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The complex cascade model by Gloaguen et al. [Physica D 17, 154 (1985)] for magnetohydrodynamic
turbulence is studied. In the first part the Alfven effect is neglected. Stationary solutions are discussed.
For purely kinetic turbulence a phenomenon, coherent structures in k spaces, is observed. For general
magnetohydrodynamic turbulence, energy spectra are, in general, close to k ' ', and inertial-range
statistics, in particular structure functions, are similar to those observed in hydrodynamic (fluid) tur-
bulence. In the second part the Alfven eSect is included. For the simplest case of a constant large-scale
6eld 80, energy spectra are k '2', flatter than the expected Iroshnikov-Kraichnan law k ', and the
inertial-range statistics are exactly Gaussian. Hence, the model has to be refined. Assuming 80 to be the
actual fluctuating Seld, intermittency is reintroduced, and the spectrum is close to k ', though it tends
to become flatter for high k, such that a uniformly valid inertial-range power-law spectrum may not ex-
ist.

PACS number(s): 47.27.Gs, 05.45.+b, 47.65.+a

I. INTRODUCTION

Turbulence in magnetized electrically conducting fluids
occurs under rather general conditions in astrophysical as
well as laboratory systems. Though the basic nonlineari-
ties of the magnetohydrodynamic (MHD) equations are
similar to those in Navier-Stokes theory, MHD tur-
bulence exhibits a considerably richer and more complex
behavior [1], which is primarily due to the presence of
two solenoidal dynamical quantities, the velocity v and
the magnetic field B, following the equations

t),v+v Vv —B VB= —Vp, +vV v,
t),B+v VB—B Vv=riV B,
V v=V B=O (3)

B,P+Q VP= —Vp, +v V P+v V Q, (4)

t),Q+P.VQ= —Vp, + V'Q+ V'P,

v~=(v+g)/2 .

(5)

Here we have used the conventional normalizations:
x~x/L, t~tuz/L, U +U/U„—, p~l, where
U g

=Bp /&4mp is the Alfven speed corresponding to a
typical magnetic intensity 80 and L, is a characteristic
global scale length.

The total pressure p, =p+B /2 is a functional of v
and B owing to the incompressibility condition (3). The
MHD equations can be written in a nore symmetric
form by introducing the Elsasser variables P=v+8,
Q=v —B:

H= —,
' J A.Bdr, VX A=B,

or in two dimensions (2D)

H= ,' J Pdr, —

the total energy E, the cross-helicity K, and the magnetic
helicity H, or in 2D the mean square magnetic potential
H . The corresponding spectral quantities EI„ECI„HI„
or H&" follow detailed balance relations, which imply that
once injected in some region of k space around some
wave number ko these quantities propagate either to
higher k corresponding to a direct spectral cascade or to
lower k corresponding to an inverse cascade. While the
mixed kinetic-magnetic quantities EI, and It.& exhibit
direct cascades, the pure magnetic ones, H&" or H&~, have
inverse cascades. The presence of an inverse cascade pro-
cess in conjunction with difl'erent dissipation rates (called
selective decay) leads to self-organization, i.e., formation
of large-scale coherent structures which are absent in
Navier-Stokes turbulence. It is also noteworthy that in
contrast to Navier-Stokes turbulence 2D and 3D MHD
turbulence are rather closely related. The concept of
spectral cascades implies that mode interactions are rath-
er localized in k, i.e., modes with strongly difFerent wave
numbers interact only weakly. Though this appears to be
true Navier-Stokes turbulence, there is a strong nonloca1
process in MHD turbulence. %'hile a large-scale velocity
Uo has no influence on the small-scale dynamics (it can be
eliminated by a Galilean transformation) a large-scale
magnetic field 80 leads to strong coupling of sinall-scale
velocity and magnetic field fluctuations. The efFect can
easily be demonstrated from Eqs. (4) and (5). Extracting
Bo from P and Q we have

There are three quadratic ideal invariants

z =E'+E~= ,' f (U'+B')d~, - (6)
t), P —Bo.VP+Q. VP= —Vp, +v+V P+v V' Q,

B,Q+Bo VQ+P VQ= —Vp, +v+V Q+v V' P,

(9)
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E =C .~'"k-'",
k Ko (12)

where C~, and C,i: are (probably not universal) con-
stants. Experiments and numerical simulations give

