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Computer simulation study of inelastic neutron scattering from liquid +rater
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A computer simulation study is presented to examine the incoherent inelastic neutron scatter-

ing from liquid water. A mixed quantum-classical method is employed: the quantum-mechanical
vibrational degrees of freedom are treated analytically, whereas the rotational-translational degrees
of freedom are studied by a classical molecular-dynamics simulation. The spectral effects of vibra-

tional relaxation mechanisms are explicitly accounted for. The results are in good agreement with

experiments. The limitations of a purely classical description are discussed.

PACS number(s): 61.20.Lc, 61.12.Bt, 61.25.Em, 61.20.3a

I. INTRODUCTION

A considerable efFort has been recently devoted to
study the incoherent, inelastic scattering of neutrons
&oxn liquid water by employing spallation sources of ep-
ithermal neutrons [1—3]. Neutron spectra obtained by
using them [4,5] have a much more intense signal than
those measured by conventional techniques [6]. Analyt-
ical theories [7—13] as well as molecular-dynamics (MD)
methods [5,14—16] have been used to interpret the ancient
and new experimental data. For a review describing the
present state of the art in this field, see Ref. [17].

The computer simulation studies began with the work
of Stillinger and Rahman [14], and Toukan and Rahman
[15]. In these papers, the proton velocity autocorrela-
tion function was calculated; this function determines the
neutron scattering spectra for vanishingly small momen-
tum transfers. Later, Bansil et al. [16] and Toucan et al.
[5] carried out a molecular-dynamics calculation of the
k-dependent proton density of states Gs(k, t); different,
not necessarily small, values of k were considered. How-
ever, all the previously mentioned simulations of the pro-
ton dynamics are classical and question arises whether, or
not, classical mechanics can be applied to this problem.
The answer comes &om the observation that the inten-
sity of the classically calculated spectra in the hydrogen
stretching region is smaller than the experimental inten-
sities by an order of magnitude. This negative result en-
tirely conforms to a general rule of statistical mechanics:
quantum mechanics must be used whenever Phu )) 1,
where ~ is a representative energy of the process under
investigation. The fact that quantuxn and classical har-
xnonic oscillators exhibit some sixnilarities does not alter
this general rule.

A similar problem was encountered by authors simu-
lating in&ared ad Raman spectra of liquid water and
ice. However, their approach was to disentangle the vi-
brational degrees, which are quantum mechanical, &om
the rexnaining degrees of &eedom, which are classical.
In their papers, Rice et aL [18—20] introduced the ran-

dom network model assuming a continuous, distorted
system of hydrogen bonds throughout the liquid phase.
Inserted in this time-averaged structure, the molecules
execute quantum-mechanical internal vibrations. Clas-
sical xnolecular-dynaxnics simulations were employed to
determine the external configurations. Later, Reimers
and Watts [21] described a similar calculation, but us-

ing the Monte Carlo rather than the molecular-dynamics
method. Finally, Postma, Berendsen, and Straatsma [22]
performed a xnolecular-dynamics simulation to determine
the forces perturbing the internal vibrations; spectral
band shapes were deduced &om the distribution of forces.
All these simulations considered rigid xnolecules.

We report here a study of incoherent, inelastic neutron
spectra of water, similar to that of Refs. [10,11] and hav-

ing many features in common with the papers [18—22] on
in&ared and Raman spectra mentioned above. The vi-
brational and rotational-translational degrees of &eedom
are treated separately; the fact that vibrational motions
are much faster than any other motion of the systexn, and
have low amplitudes, makes this separation practicable.
The quantum-mechanical problem can be solved analyt-
ically, and one is then left with a problem concerning a
classical system of rigid water molecules. The latter can
be treated either analytically, or by molecular-dynamics
simulation. The former of these routes was explored ear-
lier [11].Here, we describe a calculation that corresponds
to the second one. For a preliminary account, see Ref.

