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The properties of non-Markovian noises with exponentially correlated memory are discussed.
Considered are dichotomic noise, white shot noise, Gaussian white noise, and Gaussian colored
noise. The stationary correlation functions of the non-Markovian versions of these noises are given
by linear combinations of two or three exponential functions (colored noises) or of the 5 function and
exponential function (white noises). The non-Markovian white noises are well defined only when
the kernel of the non-Markovian master equation contains a nonzero admixture of a Markovian
term. Approximate equations governing the probability densities for processes driven by such non-
Markovian noises are derived, including non-Markovian versions of the Fokker-Planck equation and
the telegrapher's equation. As an example, it is shown how the non-Markovian nature changes the
behavior of the driven linear process.

PACS number(s): 05.40.+j, 02.50.Ey

I. INTRODUCTION

The physical, chemical, biological, etc. , systems driven
by various types of noises, stochastic Buctuations, and
random processes have been a subject of theoretical and
experimental investigations for many years [1]. For the-
oretical studies a model of noise is needed. The simplest
models are the uncorrelated (white) noises, especially the
Gaussian white noise (GWN), generated by the Wiener
stochastic process. For many years GWN has been used
almost universally, especially in applications, mainly be-
cause the stochastic Bows driven by GWN can be ele-

gantly described by appropriate Fokker-Planck equation.
The so-called white shot noise (WSN) generated by an-
other elementary stochastic process, viz. the Poisson one,
is also used, though rather rarely [2,3]. White noises, es-

pecially the GWN, have some unphysical properties and
their use requires some care (cf. [4—6]). Thus, in the last
two decades the attention turned to more physical col-
ored noises with finite correlation times. Of these, most
frequently used is the Gaussian colored noise (GCN), be-

ing the natural "extension" of GWN (GCN is generated

by the Ornstein-Uhlenbeck process, i.e., the relaxation
process driven by Wiener process). However, the use of
GCN in applications causes some difBculties: for stochas-
tic Bows driven by GCN the corresponding Fokker-Planck
equation is but an approximation [6,7]. Hence, more
and more attention has been paid in the last decade to
another approximation of real random disturbances, the
so-called dichotomic noise (DN), being the realization of
two-state Poisson process [2,8—12]. Its main assets are
(i) DN is colored, (ii) application of DN results in rel-
atively simple calculations [13], (iii) well-defined limit-
ing procedures lead from DN to both GWN and WSN
[2]. Some other types of noise were discussed in litera-
ture occasionally; of these, worth mentioning seem to be
quantum noises, both from the fundamental point of view

[14],and in application to the theory of lasers [15],hyper-

bolic sine model [16],quadratic noise [17],and composite
noises [18].

One common feature of all the work mentioned above
is that the noises used as driving stochastic processes
are (to the best of author's knowledge) almost with-
out exception Markovian [19]. Only very recently a few
papers have been published which deal explicitly with
non-Markovian driving: Pawula et OL used DN's with
nonexponential distributions of switching rates as driv-
ing processes in calculation of mean first passage times
[20]. Besides, papers discussing master equations with
time-dependent transition rates [21] and "non-Markovian
Fokker-Planck equation" [22] (i.e. , Fokker-Planck equa-
tion in energy variable) have been published during last
year. Periodically driven linear non-Markovian systems
are mentioned by Jung [23].

Markovianity assumption seems to be also an ideal-
ization of both real internal fluctuations and real ran-
dom external disturbances. Fundamental derivations of
Langevin-type equations &om basic equations of mechan-
ics suggest that the proper approximations for intrin-
sic fluctuations (which are related to the averaged-out
fast processes) should be either non-Markovian or non-
stationary Markovian and that the Markovian approxi-
mations may be hard to justify in some cases [28]. Also,
every real process has some intrinsic built-in delay or in-
ertia [24], which in the stochastic theory language means
the presence of memory, i.e., non-Markovianity of exter-
nal (parametric) noise. Therefore, one may expect that
at least in some situations the non-Markovian models of
driving noises would be better approximations than the
Markovian ones.

In this paper, non-Markovian variants of DN, WSN,
GWN, and GCN are being proposed. We shall de-
fine the non-Markovian DN by general master equation
containing explicit memory, and not by specification of
probability distribution for switching times. White non-
Markovian noises will be defined as appropriate limits
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of non-Markovian DN, and non-Markovian GCN by the
Ornstein-Uhlenbeck process driven by non-Markovian
GWN.