Ci.,—1.4-2.2, while C,x —1.8-2.2 [4]. Since laborato-
ry experiments of MHD turbulence are difficult to per-
form, numerical modeling plays a particularly important
role. To date direct numerica1 simulations for moderate-
ly high Reynolds numbers (R i a few hundred) have been
limited to 2D systems, while 3D MHD turbulence simu-
lations are sti11 restricted to rather low Reynolds num-
bers. Because of the difFiculties of solving the full fluid
equations, simpli5ed model systems, so-called shell or
cascade models, hsve attracted considerable interest, pri-
marily for Navier-Stokes turbulence [5-12] and thermal
convection [13,14]. Cascade models involve three dis-
tinct approxiination steps: (a} Integration over modes in
shells hk„around wave numbers k„ thus averaging over
the interactions between modes located in the same shell;
(b) logarithmic spacing of k„,k„=kpq", n=1, . . . , N,
corresponding to I.n increasing sparseness of the effective
Fourier representation at larger k„; usually q=2 is
chosen; (c) local inode interactions in k„space (not in k
space, since hk„ is finite), which corresponds to the pic-
ture of a cascade process in small steps. Though the vec-
tor character of the original quantities v, B could be in-
corporated in an approximate way, it is ignored for sim-
plicity in most shell model studies which assume v„,B„ to
be (complex} scalars, hence the term scalar model also
used in the literature. Shell models constitute an inter-
mediate step between low-order approximations such as
the Lorenz model and the full Quid equations, allowing

such that for Bp »P, Q the small-scale quantities P and

Q behave as Alfven waves, propagating oppositely to and
in the direction of 80, respectively. This is called the
Alfven effect in MHD turbulence [2,3]. Since only oppo-
sitely propagating modes interact with the interaction
time of two wave packets of scale l, ~„=l/v„, U„=80 in
our units, the spectral energy transfer rate e is reduced
compared with the hydrodynamic case, which leads to
the Iroshnikov-Kraichnan [2,3] inertial-range energy
spectrum

—C (ev ) lk —l2 Ev EM

instead of the Kolmogorov spectrum

statistical scaling properties but ignoring spatial coher-
ence effects. Since such models only satisfy certain global
conservation properties they exhibit substantial arbitrari-
ness concerning both the structure of the nonlinear terms
and the values of the coupling parameters. Hence the
main interest in studies of such models is to reproduce
qualitatively the main scaling properties known or ex-
pected for the fluid system and to investigate their depen-
dence on the particular model chosen. Shell mode1 com-
putations for MHD turbulence have previously been per-
formed by Gloaguen et al. [15]. Grappin, Leorat, and
Pouquet [16), and Geertsema and Achterberg [17], and
Brandenburg [14], all using essentially the model intro-
duced in Ref. [15) with real functions v„,B„and ignoring
the Alfven effect. For the main part of this paper we use
the same basic model, but generalized to complex vari-
ables which allow us to include the Alfven effect in a sim-

ple way. Instead of v„,8„we use the Elsasser variables
P„=v„+B„,Q„=v„B„—, following the equations

P„=ik„BpP„+a (k„P„',Q„', —k„~,P„'+,Q„' )

+b(k„P„'—ig —k„+iP„'+iQ„'+i) k„ vnP—„+f„,
(13)

Q„= ik„B Q„—+a(k„Q„' iP„' i
—k„+ig„',P„*)

+b(knQ.*-iP: kn+—ign+iPn+i) kn vugn+gn

Here a, b are arbitrary complex coupling constants.
Since, however, a common factor can be pulled into the
time normalization, only the ratio b/a is relevant. The
first term on the right-hand side of Eqs. (13) represents
the Alfven effect and the dissipation terms are written for
general order a of the dissipation operators (a= 1 corre-
sponding to ordinary diffusion}, but with the restriction
to v =0, i.e., unit magnetic Prandtl number v/qi=l.
f„,g„are suitably chosen external forces applied in a cer-
tain n range to sustain a stationary state against dissipa-
tive decay. In the inviscid limit v =0 and with boundary
conditions Pp