II. BASIC THEORY

A. Descriptien ef the madel

The following xnodel is used to study the present prob-
lem. (i) The internal vibrations of a water molecule are
described by the normal coordinates n, o. = 1, 2, 3, and
are governed by the quantum-mechanical Hamiltonian:
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H(n, t) = -) (p.'+~.n.')+ - ) X.~,n.n~n, + "

1 1+ ) V (t)n + —) V z(t)n nz+ —) V ~, (t)n nzn, +. . .
CX '-,p

' -,p,,
= H&')(n) + H('&(n, t) .

Here A = ~2 where u is the 0.th normal &equency,
n= (nq& n2& ns), V(n, t) is the interaction potential act-
ing on a tagged water molecule, V = BV//Bn, V p =
B2V/Bn Bnp, etc. . . .. (ii) The molecules execute classi-
cal rotations and translations. (iii) The correlations be-
tween vibrations and translations rotations are neglected.
These assumptions are discussed in Ref. [11].

B. Description of the scattering process

Since the scattering from the oxygen nuclei is negligible
compared to that Rom hydrogen nuclei, the incoherent
scattering cross section of a sample containing N water
molecules can be written [23]

t' B'o

(BOM &,.„, 1 k,
inc

x texp —iEt h I Ic, t (2a)

r((o(& = o-""(o&. 'o "(o))
J

BV
(2b)

In these equations, a;„,designates the incoherent pro-
ton scattering length, Ie; and Ie, the wave vectors of
the incident and scattered neutrons, respectively, and
k = k; —k, . Moreover, I(Is, t) is the intermediate scat-
tering function, v' is the Heisenberg position operator for
an arbitrarily chosen proton in an arbitrarily chosen wa-
ter molecule whereas () „

indicates the full equilibrium
average. The calculation of the spectrum then reduces
to that of the intermediate scattering function I(le, t).

C. The intermediate scattering function

g(g () (o
—'I (oo(o) —oo(o)&

3
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p=i )

-ile ) p (0)
m=1

000,000

The set of quantum numbers (0, 0, 0) designates the
ground state of the anharmonic Hamiltonian H~sl (n) and

p = l n, where I designates the direction of the pro-
ton motion in the normal mode a. (iii) The theory is
further simplified by the fact that all vibrational energy
levels, with the exception of the two hydrogen stretching
levels, are widely spaced as compared with k~T. The
latter two belong to diH'erent irreducible representations
of the point group of the water molecule which precludes
their mixing through V(n, t). The adiabatic approxima-
tion can thus be safely used when treating Eq. (3), which
can be rewritten as follows [ll]:

The problem is to extend the Zemach-Glauber theory
[24,25] &om gases to liquids and from harmonic to an-
harmonic potentials. This can be done by proceeding
as follows: (i) The averaging operation () „

in Eq. (2b)
is executed separately for vibrations and for rotations-
translations. Considering the semiclassical nature of the
present theory, the former is represented by a trace oper-
ation, and the latter by an angle bracket (). The vibra-
tional density matrix po is built on the wave functions of
the nonperturbed anharmonic Hamiltonian H~o) (n). (ii)
At room temperatures, only the vibrational ground state
is populated. Then, writing v = R+ P & p, where

R indicates the equilibrium position of one of the two
protons of the tagged molecule and p its displacement
in the normal mode o., one finds
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where the sets (1,0, 0), (0, 1,0), and (0, 0, 1) denote the
singly-excited states of Hlo)(n). (iv) The full anhar-
monic wave functions are only employed to calculate the

vibrational phase factors exp i dt'u t', appear-

ing when the matrix elements are evaluated. In turn, the
amplitude factors are determined by replacing the full
anharmonic wave functions by their harmonic counter-
parts. Approximations of this nature are of current use,
and should not produce significative errors. Then, des-
ignating by Iq(k, t) the intermediate scattering function
appropriate to the low-energy spectrum, and by I (k, t)
that associated with the fundaxnental a, the following
forxnulas may be found:

1 2
exp ——[k Lp (0)]2

taken into account by calculating the Ewald s»m. The
equations of motion were integrated with the help of leap
frog algorithms. Typical runs were of 10—20 ps after equi-
libration with a time step of 0.5 fs. The thermodynamic
point considered here corresponds to T=300 K and p =
1 g cm