The rest of the paper is organized as follows. Section II
A contains elementary de6n~tion of the non-Markovian
dichotomic noise and the derivation of its basic proper-
ties: time dependence of one- and two-point probability
distributions, two-point correlation function, and corre-
lation times; in Sec. II B the same quantities are derived
for non-Markovian white noises. Section III deals with
the higher-order distributions, necessary for the complete
definition of a non-Markovian process. General stochas-
tic Sows driven by the noises considered in Sec. II are
discussed in Sec. IV; there the equations governing the
probability densities for driven process and their station-
ary solutions are derived. In Sec. V the properties of a
linear process driven by non-Markovian noises are cal-
culated; when the driving process is the non-Markovian
GWN, the driven process becomes the non-Markovian
Ornstein-Uhlenbeck one, i.e., the non-Markovian version
of the colored Gaussian noise. The last section contains
some concluding remarks.

IX. NON-MARKOVIAN NOISES

A. Dichotomic noise

the process in the state f at time t, t + dt is always

Pg($) t) = P,g(() = A [Azb~, ,t + Ayh a„t]
= [ ~~& t+ 2~ &*&—]~/( &+

(2 3)

t
P(b, , t~z, to) = — dt'K(t —t') A P(b, „t'~z, tp)

Cp

—A,P(—b,„t'~z, t,),
t

P(—Az, t~z, tp) = dt K(t —t ) AgP(Ay) t ~z, tp)
Cp

—A2P( —b,z, t'Iz tp) (2 4)

or (we follow here Ref. [8])

(A = Aq + A2) for all t & tp, i.e., that the dichotomic
process ((t) with zero mean is stationary.

Let P((, t[z, tp) = Pg[g(g, t[z, tp) denote the condi-
tional probability that the process is in the state ( at
time interval (t, t+ dt) given that it was in the state z at
time tp We .assume that the master equation governing
the behavior of P(g, t[z, tp) contains the non-Markovian
("memory") term and reads

Consider the asymmetric random two-state process
(random telegraph signal) ((t) with zero mean: where

t
P(t) = —A dt'K(t —t') P(t'),

to
(2.5)

0—

called the dichotomic noise (DN):

(t) g (6„—6,), ('(t) = b,'+ b,,~(t), (~(t)) = O,

(2 ~)

b, g/Ag ——b z/A2 ——mp, (2.2)

and that the unconditional probability P~((, t) of finding

with 4 = Lamas &o = &i —&2.
Let Aq and Az be the probabilities of switching (per

unit time) between states b, q and b,z, so that 7; = 1/A;
are the mean sojourn times in these states. (((t)) = 0
means, thus, that

K(t t') =q,b(t —t')+—q,e-"' '', (2 7)

which contains both Markovian and non-Markovian con-
tributions. This allows for the continuous change &om

y(t) = A]P(b, , t~z, t ) —A P( A, t~z, t )—
= AP(b, g, tiz, tp) —Az . (2.6)

The general form (2.4) of the master equation can be
derived exactly and directly from the basic quantum-
mechanical equations of motion [25]. It is to be noted
that from this point of view the form (2.4) containing
explicit "memory" is fully equivalent, by identity trans-
formations, to the "memoryless" form containing instead
time-dependent coefficients, both for exact generalized
master equations [26], and for exact generalized Langevin
equations [27]. This suggests that the choice of the form
(2.4) or of the equivalent form without time integration
but with time-dependent transition matrix is largely the
matter of convenience.

Virtually nothing is known about the general form of
the memory kernel K(t —t'). There are neither experi-
mental nor theoretical data in this respect. The general
theory mentioned above suggests that the exact form of
K(t —t') will be system dependent —K is given by appro-
priate averages of fast processes eliminated &om the de-
scription [25—29]. Therefore the probably safest and most
sensible, both from physical and from practical point of
view is to ass@me that the memory kernel K has the form
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Pp(z) = P(tp) = Aih~, —A2b ~,
0o(() = ~~„t —~-~.,t
Q(t) = I' ' (8, —v)e "—(82 —v)e "],
e, , = —,'(~+ ~.A+ r),
r = g(~oA —~) —4~,A, (2.9)

where the identity P(s', tolls, tp) = b was used. Note
that for Markovian process, pi ——0, the time function g
reads

Therefore

(2.10)

(2.11)

The considered. non-Markovian process is irreversible and
its stationary distributions do not remember initial state.
Moreover, the stationary distributions are the same as
for the Markovian process. Note that these formulas are
valid only for t & tp.