=Qp =PN =Q~ =0 these equations con-
serve the global quantities E+=

—,'g„~P„~,
E =—'g„~g„~, and hence the total energy
E=E++E and the crosscorrelation K =

—,'(E+ E}. —
No further quadratic invariant exists. To account also
for the invariance of H or H~ a different model is con-
structed using second-order neighbor couplings intro-
duced by Gledzer [7],

P =ik BPP +a[k iP iQ 2 k iaqP* 2Q i k P +iQ i k PqP iQ*+i

+k„+,PqP„'+, Q„'+~+k„+,aqP„'+zg„'+, ] k„v P„+f„, — (14)

Q„= ik„BpQ„+a—[k„,Q„',P„' 2
—k„,aqQ„' 2P„', —k„g„'+,P„',—k„Pqg„*, „'+,

+ n+1PqQn+i n+2+ n+iaqQn+2 n+i ] n agn gn (15)

q
—1+q q

—1 —q™
m+1 —m ' q m+1 —m

q
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where m = 1 leads to the (inviscid} conservation of
H=g„~B„~ /k„, corresponding to the 3D case, while
m =2 leads to conservation of H~=+„~B„~ /k„, the
quantity conserved in 2D. In addition both E+ and E
i.e., E and E, are conserved. Hence the conservation
laws uniquely determine the nonlinear terms, since the
coupling constant a can again be incorporated in the nor-
malization.

Neglecting the Alfven effect and restricting to real
P„,Q„Eqs. (13) have previously been investigated for rel-
atively low orders, N ~ 3 in Ref. [15] and N & 10 in Refs.
[16,17], with the emphasis on aspects of chaos theory
such as attractor dimensions and Lyapunov exponents.
While these concepts are very useful to describe the prop-
erties of low-order systems, they seem to be less relevant
for N »1, where the systems studied thus far (see, e.g.,
Ref. [10]) show attractor dimensions of the order of the
number of degrees of freedom up to the dissipative scales
and most of the Lyapunov exponents are very close to
zero. Instead the tools of statistical turbulence theory are
more appropriate, in particular probability density func-
tions (PDF) and their moments, the structure functions.

Equations (13) and (14) are solved numerically using a
modified Runge-Kutta IV scheme and N =20—23 modes.
Combined with a higher-order dissipation operator a=2
this gives an inertial range of 3-4 decades, which we find
to be sulcient to determine the important scaling prop-
erties. Though the numerical advantage of cascade mod-
els compared with the full (i.e., nonsparse at high k ) fluid
equations is enormous, there is also a moderate price to
be paid. While in a solution of the Auid equations spatial
averages do not Quctuate strongly in time such that only
relatively short time periods ( —10 eddy turnover times)
are required to obtain accurate statistical results, the
"modes" in a cascade model fluctuate strongly (by several
orders of magnitude), hence do not really behave as shell
averages in spite of their formal construction, such that
long periods (10 —10 "eddy turnover times") are re-
quired. We choose the driving forces f„,g„such as to
sustain the energies of the n =np mode, typically np=3,
usually with )P„~ = )Q„( . Constant forces f„,g„, which
were used in the previous cascade model studies, are
found to lead to dynamical alignment with E+ )&E or
E+ »E even for f„=q„. Since in such states the dy-
namics is strongly reduced and scaling properties are less
transparent, attention is focused in this paper on tur-
bulence with E+ =E

The organization of the paper is as follows. In See. II
we discuss the stationary solutions and their stability.
Sections III and IV are restricted to the case Bp =0. Sec-
tion III deals with the special case P„=Q„, i.e., purely
kinetic turbulence, while Sec. IV presents the general
case, where P„and Q„are independent variables. In Sec.
V the Alfven eS'ect Bo&0 is included and several models
are discussed. Section VI deals with the properties of in-
verse cascades. In most of the paper consideration is
restrictive to the Gloaguen model, Eqs. (13), the alterna-
tive model, Eqs. (14), is only briefly discussed in Sec. VI.