B. Potentials

The potential employed in the simulation was the pair-
additive extended-simple-point-charge (SPCE) potential
of Berendsen et al. [26]. It is written as a sum of terms de-
scribing Lennard-Jones interactions between oxygen nu-
clei and Coulombic interactions between point charges
placed on all the atoms. Although not introduced ex-
plicitly, the polarization is accounted for implicitly by an
appropriate choice of charges. The potential Uq2 of a
given pair of water molecules can then be written:

I (k, () =
(

'~'~ ' [k. L (O)][@ L (()]

exp ——[k Lp (0)]
f

12 6

(Rg2) (Rgg ) 4+co
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)
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= ~~ ) + b, (u (t),
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(6)

where Rq2 denotes the distance between the two oxygen
nuclei and r~, 2q that between the point charges qq„q2&
located on the oxygen and hydrogen nuclei. The com-
plete potential U is then obtained by summing over all
possible pairs of water molecules which can be formed in
a sample containing N of them, U = P,.&. U;~, and the
interaction potential V acting on a tagged molecule, say
1, is the sum of all pair interactions involving molecule
1, V = P.&z Uq~. Despite its simplicity, the SPCE po-
tential reproduces correctly the H bond network as well
as many dynaxnic properties of liquid water.

where L (t) = l (t) [n ]0& and b,u (t) are the proton
amplitude and the interaction-induced frequency shift of
the normal mode a, respectively. Similar expressions
may be derived for overtone and combination bands.

The principal merit of Eqs. (5,6) is that vibrational
and rotational-translational degrees of &eedom have been
disentangled &om each other. The intermediate scatter-
ing functions Iq(k, t), I (k, t) can thus be calculated by
performing a classical molecular-dynaxnics simulation of
a system of N rigid water molecules. This simulation will
be described in Sec. III, whereas the semiclassical correc-
tions, which turn out to be necessary, will be analyzed in
Sec. IV.

III. MOLECULAR-DYNAMICS SIMULATION

A. Basic data

The simulatioa box contained 256 rigid water
molecules and periodic boundary conditions were im-
posed. The long-range electrostatic interactions were

C. Normal coordinates

The water molecule belongs to the point group C2 .
There are three normal modes. The mode nq corresponds
to the totally symmetric irreducible representation Aq of
this group and describes the symmetric hydrogen stretch-
ing xnotions; the mode n2 corresponds to the same irre-
ducible representation and describes the HOH bending
motions; and the mode n3 belongs to the irreducible rep-
resentation Bq and represents the antisymmetric hydro-
gen stretching vibrations [27]. These definitions are of
current use in spectroscopy.

The normal coordinates nj, n2, n3 were assumed pro-
portional to the symmetry coordinates Sq ——(rq+r2)/~2,
S2 ——o;, Ss ——(ry r2)/~2, where rq and r2 indicate the
variation of the length of the two OH bonds, and a desig-
nates the variation of the angle between them [27]. This
can be done without any significative loss of accuracy. In
fact, the normal modes nq and n2 are separated by as
much as 200 meV and are virtually decoupled; the Fermi
resonance that involves the first overtone of the xnode n2
is not considered here. In turn, n3 is the only vibration of
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its symmetry class. Eventually, the normal coordinates
can be written:

g ~ .

b

nq ——(2 pH+ 2po cos (8/2) ) (rq + r2),
-X/2

n2 —— 2d pH+ 2@~sin 8 2 o. ,

ns ——(2 pH + 2po sin (8/2)1) (rq —r2) (8)

k

l
l

, e+o
l

I

/
/

a'

where p,~, pH are inverse masses of the hydrogen and
oxygen nuclei, respectively, d the OH equilibrium bond
length and 8 the equilibrium HOH angle. The harmonic
and anharmonic force constants of the &ee H20 molecule
are given in Table I [28].

C

FIG. 1. Choice of displacement coordinates for a pair of
water molecules.

D. Derivation of intermolecular potentials

) m;p, =O, ) m, (r,'x p, ) =0, (9)

where m; indicates the mass of the nucleus i, v; its equi-
librium position and p; its displacement. Equation (9)
simply indicates the fact that internal vibrations do not
constitute translations or rotations. No similar restric-
tion exists in a molecular-dynamics simulation in which
all degrees of &eedom are considered. They appear in
the present calculation as a consequence of the separate
study of the vibrational and the rotational-translational
motions.

