rhs) of the macroscopic momentum
equation. The macrodynamics of the modeled nonther-
mal Huid is actually governed by

Here "Navier-Stokes equation" refers only to the momen-

tum equation, while p, u are the density of the modeled
Huid and the How velocity. 0. is the nonlinear response
coefficient defined as (2 —r), where r is the relaxation
time of the BGK collision operator. As the ratio of this
term to the linear viscous term in the usual Navier-Stokes
equation is proportional to the square of the Mach num-

ber, the dynamics of the modeled Huid may deviate sig-

nificantly from that of the real fluid when the flow enters
into the compressible regime.

Pioneer work on a 2D thermal lattice BGK model was

published in Ref. [6], where the hexongal lattice and the
second order velocity (of the modeled fiuid) expansion for
the equilibrium distribution were employed. The conser-
vation of mass, momentum and energy in the microworld,
and the lattice symmetry ensuring isotropy for the fourth
rank velocity (of the fiying particle)-moment tensor sug-

gest macroscopic equations which look like those of the
real Huid, except for some hidden deviation terms resem-

bling the additional one in Eq. (1).
The conventional thermal lattice BGK model is there-

fore not free &om the aforementioned nonlinear devia-

tions, because of the existence of deviation terms in the
macrodynamic equations. We find that the deviation
term in the macroscopic momentum equation for such
a model is similar to the one for the nonthermal model.
while deviation terms in the energy equation are derived

[8] to be proportional to 8 Op(peu up), 8 Bp(pu ups),
..., etc. As these expressions are composed of higher-

order terms, we infer that the higher-order velocity ex-

pansion (fourth), beyond that for the standard hydro-

dynamic phenomena, has to be considered for the equi-

librium distribution if the efI'ects of the nonlinear devi-

ations are to be eliminated. In the meantime, the lat-

tice should be symmetric enough to ensure isotropy up

to the sixth-rank velocity-moment tensor so that terms
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in the higher-order expansion of the eq&iilibri»m distri-
bution can be correctly formalized into the macroscopic
Bux tensors. This symmetry cannot be realized on lat-
tices consisting of regular polygons (such as the hexongal
lattice), as they ensure tensors to be isotropic only up to
the fourth rank. These ar~~~ents become more obvious
in Sec. IIB, where the discrete integrations of the velocity
moments for the eq»iLibri»m distribution are calculated.

A model which is able to eliminate the nonlinear devi-
ations shall be introduced below. %e present the theo-
reti.cal works concerning the microdynamics and macro-
dynamics in Sec. II. In Sec. III the transport coefficients
of some modeled fiuids will be numerically measured and
the elimination of the nonlinear deviations will be illus-
trated in one and two dimensions. Section IV gives the
concluding remarks.

II. LATTICE HYDRODYNAMICS

A. Lattice geometry and symmetry

where 6 is the Kronecker tensor and T is the higher-
order version of such a tensor which equals»~it if the
indices are identical, or zero otherwise. The ".. ." in-

side the first parenthesis of T k & &&&
represents terms(6)

pknPgSQ'
with the permutation of the mdices from a to g, and
inside the second parenthesis from P to (. The specific
values of 8&s, @„»,y„s, A~s, O„s, and O„q could be ob-
tained by calculating the products of the gauge vectors

(k~q;, +c„q;+c q~, . . . ,) and are listed in Table I for one-,
two-, and three-dimensional spaces. In case k g 1, these
values should be further multiplied by a factor k". With
careful inspection of these parameters, we may infer that
the anisotropic parts of Bux tensors of various physi-
cal quantities, namely, g & N~sg~s, P„&N&sA&s and

P s N„sO„s, would vanish simultaneously if the parti-
cle densities on the difFerent sublattices (N~s = P,. N~s;)
were properly tuned.