Equations (2.8) and (2.3) together with the Bayes rule

[8] give the two-point probability and the two-point (sta-
tionary) correlation function:

P2((, t; $', t') = P(g, tl(', t')P, ((', t'}

P~(() P, (i(')

+(&i&~/A')&p(&)&p(&')@(t —t') (2 12)

+(t t ) (4(t)((t )) ) 8 P2(( t ( t )

= &'@(lt —t'I) . (2.13)

Thus, for non-Markovian process the stationary corre-
lation function ceases to be simply exponential. It be-
comes the combination of two exponentials, and more-
over, for some combinations of parameters po, pq, A,
and v, the correlations may become damped oscillatory.

The formula for variance, g' (t)) = 4 results both
&om (2.13) and directly from the definition of the DN,

(t) = b, '+ A,g(t), (~(t)) = 0.

Markovian to non-Markovian dynamics and enables iden-
tification of terms of Markovian and non-Markovian ori-
gin. Moreover, some limiting procedures are well defined
only when the nonzero contribution of Markovian dy-
namics is present. For pi ——0 (Markovian case) these
equations become identical with those in Ref. [8]. The ex-
ponential damping of the memory kernel is the inost pop-
ular simplification, with several obvious advantages. Be-
sides, exponential relaxation is frequently found in many
physical, chemical, etc. , processes, at least at final stages
of evolution. Therefore, the form (2.4) with memory ker-
nel (2.7) seems to be general enough from the physical
point of view, allowing at the same time for exact solu-
tions of Eqs. (2.4).

The solution to these equations (valid for t ) tp) reads

4'(t) = ~(t —to)A(*)
P((, tl&, tp) = P.i(() + A '0(t —to)0o(()A(*), (2 8)

with

These formulas give main characteristics of non-
Markovian dichotomic noise. Here po and pq describe the
relative contributions of Markovian and non-Markovian
parts, and v the rate of damping of the non-Markovian
memory. For pq ——0, po ——1 we recover the formu-
las for Markovian DN [8]. From the physical meaning
of these parameters we have that v ) 0 and A ) 0;
when one of p; = 0, the other must be positive, oth-
erwise the process ((t) would become divergent. When
both Markovian and non-Markovian kinetics are present
(both p; P 0), 7; can be either positive or negative, with
some limitations. Namely, the proper convergence condi-
tion is that both H, ) 0. Therefore v+poA ) 0, and either
4piA & (& —poA) or 4piA ( (v —poA) and go+ pi ) 0

B. White noises

The white noises (WN) can be obtained f'rom DN as
the following limits [2]:

~1 ~ oo +i ~ oo +1/~1 +2/~2 —ipp (2.14)

for WSN, and for GWN

Ag
——Ag ——A —+ oo, Ag ——A2 ——6 m oo,

4 /2A = Dp ——A2iop. (2.15)

Moreover, in taking these limits it is implicitly assumed
that

(2.16)

In both these WN limits the probability densities are
rather uninteresting. More interesting is the behavior of
the stationary correlation function (2.13). Application of
the above limits gives (cf. Appendix A):

(2.17)

where Ao ——Aq for WSN, Ao ——2A for GWN, and 80 ——

&+ V~ P = 'Yi/'Yo.
The above non-Markovian WN's are characterized by

nonzero correlation time 1/ep. Therefore one may ask
whether they are really "white. " This question will be
addressed in more detail below, in Sec. VI. Here let us
assume, for the time being, that we shall be using the
term "WN" for convenience.

The WN limits are obtained under the assumption that
g 0, i.e., that there is some nonzero admixture of

Markovian process. For purely non-Markovian process,
= 0, these limits cease to be well defined. When

po g 0, the expression under square root in F, Eq. (2.9),
is dominated by the term +70A~ in the limit A m oo and
both inverse correlation times 8; become real, indepen-
dently of other parameters (one of 8's goes to infinity, the
second one remains bounded —cf. Appendix A). How-

ever, when po ——0, the expression under the square root
is dominated by the term —pqA, I' becomes imaginary for
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all values of other parameters (for purely non-Markovian
process pq ) 0), aind the time dependence of probability
densities and of correlation function becomes damped os-
cillatory, with oscillation &equency going to infinity (cf.
Appendix A). In ordinary sense such limits do not ex-
ist. This xneans that the WN limits of DN are well de-
6ned only for mixed process. The determination of the
WN limits for purely non-Markovian process (70 ——0)
depends on the ixIterpretation of oscillating functions in
the in6nite &equency limits.