II. STATIONARY SGI.UTIGNS
We are primarily interested in similarity or scaling

solutions

P„-k„', Q„-k„, (16)

or

( 1
1+x+2K

) 1+ r —(}
b

a

(1 q
1+2@+i) 1+ l, (}

a

(17}

Kolmogorov-type solutions

exist for any value of b/a. Further simple scaling solu-
tions of (17) require real b/a (0, either

b~=A, = —log
a

or

b
a = —log —,A, = —(1+2m),

a
(20)

or vice versa. For b /a & 0 there are somewhat more gen-
eral scaling solutions, alternating in phase between suc-
cessive values of n,

P„-Q„-k"cosnm,

bK= log ~a '

(21)

while no solution with aAA, analogous to Eq. (20) exists
for b/a &0. For special values of a and b we can also
give nonscaling stationary solutions, in particular for
b=0,

P„-Q„-k„' exp [ C( —2)"], (22)

i.e., with increasing n the amplitude diverges exponential-
ly from the k„' behavior, or for a =0

P„-Q„-k„' exp I C( —2)

i.e., exponential convergence to the k„' behavior. In
the expressions (22), (23} C is an arbitrary complex num-
ber. In the special case C=i, the amplitudes follow the
Kolmogorov law, but the phases in Eq. (22) become
effectively random for large n.

For the stationary solutions to be physically relevant
(in the inertial range) one has to investigate their stabili-
ty. Desnyanski and Novikov [6] study the stationary de-
viations g„ from the Kolmogorov solution by introduc-
ing dissipation localized at n N, writing

(24)

which can be strictly valid only in the limit v ~0. Inser-
tion into Eqs. (13}gives

1+A.+ (
—k ]+~+X)—(}

b

a

—K—
A, 1+K+ (q

—K
q

1+K+II) 0
b

a
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Linearization of Eqs. (13}with respect to the stationary
perturbation q „gives

and concentrating dissipation in the last shell such that
u„=uok„' for n (W and uN =0, we obtain

b
2q. i+q. (q—.+i+q. )+ „,(q. -i —2q. +i}=o

gq 1 /3
E=2uo(2 a+2' b) .

From the energy spectrum

(28)

fiq„,=( —A)'Sq„,
(25) we find

which yields the recursion relation for 5y„=y„+,—y„:
2k —5/3 C 2/3k —5/3"On & n

A 2 1/3 + 1
b

Qq
1/3 +2

aq
C=(2 a+2b)

For
~
A

~
&1 the perturbation is exponentially growing

from its origin in the dissipation region into the inertial
region while for

~
A

~
& 1, the Kolmogorov solution

remains effectively unaffected by the presence of the dissi-
pation. This behavior for large and small ~b/a ~

is remin-
iscent of the solutions (22} and (23) for a =0 and b =0, re-
spectively.

Let us briefly consider the solution in the dissipation
region in more detail. Writing P„=k„' p„,
Q„=k„'~3q„, following the analysis by Bell and Nelkin

[8] we find to lowest order

aq p„1q„1—vk„q„=0,4/3

which gives

2p„=q„~ kn exp —Ck„

'n

(26)

Hence only for q =2 the exponential behavior in the dis-
sipation observed in all fluid turbulence systems is
recovered in the cascade model, which indicates a special
significance of this value. For this reason and following
convention we henceforth restrict consideration to q =2.
Numerical solution of the time dependent equations (13)
for real values a, b and real initial conditions P„=Q„
(kinetic case B„=O) shows that the system is always at-
tracted to a stationary state, the Kolmogorov solution
(18) in the stable range ~b/a

~
& 2'~, the "unstable" Kol-

mogorov solution similar to Eq. (22) for b/a &2', and
the non-Kolmogorov solution (19) for b/a & —2'~. A
somewhat different situation arises for real initial values
P„=—Q„(magnetic case v„=O). Here we find "aligned"
structures [P„[»~Q„~ or vice versa for [b/a[ &2'~,
somewhat reminiscent of the stationary solution (20),
while solution (19) is valid for b/a & —2'~ and solution
(21) for b/a & 2'~ .