B. Lattice BGK equation and equilibrium
distribution

As in the previous models [3,7], the lattice we employed
is composed of several sublattices in D dimensions. The
coordinate of base vectors of these sublattices may be
represented by k(kl, . . . , +1,0, . . . , 0) and its permuta-
tions. The number of nonzero components is denoted as
p, which also stands for the moduli of unit base vectors,
and k is a multiplier for these moduli. Hence, the vector
of lattice link, which would be taken as the velocity vector
of particle may be denoted as c„k;, and its modulus may
be defined as c s = k~y. Here pk gives the index of sub-
lattice and i counts &om the 1st to the bpth vectors lying
on each node of the pk sublattice. The nth rank velocity-
moment tensor, defined as T„& &

——P,. czar; x xc s;g,
(n)

is crucial to the hydrodynamic derivation [1]. The odd
rank tensors vanish naturally by the definition itself and
in this model the second, fourth, and sixth rank tensors
are required to be isotropic. It can be shown that, in D-
dimensional space, these even rank tensors are generally
written as

+„s p
—~rs6 p

(2)

T s p s QpkTapps
(4)

+V pk(6ap678 + 6ap6pl5 + 6as6p7) 0

T sap s(( = ApsTappst, '( + Ops(6apTpbt, '( + ' ' ')(6)

+ex»(6 p+ a spy+
''')(4)

Here the collision of particles is replaced by a relaxation
process through which the particle distribution is relaxed
to its equilibrium value over a time period ~. In order
to reproduce the Navier-Stokes Quid, the equilibrium dis-
tribution should be Maxwellian and depends only on the
local conserved density of mass, momentum, and energy,
which are defined by the following formulas,

&=).&~s'
pki

(4)

P+a =

pe =

NpkiCpki
pki

12).N~s'(vs*. —u ) .
pki

Here e is the density of thermal energy determined by

The lattice BGK equation describes the dynamics of
the particles, namely, the propagation and the collision
occurring on the discrete spatial lattice, at discrete time
steps and with discrete velocity sets. Taking the par-
ticle distribution on each lattice link as 1V„s;(x,t), this
equation appears to be

Nps; (z + c„s;,t + 1) —N~s; (z, t) = (Nps; ——N—p~'s, ) .
7

TABLE I. Numerical values of symmetric parameters appearing in the velocity-moment tensor
for the basic sublattices in one, two, and three dimensions.

Dimensions
1D

2D

3D

811 ——2

821 ——4

811 ——2

821 ——8
831 ——8

Symmetric parameters
'+11 —

3 A 11—2

2 '+11 0 A11
y21 = 4 A21

2 +11 —0 ~11
4 '+21 —4 A21

—16 y31 ——8 A31

=2
= —16
—2
= —52
= 128

O11 ——0

O11 ——0
O21 ——0

O11 ——0
O21 ——4
O31 ———16

011 =—
011 ——0
021 =—4

3

E

011 ——0
021 ——8
031 ——0
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Parameters of the expansion depend only on the local p
and e and could be written in this form,

2
l

Xpk = P .&pk« .
1=0

(6)

X„k may represent any of Apk, M„k, . . . , Spk. Hence
xpk~'s are to be written as apk~, mpk~, . . . , etc. The spe-
cific values of these parameters can be determined by con-
sidering definitions for the densities of mass, momentum
and thermal energy as well as lattice symmetric require-
ments for the higher-rank isotropy, and by matching the
form of macroscopic equations with those of the real fluid.
The specification of a lattice BGK model reduces to the
specification of a set of parameters in the low speed ex-
pansion [like Eq. (5)] for the equilibrium distribution. We
summarize the constraints to the parameters that would
lead to the Navier-Stokes equations in Table II. Using
these constraints and the expressions given in Eq. (2),
the velocity moments of different orders for the equilib-
rium particle distribution are calculated in D dimensions
as follows, ) ~[eQj

pki

(7a)

the flight speed of particles. When the macroscopic flow
speed is very much smaller than this speed, the local equi-
librium distribution could be expanded, around the uni-
form equilibrium, into the Chapman-Enskog form with
consideration for parity invariance of the regular lattices,

[eqj 2N„„, =ApL, + MpL, (cpL,; u ) + G„L,u

2 2+~,L(cpL, u ) + Q, L, (c,L„u )u

+HpL, (epL,; u ) + R„L,(cpL„ u ) u3 2 2

+S„gu + O(u ).

).~~pki cpki cpk'pcpki&
pki

2= pu upu~+ —pe(u bp~+upb «+u~b p), (7d)D

( q) ~ 4(D+ 2)
Npki cpki c„kicpk;p —— pe b p

pki

(7e)

2 2 2(D+ 4)+—peu b p+
xpeu up + pu u up.2

It is easily found that Eqs. (7a) and (7b) verify the def-
initions of the mass and momentum densities. Equation
(7c) not only gives the Galilean invariant form of the mo-
mentum flux tensor on the Euler order but also verifies
the definition of the density of thermal energy as well. It
will be shown in Sec. IIC that Equations (7d) and (7e)
give rise to isotropic expressions for viscous dissipation
and heat conduction in the macroscopic equations. Note
that these results would be identical with those stated in
Ref. [9], if they were reduced to the 3D case.