DI. HIGHER-ORDER QUANTITIES

A. Distributions

In contrast to Markovian processes, one- and two-point
distributions and correlation functions are insufficient
for the complete definition of a non-Markovian process.
Some further ass»options are needed. The choice of such
prescription will complete the definition of the considered
non-Markovian process, given in the preceding section.

It is easy to check that the two-point probability (2.12)
is the solution of the master equation (2.4) with the initial
condition for the equal-time probability:

P2 ((, t; (', t) = P,~ ($)bg g . {3.1)

Pl [n ((& t1 ~ (1t t1 ) i (n r tea ) (3.4)

Therefore, the most natural assumption for the consid-
ered non-Markovian DN seems to be that every higher-
order probability P„~q ((, t; (q, tq, . . . , $„,t„),as the func-
tion of t )Vt;, i = 1, . . . , n, fulfills the same master equa-
tion (2.4) with the same transition probabilities Aq, A2.
This leads to the solution:

This relation results from (2.3) and from the basic defi-
nition of n-point probability:

" 4 t ) = (h(4(t ) 0 )" ~(((t ) ( ))
(3 2)

which implies that

+ra+1((r tli (1

&tlat

~ ~ ~ t (tay tta) h((gPn((1& tlat ' '
& Era& ta) .

(3.3)

Here, the averaging is over all realizations of the process
((t) between some initial time to & min(tq, . . . , t„) and
t = max(tq, . . . , t„), and h(m, n) is the convenient no-
tation for the Kronecker symbol h

Equation (3.3) together with the Bayes rule implies in
turn that

P„+x((,t;(„tx, . . . , („,t„) = [P.t(() + A go(g)Q(t —ti)4'0((i)]P ((i ti' '( t ) (3.5)

which together with Eqs. (2.8)—(2.11) determines by re-
currence all probability distributions of the considered
non-Markovian dichotomic process.

In the view of the basic definition (3.2), the above as-
sumption may be understood as the consequence of a
stronger assumption, viz. that the master equation (2.4)
is fulfilled by the one-point probability h(g(t), g;) for ev-
ery realization of the stochastic process $(t) separately,
i.e., that the averaging over all possible realizations does
not introduce any essentially new features [30]. In other
words, there are underlying assumptions (i) that the av-
eraging process erases only the unimportant details of
individual realizations, leaving intact the main charac-
teristics, (ii) that every realization is characterized by
the same sojourn times A;, and (iii) that different real
izations are uncorrelated. This seems to be sensible &om
the physical point of view, though the realization of these
conditions depends on the physical conditions in which
occur both the considered process, and the xneasurement
(averaging) process. Nevertheless, the assumption (3.5)
is weaker than the ass»options discussed above.

One of the consequences of the above ass»mptions are
the formulas (3.11)—(3.14) below describing the higher
correlation functions of the considered non-Markovian
noise. The calculaltions illustrating these consequences
are presented in the Appendix B.

By the Hayes ruk the conditional probability has the
forra

= P,g (() + A 'ego(()g(t —tx) Qo(6) . (3.6)

lim Q(t —t;) = 0 for t; & oo,
taboo

then

lim P„+g ((, t; (g, tg, . . . , („,t„)
t-Woo

and

lim Pq(„(f, t~(g, tg, . . . , f„,t„) = P.g(() (3.9)

Again, it is easy to check that the same results can be
obtained from master equations (2.4) written for the con-
ditional probabilities Pq~„($, t~fq, tq, . .. , („,t„) with the
initial condition (3.4).

These distributions have the following property: be-
cause
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when tq remains finite, or rather, more strictly, when
t —t~ -+ oo. This means that also for the non-Markovian
process the events separated by very long times become
uncorrelated. This result is the direct consequence of
the assumption of exponential damping of the memory
kernel.

These formulas are valid for ordered time sequences
t & tq & - . & t„only. It can be shown that choosing
the initial condition at some time to earlier than at least
one of the time moments from the set (ti, . . . , t„) leads
to results incompatible with the formulas above. This
property is related to the non-Markovian character of
the process ((t).