The present choice of displacement coordinates is il-
lustrated in Fig. 1 where the coordinates rq, r2, and a
are defined. To simplify the calculations, violations of the
Eckart conditions due to the finite mass of the oxygen nu-

Once the potential V as well as the normal coordi-
nates n have been defined, the derivatives V (t) and
V (t) entering into Eq. (6) for b,ur (t) can be calcu-
lated. Here the methodology is relatively new and some
comments are useful. (i) The SPCE potential was de-
signed to describe a system of rigid water molecules and
offers no guarantee when applied to nonrigid molecules;
nonetheless, for lack of more refined models, it was used
here. The same remark applies to the fully classical sim-
ulations of Refs. [16,17]. The parameters e, 0, qo, qH

were considered independent of the internal coordinates.
(ii) There is an ambiguity in the definition of the vibra-
tional displacement coordinates rq, r2, a. For example,
the Hr OH2 angle variation o. can be generated either by
displacing proton Hq alone, proton H2 alone, or both of
them. This ambiguity is lifted by imposing the Eckart
conditions [27]

clei were tolerated. As indicated, the increment rq was
realized by shifting only the nucleus 6 of the molecule M
in direction ab; a similar procedure applies to r2. In turn,
a was defined by a symmetric shift of the nuclei 6 and
c in directions perpendicular to ab and ac, respectively.
Derivations of V(t) with respect to the normal coordi-
nates n were thus reduced to derivations with respect
to the cartesian coordinates of the protons. The analyt-
ical expressions obtained in this way are reproduced in
the Appendix and may then be computed.

E. Details of calculation

The vibrational phase factors exp i dt'Ace t'

n = 1,2,3, were calculated in the following way. The
molecular-dynamics run containing A time steps of
length At, was split into a set of v shorter runs containing

Afz time steps each, N = vs. The integral f~ dt'4~ (t')
was evaluated on each short run and the real and imag-
inary parts of the exponential were averaged over its v
realizations. Next, the calculation was repeated for an-
other value of time t. In practice, these calculations were
grouped into a single, long molecular-dynamics run with
a time step of 0.1 fs. Proceeding in this way, it was possi-
ble to calculate the above vibrational phase factors with
good statistics.

Calculation of the amplitude factors of Eqs. (5a) and
(5b) shows no particularity. However, since experimental
spectra were recorded at constant scattering angle, the
scattering wave vector Ie varies with the transfer energy
E. The amplitude factors were thus calculated for many
values of k, of the order of 25. The relation between k
and E for a scattering angle of 8 is given in Fig. 2.

TABLE I. The harmonic and cubic forces constants (in
meV) of the potential function of the &ee HsO molecule de-

Sned in terms of dimensionless normal coordinates [28].

F. Semiclassical corrections

K11
K2g
K33
K111

474.9
204.3
488.5
-39.58
31.65

K133
K211

K233

-114.21
4.91

-7.67
18.25

Although the translational and rotational motions of
molecules in liquid water are predominantly classical,
their quantum characteristics cannot be fully neglected
when studying inelastic neutron spectra of water. A
number of analytical theories have been published to in-

troduce the necessary corrections [11,12,29—31]; unfor-
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procedure amounts to introducing the detailed balance
factor 2(1 + e P~) i; no expansion in powers of h was

required.
Unfortunately, no simple and systematic way was

found to incorporate the correction describing the re-
coil efFect in the present molecular-dynamics simulation.
This was only possible by employing various ad hoc argu-
ments; none of them was retained. However, the spectral
efFect of nuclear recoil is non-negligible in the hydrogen
stretching region [11,12]. Its absence is a weakness of the
present theory.

FIG. 2. Magnitude of the wave vector k as a function of the
energy E for a neutron scattering experiment. The incident
neutron energy is equal to 800 meV and the scattering angle
to 8'. The steps indicate the difFerent values of k at which

I(le, t) was calculated by MD simulation.