C. Macroscopic equations

The continuous macroscopic conservation relations of
the lattice BGK model can be derived by using the multi-
scale technique [1,7]. First, the discrete lattice BGK
equation [Eq. (3)] is Taylor-expanded, to the second or-
der, into the continuous space and time form in the long
wavelength and the low &equency limits. Next, the scal-
ing of time and space, and the perturbation of particle
distribution are written as follows:

wr [~ql
xVpki cpkia = ~a )

pki

(~
p i
[@qj 2

N k. cpki~cpkip = —peb~p + pushup,
pki

(7b)

(7c)

Ot M 6Ot1+& Ot2y On + CO~&

Npki ——N ki+ ~N ki.(0~ (1)

Here ~ is a small quantity proportional to the Knudsen
number. When these expressions are substituted into the
expanded lattice BGK equation, terms on the first and
second order of ~ shall be picked up so that two con-
tinuous kinetic equations can be obtained. Macroscopic

TABLE II. Constraints to the parameters of the expanded X['k,. Blanks mean no constraints.
Yo, . . . , Y3 are not constraints. They are used to calculate other parameters. For example, when

gpko is known, Yo can be decided and used to calculate gpko, and so on.

L,
bPXPkL

p pg pkL

pk &pkl

L, LPPk&PkL

L,
~P/e&PkL

L, +Pk&PkL

L, ePk&PLeL

+pko

1
0

0 0
0

D
0
0

Yo

0 0
0

0 0

Apk Mpk J„k
+pk1 +pk2 mpko mpk1 )pko )pkl

0 0

Gpk
gpko gpk1

~Y

D D
0D

2
0 0
0

HpA: Qpk
hpko qpkO

Rpk
~pko

0
1

2(D+4)

—3DY2 Y3

0 0
1
2

~pko
~Y

D
0
0

1
2(D+2)
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Btl g N gicpkincpici + Bp g zV gicpkincpgicpkip
pJci pki

(10)

4(D+ 2)
pe8 e

2 2
+ pe (Bp—u~ + 8~up) — B~u~b~—p &p .

D D

These expressions are used to derive the correct consti-
tutive relations, namely, the viscous stress and the heat
Bux, from the second order kinetic equation. Further-
more, the cancellation of terms on the second, the third,
and the fourth order of u, terms which are related to the
nonlinear deviations, is also realized. Terms for viscous
works can be exactly generated. Note that the correct
form of the viscous work would be ensured only for the
models that employ the single time relaxation approxi-
mation, namely for the BGK models [13]. Finally, equa-
tions of two di8'erent orders are recombined, which gives
rise to the following set of equations:

Bip+8 (pu ) = 0,

Bi(p -) +Bp(p up)

= —8 p+ Bp [Il(8 up + Bpu )] + 8 (AB~u~), (12)

Bi(pe) +8 (peu ) = pBpup+8 (r'—B~e)

+p(8~1cp + Bpu~)8~up

+A(Bpup) ' . (13)

Here p is the thermodynamic pressure and is identified
as this,

2p= pe-
D (14)

p and A are the shear and the second viscosities, which
are defined as in the following expressions:

equations describing the conservation of mass, momen-
tum and energy will emerge, if the velocity moments of
diferent orders are taken and discrete integrations are
carried out on these kinetic equations. Note that Eqs.
(7a), (7b), and (7c) will ensure the macroscopic terms
obtained from the first order equation to be physically
correct. From Eqs. (7d) and (7e), we may have two more
relations as follows:

(o) (o)Bil ) N l, cpl,~z~cplip + 8~ ) N lcpp ~icp& picp i~i(9)
plei pki

2 2
pe (Bpua + Ba'up) Bpuy~ap

&A) vanishes in the two-dimensional space so that the
Navier-Stokes equations can be obtained if the shear vis-
cosity is considered to be constant [10]. Heat conduc-
tivity may be identified provided that the temperature
is properly defined. If the Boltzmann constant is set to
have unit value, the temperature may be defined as De,
and this gives the heat conductivity as

D ~ D+2r = K—= pe(r —2).
2 D (16)

The ratio of specific heats and the sound speed may be
easily obtained as follows:

D+2
D
2(D+ 2)a, = e.