B. Averages

Consider the quantities

(((t )" ((t )) =)." ).( " ( P»(( t " (,t ).

(3.10)

Every average of the type (F(((ti))G(((t2)) . .) can
be expressed by averages of the type (3.10) by virtue of
(2.1). The only condition is that the functions F, G, . . .,
can be expanded into power series of their arg»ments.
The averages of functionals F(...; [(]) of the process ((t)
can be expanded into series of averages (3.10), too

(3O t

F(- [(l) =F(- [0])+) —„,n! Cp

xK„(.. . ; t„.. . , t„)((t,) " ((t„), (3.16)

where

~"F(- [(l)x„(.. . ;~„.. . , ~„) = (
"' ), (S.iv)

and where both F(. . . ; [0]) and K„(.. . ; ti, . . . , t„) do not
depend on (.

Therefore, the expressions (3.11)—(3.13) determine
wholly all averages of interest of quantities related to the
non-Markovian dichotomic process ((t).

For finite times we get from (3.5) the recurrence for-
mula:

(((t ) "((t )) =&'&(t —t2)& — (t " ' ) (3»)
with

IV. STOCHASTIC FLOWS DRIVEN
BY NON-MARKOVIAN NOISES

A. DN-driven processes

+ —i(t2 t ) (((t3) ' ' '((t ))
++00(t2 t3)~1l—2(t3» t~)

(3.12)

Note that for symmetric DN, 60 ——0, we get

(((t )" ((t ))

4(ti t2)+ 0(ts t ) ' ' + P(t2 —i t2 )

= (((ti)((t2))(((t3)((t4)) " (((t2 -i)((t2 ))

(((t,)" ((t,„,)) = o,

valid only for ordered time sequence tq & t2 & & t„.
For tq ~ oo, t2 remaining finite, this implies that

We shall consider general one-dimensional stochastic
Bows of the type

X = f (X) + 9(X)((t) . (4.1)

Generalization for many-dimensional Sows is trivial
(formally). For dichotomic noises, fiows with the right-
hand side given by more general form F(X(t),((t)) re-
duce to fiows of the form (4.1) above due to the property
(2.1). Such more general forms are meaningful, in gen-
eral, for colored noises only. Nonlinear functions of white
noises are ill defined: the white noise is equivalent to a se-
ries of h functions [4], which means that the square (and
higher powers) of white noise is meaningless.

Let P(z, t) denote the probability density that at time
interval (t, t+ dt) the value of the process X(t) lies in the
interval (2:,2:+ dx) and let p(2:, (;,t) be the joint proba-
bility density that X(t) 6 (z, 2: + dz) and ((t) = (;:

lim (((t,)((t,) "((t„))= O.

One of the corollaries of these results is that

(3.i3)

P(* t) = (h(X(t*[(])— )) (4.2)

~(((t)((t )" ((t )) = — (t —t )(((t)((t )".((t ))
8

(3.i4)

where

(* (* t) = (~(X(t [(])—*)b(((t) (*))

P(x, t) = p(x, a„t)+p(x, —E„t).

(4.3)

(4.4)

a

82 —v —(Hi —v) e-r'

(3.15)
Therefore [compare with [2,9,11], and with our

Eq. (2.4)]
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(0[ 0—p(x, Ag, t) = ——[f(z) + A)g(x)]p(x, 6x, t) —pp[Axp(x, 6z, t) —A2p(x, —A2, t)]
t

dt'e "i l [Agh(z, t; Eg, t') —Alh(x, t; —A2, t')],
tp

0 0
p(zi +2g t) = [f(z) 242g(z)]p(xg +2g t) + Yo[Alp(x) +1& t) A2p(x~ E2) t)]

t
dt'e "l' '

&[Az h(x, t; b z, t') —A2h(x, t; b2, t')]-,
tp

(4.5)

0 B
B,p(x &~ t) = ——[f(z)+ &~g(z)]p(x &l, t)

t
dt'K(t —t') [Ap(*, b, , t')

tp

—A,P(x, t')], (4.10)

8—P(* t) = ——[f( ) —& g(*)]P(* t)
Bt ' Bx

|9—u)pA g(x)p(x, Ag, t), (4.11)

and the elimination of the memory integral to

where

h(z, t; (;,t') = (S(X(t, X]) —z)S(((t'), (;)), (4.6)

and obviously

P(x, t) = h(z, t;A&, t') + h(z, t; —62, t'). (4.7)

This means that for the non-Markovian case the stan-
dard procedure [2,9,11] does not lead to a closed set of
equations describing the probability densities of interest.
Some approximations are necessary, concerning the aux-
iliary functions h above.