In the case of the stationary Kolmogorov solution the
energy dissipation rate e is independent of the dissipation
coefBcients. We can easily calculate e and the Kolmo-
gorov constant C in this case. Writing P„=Q„=u„,us-

ing the definition of the energy transfer rate
+6

=2 g u„[a(k„u„',—k„,u„u„+,}
n=1

+b(k„u„u„, k„+,u„+, ) vk„u„—], —

(27)

These analytical results agree with the numerically ob-
tained solution. Note that both e and C depend on the
magnitude of the coupling constants. Since there is no
preferred normalization, such as a =1 or b =1, the cas-
cade model does not predict a definite value of C. The
stability limit b/a=2'~ can be associated with the
behavior of the space volume d~= 11~:,'du„,

N —I Qu
d~= g d~

n=i ~un

N —1= —g (ak„+,u„+, bk„u„—, )d T,
n=1

(29)

(30)

hence di&0 for b/a &&2' ~ assuming u„=k„'~ . Note
that in the case of real P„=Q„Liouville's theorem d ~=0
is not valid. It is, however, valid for complex P„,Q„even
for P„=Q„,since ReP„and ImP„are independent vari-
ables. Allowing general complex initial conditions results
in fully turbulent states with spectra close to the Kolmo-
gorov one. Only in a certain range around the stability
points ~b/a

~

=2'~ is the system attracted to periodic or
weakly turbulent states resembling the stationary solution
(19) {forb/a & —2'~ ) and (21) (for b/a &2'~ ).

III. TURBULENT KINETIC STATES

Before treating the general turbulent case (Secs. IV and
V) we discuss the purely kinetic (complex) case P„=Q„.
For identical forces f„=g„ the symmetry of the equa-
tions guarantees that P„=Q„ for all times if so initially.
Let us first consider the case of about equal coupling con-
stants a-b Though .for P„=Q„Eqs. (13) become a
shell model approximation of the Navier-Stokes equation,
the statistical properties are quite different from those ob-
served in Navier-Stokes turbulence. While the time
traces of RePn and ImPn exhibit a strongly turbulent
behavior with zero mean value, PDF's reveal that the sys-
tem also contains a laminar contribution. Figure 1 givesf(ImP„) for n =8, 14, both in the inertial range, of a case
with a =b =i. This 5-function-like laminar contribution
at Pn =P„' shows a Kolmogorov scaling law P„'-k„'
The total energy spectrum, however, is steeper,
E„-kn, a=1.74+0.01, as shown in Fig. 2. Hence
with increasing n the laminar contribution moves further
out into the wings of the PDF, as seen in Fig. 1. We thus
find that the system though fully turbulent still
remembers the corresponding stationary solution (18). In
contrast to fluid turbulence, where coherent structures
are observed in space, the P„' states which occur in this
shell model approximation can be considered as coherent
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(a) (b)
teractions are smaller than those of b-type interactions.
Calculation of these volumes, which depend on the spa-
tial dimension, would give an estimate of b /a representa-
tive of Quid turbulence.

IV. FULLY DEVELOPED MHD TURBULKNCK
NKGLKC:1 ING THE ALFVKN Kl FKCT

I

ID
)mp, 4

FIG. 1. PDF of IIP„ for a =b =i plotted on a linear scale.
(a) n =8, (b) n = 14.

structures in k space. %hile for imaginary coupling
coefficients the coherent contribution is essentially imagi-
nary [ ImP„'

( » ) ReP„' ~, it is essentially real
(ReP„'[»[ImP„'( for almost real a, b (In. the case of
strictly real a, b the solution relaxes to a stationary state. )

Coherent turbulent states are restricted to the coupling
range u-b, whereas for (b( »(a) the coherent com-
ponenonent vanishes and the turbulence spectrum is close to
K lmogorov. This conffrms the argument by Gloaguenom

~ fet al. [15] that the case a «b is more representative o
incompressible turbulence, since the a term refers to
wave number triads corresponding to Sat triangles which
have negligible weight in the nonlinear interactions. The
triangle condition of interacting wave number triads is,
however, less stringent than suggested by the discussion
in Ref. [15], since shell modes P represent all physical
modes located in the shell 2"/+2&k &2"&~2. [When
applying the strict argument of Ref. [15] all interactions
in Gledzer-type models such as Eqs. (14) would be forbid-
den. ] But the available k-space volumes of a-type in-

We now consider the general case of complex P„,Q„
with P„(t)AQ„(t ), which for most values bja of the cou-
pling constants leads to fully developed MHD tur-
bulence. Turbulent states with a Kolmogorov spectrumE„-k„,a=1.66+0.02 are found for bla & 1, with the
exception of a small region around b ja = —2' . In the1/3

range 1 ~b/a &2'/ one Snds turbulent states with a
1/3somewhat steeper spectrum a=1.75. For b/a=2

there is transition to the stationary solution (21), which is
stable in the range 2'~ =b ja =3, while for b/a & 3 we
find again turbulent states with a Kolmogorov spectrum.
Hence the stationary solutions (19) and (20) are complete-
ly wiped out, while only the stationary solution (21) is
stable with respect to general complex perturbations in
the range indicated. The boundaries between the
diferent types of solution are rather soft, depending on
the initia1 conditions and the way of external forcing.