(17)

Although Eqs. (11), (12), and (13) have the same form as
those published in Ref. [6], we emphasize that there are
no hidden deviation terms in the r.h.s. any more. This
shall be further demonstrated by the numerical calcula-
tions in the next section.

III. NUMERICAL RESULTS

We carried out all numerical calculations using the
least one- and two-dimensional models. These models are
denoted in the following sections as 1DGV and 2D16V,
see the Appendix. To show the improvement achieved by
the model, we also coded a 2D 13-velocity conventional
lattice BGK model, in which the equilibrium distribution
is expanded to the second order of u and the isotropy
is kept only for the fourth-rank velocity-moment tensor.
The numerical results are compared with each other in
two cases.

We have to explain, before the results are shown, the
unit system for these lattice gas models. As each parti-
cle, with a unit velocity vector, is propagated &om one
node to one of its nearest neighbors during one time step,
we may define the metric unit as the distance between
nodes, the spatial lattice spacing 8, and the temporal
unit as the time interval for particle to By from one node
to another, the temporal lattice spacing Lt. The units of
other thermodynamic variables and transport coeKcients
can be decided once the unit mass m for each particle is
introduced. In the following presentation, all the units
for various physical quantities will be omitted, while it
is understood that they can be completely determined
by using the aforementioned unit system based on the
discrete spatial and temporal lattices.

V = DPe(& —2)
2 1

4
A = — pe(~ —1) .D2 2

Note that in the one-dimensional space, these viscous
terms cancel each other and what we shall obtain is the
Euler equation. On the other hand, bulk viscosity(y, +

A. Transport coefficients

We numerically measured sound speed, kinematic vis-
cosity, and heat conductivity. The measured results are
compared with the theoretical predictions made in Sec.
IIC. Figure 1 shows the results of sound speed, mea-
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FIG. 1. Results of the numerical measure-
ment of sound speed. Squares are the results
of the 2D16V model, triangles are those of
1D5V, and solid lines are the results obtained
from Eq. (18).
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FIG. 2. Results of the numerical measure-
ment of kinematic viscosity v = ~. The

Po
measurement is carried out by simulating the
relaxation of perturbations in the velocity
field, under the condition pp = 8.0, ep = 0.4,
and ep ——0.8. Solid lines are computed from

Eq. (15) and squares are the measured re-

sults.
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FIG. 3. Results of the numerical measure-
I

ment of heat conductivity —". Again trian-
po

gles are for the 1D model and squares are
for the 2D model, while solid lines are com-

puted by using Eq. (16). The measurement
is carried out under the conditions pp

——2.0.
ep ——0.3 for 1DSV and pp

——8.0, ep ——0.5 for
2D16V.
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FIG. 4. Comparison of the structures of
the shock wave &onts. Squares and trian-
gles are the results of the 2D16V model, line
points composed of dashed line and crosses
or stars are results of the 2D13V model, and
solid lines are the analytical solutions. The
left-right step curve represents the sharp in-
crease of temperature, while the right-left
step curve stands for the increase of velocity.
The upper half of the graph is for Ma=1.14
while the lower half is for Ma=1.02.

-20 -15 -10 -5 0 5
Normalized position

10 15

sured by employing the linear perturbation theory. The
results of the 1DGV and 2D16V models agree well with
the theoretical values. The measurement of the kinematic
viscosity was only done for the 2D model and the results
are shown in Fig. 2. We observed deviation &om the the-
oretical value when ~ got too large. This is due to the
increment of the Knudsen number which may break the
hydrodynamic mode. Heat conductivity was also mea-
sured for the 1D and 2D models. This was done by cal-
culating the heat Bux when the temperature gradient was
kept constant. Both the models give satisfactory results,
see Fig. 3.

B. Elimination of nonlinear deviations

The next two simulations are used to illustrate the ef-
fectiveness of the suggested model. Therefore, the results
are compared with those obtained by using the conven-
tional thermal lattice BGK model.

The 6rst problem is the computation of the structure
of the shock wave &ont. We simulated this 1D Bow, how-
ever, by employing the 2D model on the 1000 x 1 lattices.
In this case, the stagnation enthalpy h+ 2u is constant
[check Eqs. (13), (15), and (16)] throughout the wave,
which should greatly simplify the procedure for the ana-
lytical solution [11]. Two runs of code were carried out
under the conditions Ma=1.02 and 1.14, respectively. As
shown in Fig. 4, the results of different models agree well
with the analytical solution only when the Mach number
is small enough. For the higher Mach number, the error
of the conventional model is obviously larger.