The auxiliary functions h(z, t;(, , t') can be removed
&om Eqs. (4.5) by means of the systematic expansion:

h(x, t;(;, t') = p(x, (;,t')

+—h(x, t;(;, t'), , (t —t') + . . (4.8)

This is in fact the short-memory (small 1/v) expansion
[cf., e.g. , the stationary correction factors (4.35) below].
The lowest-order approximation

h(x, t;(;, t') = p(x, (,, t') (4.9)

may be viewed also as suggested by the fact that both
(4.4) and (4.7) hold simultaneously.

Let us begin with the approximation (4.9). In this
case, the elimination of p(z, b,2, t) leads to—

17(t) p(x—, b y t) = —D(t) ppA + —[f(x)
B - t B
Bt ' '

[ Bz

+A,g(x)))g(x, 6„t)

pgAp(z, 6—g, t)

+[/] + 17(t)pQ]A2P(x, t), (4.12)

p(z, b,„t)= e-~i '"lp(z, b.„t,)
t

+~ d~I —XZ(~,t, t')

tp

[ o+ ~(t)]P(* t)
where

(4.13)

R(2:,(, (p) = ppg+ —[f(x)+D,g(x)]I(t —tp)
B

Bx

and

1.e.,

t
+q, A dt'X(t'),

tp

t
X(t, t ) = T(t) = 17(t) ' = dt'e

tp

(4.14)

(4.15)

t
dt'K(t —t') = q, + q,Z(t). (4.16)

tp

This is the formal solution. Substitution to Eq. (4.11)
gives the formally closed equation for the probability den-
sity P(z, t). Putting p] = 0 and p(x, Ey t()) = 0 (after
[2,9,11]) we recover the formulas of Refs. [2,9,11).

Taking into account the first correction in (4.8) we get
Eq. (4.10) with the following additional term on the right-
hand side [Eq. (4.11) remains unchanged]:

where 17(t) = v+ (B/Bt) This .form is convenient for
finding the stationary solution (cf. below). The formal
solution to Eq. (4.10) reads

0
( )+pq — dt'(t —t')e " '

([Af(x) + (A~&q —A242)g(x)]p(x, Eq, t') —A2[f(x) —32g(z)]P(x, t')) .Bx (4.17)

Therefore, Eq. (4.12) now reads
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('D(~))*gn(*,», ~) = -ID(~)1* ~oA+ (—) If(*) +»g(*))In(*,», ~)
, a - , t a

+[5(t)]'p,A,P(x, t) —p, V(t) [Ap(x, b„t) —A, P(x, t)]
0

+py —([Af(x) + (A) b~ —A2b2) g(z)]p(x, b), t) —A2 [f(x) —b 2g (x)]P(x, t)}. (4.18)

Other possible simple approximations are based on the shifting of the time dependence of the auxiliary function 6
by the function @(t—t'), which is suggested by the results of Secs. II and III. Therefore, we may write that either

h(z, t;(, t') = b'@(t —t')p(z, (, t')

(factor b2 is introduced in order to keep correct WN limit) or, inversely,

&(» t'( t ) = [b ~(t —t )l p(»( ') .

(4.19)

(4.20)

However, these approximations are not systematic, but rather constitute a kind of ansatzes. In the case of approx-
imation (4.19) we get again Eq. (4.10), with the changed kernel:

K(t —t') ~ K(t —t') = q, b(t —t') + q, e-"~'-' 'b'@(t —t'), (4.21)

and thus, after elimination of memory integral,

Dl (t)D2(t) p(z& bl & t) = —&x(t)&2(t) —[f(*)+ bag(z)]p(z, b)) t)&x (t)&2(t) $0[Ap(z& bli t)A2P(z) t)]

[(gl &)D2(t) (g2 +)Dl(t)] [Ap(xi bit t) A2P(zy t)] I (4.22)

where 5;(t) = e, + 17(t).
The approximation (4.20) leads to the equation

8—p(x) b.y) t) = ——[f(z) + bing(z)]p(x) b,„t) —
[pp + p, O(t)][Ap(x, b„t) —A2P(x, t)], (4.23)

with
t

A(t) = Ct'e-"&' ')[b'Q(-t —t')] '.
tp

(4.24)

In this case the master equation does not exhibit ex-
plicit "memory;" instead, it contains time-dependent co-
efBcient at its right-hand side.