3
—ia [R(o)—R(c)]

'
e

~ I I ~
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——[k Lp(t)]
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exp ——k Ip 0 ——Ie Lp t 10b
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tunately, they cannot easily be built into a molecular-
dynamics simulation. This is even more true for the
present theory which is semiclassical in essence. One
must avoid double counting and only introduce semi-
classical corrections in factors entirely governed by the
translational-rotational dynamics. This was done for the
two correlation functions,

IV. RESULTS AND DISCUSSION

The following results have been reached by the present
theory: (i) The proton density of states Gp(k, t)
E2Sp(k, t)/k2 was calculated first. In order to make
the comparison theory experiment more meaningful, the
theoretical spectra were convoluted with an experimen-
tal function taken from Ref. [5]. The agreement is only
moderate; as discussed earlier, quantum characteristics
of molecular translations and rotations are not entirely
negligible. (ii) The comparison between theory and ex-
periment becomes satisfactory if semiclassical corrections
are introduced (Fig. 3). The agreement is equally good
for the self-structure factor Sp(k, E) (Fig. 4). One can
see from this figure that the discrepancy between the cal-
culated and the experimental spectra at energies below
1SO meV is mainly due to the central peak, which any-
how is not well resolved experimentally. (iii) Analytical
and simulated proton self-structure factors Sp(k, E) are
also in very good agreement (Fig. 5). (iv) Proton densi-
ties of states Gs (k, E), calculated by the present simula-
tion, strongly difFer from those produced by fully classical
simulations [5,16]. At high-energy transfers, the differ-
ence attains an order of magnitude, as expected (Fig. 6).
(v) Two band shaping mechanisms are operating, the
Doppler and the vibrational broadening. As a conse-
quence, the bandwidths AE&g2 are neither proportional
to k nor independent of it at small k's. Unfortunately,

appearing in Eqs. (5a) and (5b); the following pro-
cedure was employed. (i) The well known relation
G (u) = 2(1 + e P~) iG,„(u)was introduced be-
tween the Fourier transforms of the asymmetric and sym-
metrized correlation functions

G-(t) = (A'(0)A(t))

G'.„(t)= —([A'(O)A(t) + A'(t)A(0)])

where A = exp (ik ~ R) gp exp( —[k . Lp] /2) or

k ~ L exp (ik ~ R) gp exp( —[k . Lp] /2).
(ii) Next, the expression for G,„(t)was replaced by
its classical analog. This is justified since, contrary to
G (t), the function G,„(t)is even and real as are clas-
sical autocorrelation functions. In practice, the above

200 400
Energy (meV)

FIG. 3. The proton density of states Gs(le, t) calculated
by MD simulation including the semiclassical corrections

( ), and measured experimentally ( o o o ) [5]. The scat-
tering angle is equal to 8'.
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APPENDIX: DERIVATIVES OF THE PAIR
POTENTIAL Uyz WITH RESPECT

TO INTERNAL COORDINATES OF H 0

Calculation of the derivatives of the interaction po-
tential between the tagged molecule 1 and an arbitrary
molecule j requires some elementary algebra. It leads to

I

BUgs

BTy

OUg~

d08

BUgs

Bf'2

and the second derivatives

2R b Rbb Rb
Rs Rs ll~

a'b b'b c'b .
Epd 2R b Rb b R

2 Rs
b Rbsb Rsb

Epd 2R Rb, R,+
2 Rs Rs Rsa'c b'c c'c .
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Rs Rs Rs ' ll»
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8 Ups

d2882 o

8 Ups
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2d (R r, e~~, ) d (Ryr, e~~, ) d (R, q e~~z)

)E
Ep s 1 —3 2 s 1 —3 — 1 —32 s 2 )R tb R tb Rbtb Rbtb R tb R,,b

Eo 2d R tb eLx d Rbtb e~q d R b e~q
4 R b R b Rb b Rb b Rctb Rc)b
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R2,a'c C C b'c b'c C C C C
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The notations are the same as in Fig. 1; the index 0 denotes the condition rq ——r2 = cl = 0 Ep = q /47I'epd, and e~~q,

e~~2, e~q represent the unit vectors along (ab), (ac), and perpendicular to (ab), respectively.
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