It is worth mentioning that the energy spectra do not
assume an exact power law but exhibit (stationary) oscil-
lations about a mean power law. These are not due to
insufficient statistical sampling but persist in the limit
tabac. %'hile the oscillation amplitude is in genera1
small, they become quite substantial for certain values of
b/a. An extreme example is obtained for b =0 (Fig. 3)
which nevertheless corresponds to a state of fully
developed turbulence. The spectrum is well converged
numerically, and the oscillations in the "inertial" range
are invariant to a change of the dissipation coefficient. In
gener a1 stronger oscillatory deviations from a pure
power-ower-law behavior occur in the higher-order structure

=I Iiiilll I Illllll I IIIIIIl I llllllll I IIIIlll I lilted 10 =I I Iilllll I llllllll I I llllll I I IIIIIl I I liiliil I I II%

102= 10-1

LU

103=
10 2

C
LU

10

10 4=
1O-4

1O-' =

L

10-6 I I I Illal I I I lilll I I I Ilill I I I IIIII I I I Iliiil I I I IIII

10 10 10~ 10 103 104 10
kn

FIG. 2. Compensated energy spectrum k„E„for the case of
Fig. 1.

1O-' =—

I I I IIIIil I I I itilil I I I lllll I I I IIIlll I I l IIISl I I I IIIII
10-6

10 100 10 10 103 10 103 4 5

kn

FIG. 3. Compensated energy spectrum k„E„for b =0, ex-5/3

hibiting oseillations around a pure power law.
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3

'0
4

((P)'3

12 16
0

4

t (P)"3

12 16 FIG. 4. Structure exponents gg' and g'P' fot
(a) b/a = —0.75, (b) b/a =10 .

0
12 16 0

P
12 16

functions discussed below. This behavior, which has also
been observed in fluid turbulence [18], can be associated
with the lacunarity of the fractal attractor of the tur-
bulence [19]. It is also interesting to consider the kinetic
and magnetic energy spectra E„=,' I P„+Q„~ /—k„,

E„=,'~P„—Q„~ lk„. Though we find that E„ is con-

sistently slightly steeper than E„", E„ /E„"-k, the
normalized reduced spectrum (E„E„}/E„—is much
smaller and more steeply decreasing with n than observed
in MHD fluid turbulence [4]. This behavior is rather
unexpected, since the Alfven effect, which in Quid tur-
bulence is invoked to lead to a strong coupling of vk and

8k and hence a small value of the normalized reduced
spectrum, is at this point not accounted for in our cas-
cade model calculations. A simple explanation of the
equality of E„and E„ is given by the observation that P„
and Q„are practically statistically independent,
E"=IP +Q I'=IP I'+IQ I'=E

The statistical properties of a turbulent fiuid are con-
veniently described by the PDF's of the velocity incre-
ments 5v&=v(x+1) —v(x), or equivalently the moments
thereof called the structure functions f'i'=(5' ) In a.
cascade model, where real space quantities such as 5v&

are not defined, one considers instead PDF's and mo-
ments of the Fourier components, the shell quantities
such as v„, which are related to 5v& with I =k„'.
We consider the quantities ReP„, ReQ„, Rev„=
—,'Re(P„+Q„),ReB„=—,'Re(P„—Q„). The corresponding
functions are denoted by f/''(n), f/''(n), ff(n), fj''(n }.
We also evaluate the normalized structure functions
F'~'(n )=f '~'(n )I[f ' '(n )]~, which illustrate deviations
from Gaussian statistics particularly clearly. In the iner-
tial range the structure functions follows closely (apart
from the lacunarity oscillations discussed above) a power
law f 'i'(n )-k~'i'. In general the values of the structure
exponents gi(p), g&{p),gi, (p},gs(p) are found to be
equal within the error bars. They do, however, depend
on the coupling coefltcients. Figure 4 gives gi, (p) and