The calculations illustrating the advantages and dis-
advantages of these approximations are presented in the
Appendix C.

Approximation (4.19), though nonsystematic, seems to
be natural enough, especially in the light of the formula
(3.11). Indeed, the results presented in Appendix C sug-
gest that (4.19) constitutes the distinct improvement over
the approximation (4.9), being at the same time much
simpler than the higher-order systematic approximations
stemming from the expansion (4.8). The sole reason for
the introduction of the approximation (4.20) is that it
seems to be just the inverse of (4.19). Nevertheless, the
results obtained in Appendix C suggest that this approx-
imation leads to too fast dHFusion of probability density
and thus may be reliable at best at initial stages of the
evolution of P(x, t)

B. Telegrapher's equation

For f(x) = 0, g(x) = 1 the stochastic process X(t)
becomes just the integral of the process f(t). When ((t)

is the symmetric Markovian dichotomic noise, the equa-
tion for the probability density P(x, t) fu1611s the well-
known telegrapher's equation. When ((t) becomes the
non-Markovian DN, the appropriate equation, obtained
from Eqs. (4.10), (4.11) reads in the lowest-order approx-
imation (4.9):

I'a' a', a' ar
, + b.o —b,', +q, A —P(x, t)

= —q, A Ct'e "~' '', P(z, t'). (4.25)
Ot'

The left-hand side gives the standard telegrapher's
equation with the asymmetric term proportional to Lo,
whereas the right-hand side is the non-Markovian cor-
rection. Note that the term containing Brst-order time
derivative is here of purely Markovian origin.

Approximation (4.18) leads to higher-order equations,
approximation (4.21) changes the kernel in Eq. (4.25),
whereas the approximation (4.23) gives the telegrapher's
equation with time-dependent coefBcient of the last term:
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( B2 B2 B2

+[pp + plO(t)]A —P(z, t) = 0. (4.26)
Bt)

C. %IN-driven processes

We shall write here explicitly only formulas corre-
sponding to the first approximation (4.12). Formulas
resulting &om other approximations can be derived in
the same manner. In the WSN limit (2.14) we get [2] (cf.
Appendix A):

—[f(z) —b2g(z)]Pt(z) = —lppA g(z)p, g(z, bl).x Bz

(4.31)

The approximation (4.12) leads to

gA2P, 1(z) = (A+ —[f(z) + b lg(z)] p,~(z, b, l) .iB
Bz

(4.32)

Similar expressions are obtained for the remaining ap-
proximations. Therefore, with natural boundary condi-
tions, the stationary distribution reads

—P(z, t) = ——f(z) —b,2g(z) P(z, t)
Bt ' Bz

—1POA2 g(z) Po+ P1X(t) + 1PO g(z)z Bz

1 lg(z) IP,t(z) = Af

x exp A( dz e(D,p(z)), (4.33)f(z)
D,p z

t
x Ch'K(t —t') P(*,t'),

Co

(4.27) where

D.~(z) = [&lg(z) + f(z)][&2g(z) —f(z)] (4.34)
which corresponds to Eq. (32) of Ref. [2].

The GWN limit is easy to obtain: the limit (2.15) is
equivalent to N is the normalization constant, and e(z) is the Heav-

iside step function, "expressing that the probability is
zero in the "unstable" region of negative D" [ll]. This
expression differs &om the non-Markovian case by the
rescaling A + (A only. Therefore, non-Markovian ap-
proximations (4.12), (4.21), and (4.23) leave the domain
17 in which P,t(z) is nonzero unchanged in comparison
with the Markovian case. Both white noise limits are
thus given by Markovian stationary distributions with
the same rescaling, too.