We further illustrate the elimination of nonlinear de-
viations by simulating the shear wave Bow

i(mt+km)z 0) y — 0

on a 64x64 lattice 6eld. Here ~ and k are the angular
frequency and the wave number, respectively. The Bow

Dl
tD

ED

tD
C:

N
6$
E
O

0.1

FIG. 5. Comparison of the Mach number
effects on the decaying rate of the total ki-
netic energy in the shear wave Sow. Different
types of symbols are for the suggested model,
while different types of lines are for the con-
ventional model. The Mach numbers are set
to be 0.011, 0.45, and 0.67 in three cases.

0.01
50 100 150

Time
200 250 300
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TABLE III. Parameters in the expanded equilibrium distribution function N &,.
I for the example one-, two-, and

three-dimensional models. The first column gives the dimensions and the number of velocities in terms of "nDmV. " The
second column gives the indices of the sublattices and the numbers in the parentheses are the numbers of links on every node

of those sublattices.

ApA, Qpa Hp~ &pl

Model Sublat tice +pleo m pro gpI. O gpI 1 gpI 0 qpA:0 ~pro rpgo

1D5V

1D5V

1D5V

2D16V

2D16V

2D16V

2D16V

3D40V

3D40V

3D40V

3D40V

3D40V

00(1)

ii(2)

12(2)

11(4)

12(4)

21(4)

22(4)

11(6)

12(6)

21(i2)

31(8)

32(8)

8
15

—4
15
1

60

4
15
—1
60

—1
15
1

240

—5
2

—1
12

24

—1
24

—29
36
—1
36

—5
16

1
24
—5
12

1
24

8
135
13

540

—19
270

17
2160

—1
24

—1
24

—1
24

l
12

2

1
24

1
48

:1
12

—1
24

53
192
—23
128

—1
384

—1
96

1
12

:1
768

5
32

1
16
—1
8

1
128

1
96
1

24
—1
32

1
1536

—17
12

:3
64

1
96

1
384

1
48

1
192

—1
48

l
768

.:3
56
3

448

1

112
—3
448

1
7168

—1

48

—177
2240
—1
80

401
4480
—513
8960

velocity uo can be changed to adjust the Mach number.
The Mach number eÃects on the decaying rate of the total
kinetic energy are investigated and shown in Fig. 5. We
observed that the model behaved extremely well even if
the Mach number reached 0.67. The decaying rates con-
sistently stick to the value of 2vk . For the conventional
model, the deviation is intolerable even if the Mach num-

ber increases to the medium value of 0.45. However, this
deviation agrees with the theoretically predicted nonlin-
ear term [Eq. (1)] as well, for that the total kinetic energy

2 2
decays as g

IV. CONCLUSION

We developed a thermal lattice BGK model which ef-

fectively eliminates the reported nonlinear deviations in

the macrodynamic equations of the conventional models.
This was demonstrated by both analytical derivation and
numerical calculations. A detailed comparison between
the results of the lattice BGK simulation of complicated
Rows and solutions of the Navier-Stokes equations ob-
tained by those well-established numerical methods is

very much expected and is under current research work.

APPENDIX: EXAMPLE MODELS

The specific forms of the expanded equilibrium distri-

bution function NI&,. are given in this appendix for one-,
two-, and three-dimensional models. The parameters in
the low speed expansion of the Maxwellian distribution
[Eq. (5)] are obtained by solving the constraints listed
in Table II. As some of these constraints are undercon-
ditioned, the solutions are somewhat arbitrary. All the
example models are least ones, that is, the particle veloc-

ity sets are the smallest ones which could be employed to
satisfy those constraints. In the one-dimensional space,
four kinds of particles with diferent velocities and an
additional rest particle are selected. The indices of the
sublattices are 00 (for the stationary one), ll and 12.
In the two-dimensional space, sixteen types of particles
Hying on 11, 12, 21, and 22 sublattices are needed. In
the three-dimensional space, however, forty types of par-
ticles, whose velocity vectors are identical with the link
vectors of 11, 12, 21, 31, and 32 sublattices, have to be
considered. One of the possible sets of parameters for the
equilibrium distribution, for particles on different sublat-
tices employed in different dimensional models, is listed
in Table III.
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