gi{p) for b/a=-0. 75 and b/a=10. The error bars
obtained from a least-squares fit of the structure function

to a power law in the interval no+1 & n & 14 are primari-

ly due to lacunarity oscillations. In both cases energy
spectra are consistent with k„~, i.e., ){2)=—,', but

higher-order structure exponents differ significantly in
the two cases. The deviation from the Kolmogorov scal-
ing g(p)=p/3 is a measure of (temporal) intermittency,
and the deviation from a linear behavior is associated
with a multifractal structure of the turbulent attractor
[21]. Hence we find that b/a —1 gives rise to a stronger
multifractal behavior than b/a »1. The values of g(p)
in the latter case are close to those obtained from the
Gledzer-Ohkitani-Yamada model for hydrodynamic tur-
bulence [12],which agree with the experimental observa-
tions [18] and 3D fluid simulation [20]. This again
confirms the argument by Gloaguen et al. [15].

Figure 5 gives the normalized structure functions F' '

and F' ' of the variable ReP„ for the case b/tt =—0.75.
While for n-1 the statistics are close to Gaussian,I' '= 3, I' '= 15, it is increasingly non-Gaussian for high
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FIG. 5. Normalized structure function F' ',F' ' of ReP„ for
b/a = —0.75.
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(a) : (c)

FIG. 6. PDF's of ReP„ for the same case as
in Fig. 5 for n =2, 11,17.

Re P2 Re P11 Re P17

n in the inertial range and shows a much stronger in-
crease in the dissipation range n ~ 16.

Figure 6 illustrates the increasingly non-Gaussian
behavior of the PDF's. At the highest mode number
given, n = 17, which belongs to the dissipation range, the
PDF has a 5-function contribution at zero argument
which originates from the stiff oscillations of the dissipa-
tion range spectrum according to the 6uctuation of the
energy dissipation rate e. It is interesting to note that the
latter exhibits an almost precise log-normal distribution
(Fig. 7).

V. MODELS OF THE ALFVEN EFFECT

Let us now consider the infiuence of the Alfven effect,
the first term on the right-hand side of Eqs. (13). From
the way this effect is usually discussed we expect that
choosing a constant Bo will change the energy spectrum
from Kolmogorov to k 3/. However, as we will see,
this is not what is found numerically; the Alfven effect
appears to be more subtle. %'e note that the addition of
the 80 term formally destroys the scale invariance of the
(nondissipative) equations (13) by introducing the Alfven
time (k„80) '. Hence there can be no universal power-

10O

10

k, =r/80 . (31)

This crossover is in fact observed numerically. Figure 8
gives the energy spectra for three cases with different
values of Bp with k, =600,25, 1 for Bp=0. 1,0.3, 1, re-
spectively, which is consistent with the scaling (31). The
spectral laws for k (k, and k )k, differ, however, from
the expected power laws k and k, respectively,
being steeper in the first case, -k ', and shallower in
the latter, -k, a=1.25 —1.3. For 80=1 the k
spectral law extends over the entire inertial range. Hence
the constant Bp model of the Alfven effect does not

1 0-1

10 2

10 3

10 4

I I Illll I I I I lllll I I I I lllll I I I I lllll I I I I Illll I I I I II

law spectrum over the entire k range. Using simple scal-
ing arguments we expect a crossover from a k to a
k spectrum at the point k„where the Alfven time
(kBO) equals the eddy turnover time which is obtained
by equating both spectra,

~2/3k —s/3
( eB )

I /2k —3/2E p

which gives
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FIG. 7. PDF of in@ for the same case as in Fig. 5.
FIG. 8. Compensated energy spectra k„E„ for 6/a =10

and dimerent values of 80=const.
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FIG. 11. Normalized structure functions F' ', F' ' for
b /a = 10 and the Alfven effect model (32) with a =2.

Pp P, give the same behavior). The result is also in-
dependent of the other relevant parameters such as b/a
or the modeling of the Alfven effect (which by the way is
negligible in the inverse cascade of Hz&, see Ref. [25]), and
also of the particular choice of the cascade model. Equa-
tions (14) are constructed to conserve explicitly a second
global quantity such as H~, but nevertheless lead to the
equipartition spectrum E„-k„'.

It is interesting to note that the statistics in the "in-
verse cascade" region n & no are exactly Gaussian, while
remaining non-Gaussian in the region n & no. Such
behavior is also observed in Quid simulations of inverse
cascade processes [25,26], which are, however, driven in a
random way. In our cascade model calculations the driv-
ing is coherent, either by constant forces or by imposing
constant amplitudes. It thus appears that Gaussian
statistics are a generally valid property of inversely cas-
cading turbulence, even in model systems that do not
reproduce the spectral properties of the corresponding
fiuid systems.

ized. The coeScient a is an adjustable parameter of or-
der unity. Figure 10 gives the energy spectra of two cases
for bla=102, with a=0.5 and 2. The spectrum for
a=0.5 is reminiscent of those shown in Fig. 8 for con-
stant Bo. However, instead of a rather sharp crossover at
k„=k, between two well-defined scaling ranges the tran-
sition is gradual. For a=2 the energy spectrum agrees
with a k 3~2 law. The statistical properties are clearly
nonGaussian, which is different from the nonintermittent
behavior of the Bp =const case. Figure 11 gives the nor-
malized structure functions F' ',F' ', which show the
linear increase with k„ in the inertial range, which is,
however, somewhat weaker than in the nonmagnetic
case, Fig. 5. This is in qualitative agreement with the
inhuence of the Alfven effect in the P model [24].

VI. INVERSE CASCADES

As mentioned in the Introduction, MHD turbulence is
characterized by the coexistence of direct and inverse
cascade processes. If the system is driven at large scales
the former dominates, if it is driven at small scales the
latter dominates, generating increasingly larger scales.
Simple scaling arguments predict [1] the inverse cascade
spectrum of the magnetic helicity

(33)

and in 2D the mean square potential spectrum

a~~k-'"
k (34)

The latter has recently been verified in numerical sirn. ula-
tions of driven 2D MHD turbulence [25]. The most
significant deficiency of cascade models seems to be their
inability to reproduce the inverse cascade properties.
The spectrum is found to be E„-k„', i.e., I&-k„
which corresponds to equipartition of mode amplitudes
(IP, I) =(IQ„l)=const. The system is fully turbulent,
since lP„i=const is not a stationary solution. There is
also no condensation in the lowest k mode n = l, indepen-
dent of the boundary condition at n =0 (both Pp =0 and

VII. CONCLUSIONS

%e have presented studies of cascade models for MHD
turbulence. Most of the computations are performed us-
ing the complex version of the model introduced by
Gloaguen et al. [15],but we have also derived an alterna-
tive model which conserves the equivalent of the magnet-
ic helicity (or the mean square potential in 2D). In the
first part of the paper the Alfven effect has been neglect-
ed. %e discuss the stationary solutions, most of which
are unstable, and the system evolves into a fully turbulent
state. For purely kinetic turbulence P„=Q„a
phenomenon called coherent structures in k„space is
presented. It consists of a laminar component with the
scaling k„superimposed on a steeper turbulent spec-
trum k„', both being tightly interwoven, becoming
visible only in the PDF's. In the general magnetohydro-
dynamic case (still in the absence of the Alfven effect) ful-

ly developed turbulence with a Kolmogorov spectrum is
found. The inertial-range statistics, in particular the
structure functions, are similar to those observed in hy-
drodynamic (Suid) turbulence, depending quantitatively
on the ratio of the coupling parameters, a, b, with the
best agreement reached for a «b. In the second part of
the paper the Alfven effect is included. For the simplest
case of a constant large-scale field Bp energy spectra are
Qatter, E„-k„', than the expected Iroshnikov-
Kraichnan law k„. More importantly the inertial-
range statistics are exactly Gaussian, in contrast to full
Quid MHD simulations. Hence the simple model is not
valid and has to be con5ned. Assuming Bo to be the ac-
tual Quctuating Seld, interxnittency is reintroduced and
the spectrum is close to k„ though it tends to be
Qatter for high k„, such that there may not be a uniform-

ly valid inertial-range power-law spectrum.
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