The rescaling parameters are (indexes refer to approx-
imations)

tOp M0, A2 MOO,

(4.28)
A2 —Do, ~o2

Therefore, &om (4.27),

(4.29)

8 B—P(z, t) = ——f(z)P(z, t) + Dp g(z) g(z)— —
Bt ' Bz Bz Bz

- —1t
x Ck'K(t —t') P(*,t) .

tp

This is the non-Markovian Fokker-Planck equation in
lowest-order approximation (4.12). Again, approxima-
tions (4.18) and (4.21) lead to higher-order equations. In
the approximation (4.23) the last integral in Eqs. (4.27)
and (4.29) is replaced by the factor [go + plO(t)]P(z, t).

The left-hand side of the telegrapher's equation (4.25)
reads in these limits

B)B'"+ B*)
B2—0 P(z, t), (4.30)

with ~ = 0 for GWN, and n = mp for WSN, and the
right-hand side remains the same as in Eq. (4.25) divided
by A.

D. Stationary distributions

Stationary solutions to the above equations can be ob-
tained in a simplest way by putting P(z, t) -+ P,t(z),
p(z, b, l, t) + p,t(&, 41) in Eqs. (4.11), (4.12), (4.18),
(4.21), or (4.23). Fr'om (4.11) we get

(12 —Yo + Yl/v Cls v(vYo + AYl)/(v AY1)

(22 —'Yo + 2'Ylv/(v + 81)(v + 82) )I (23 'YO + 'Ylfl(oo) ~

(4.35)

The renormalization of the magnitude of the corre-
lation time A 1 seems to be insignificant: correlation
times of the noises are not known usually. The change
of the sign of ('A may, however, change the location of
extrema of P,~, i.e., the most probable values of x,q. The
analysis of the stability conditions for the dichotomic
process ((t) leads to the conclusion that the conditions
Re(81) & 0, Re(82) & 0 demand that (12 & 0. There-
fore, the approximation (4.12) does not change station-
ary properties. The rescaling parameters (ls, (22, and
'Q3 may become negative, so that these approximations
allover for changes of stationary characteristics of the pro-
cess X resulting &om the non-Markovian character of the
driving noise.
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V. AN EXAMPLE: ORNSTEIN-UHLENBECK
PROCESS

vian colored noise (CGN), widely used in literature, with
stationary correlation function:

A. Direct calculations (X(t)X(t')) = (b D /2 ) (5.2)

One of the simplest examples of stochastic Hows is the
linear relaxation process driven by additive noise:

X(t) = —aX(t) +b((t), a & 0. (5.1)

This process may represent, among others, the veloc-
ity of the damped Brownian particle, or the position of
the overdamped Brownian particle. When ((t) is the
Markovian GWN, the process (5.1) is called the Ornstein-
Uhlenbeck (OU) process and is the well-known Marko-

Consider now the same process driven by non-
Markovian noise. The calculation of averages of the type
{X ) from the stationary distribution (5.12) below is
possible but very tedious (the appropriate integrals lead
to hypergeometric functions). Moreover, the calculation
of time-dependent averages from Eqs. (4.10) and (4.11)
cannot be practically performed. Such average values
are simpler to calculate directly. Besides, the equations
of the preceding section are but approximations.

The solution of (5.1), and its correlation function read

t

X(t) = e-" "'X(t,) + b dt'((t') e
to

(5.3)

where

t t'

(X(t)X(t')) —(X(t))(X(t')) =
tp Cp

= (b b, /I')[(Hq —v) J(t, t';Hq) —(H2 —v) J(t, t';H2)] for DN

b20 b2(r
[e I' '

I —e ('+' )] —
~ J(t, t';Ho) for WN,

2a+p 70

(5.4)

(5.5)

J(g g .g)
—t~t —t

I et — lt —t'I y ( ~ 8)
— (ttt't {

— t' —tt ~ — f.—tt')
a(a2 —H2) . (5.6)

The variance (X2(t)) and corresponding stationary for-
mulas are easy to obtain Rom the above. In the DN case
the correlation function and variance may oscillate.

The process (5.1) driven by non-Markovian GWN cor-
responds to the non-Markovian Ornstein-Uhlenbeck pro-
cess, characterized by the following stationary correlation
function:

2 1
(X ).,

a+Ho

for Markovian WN,
for non-Markovian WN,

(5.10)

These formulas enable to fj.nd whether the driving pro-
cess is Markovian or non-Markovian by looking for the
dependence of the stationary variance on the parameter
a of the deterministic process X(t). It is easy to find that

(XX(r))„='
a~o 2 a2 —802

—HOT H
(AT (5.7)

and

1 for Markovian DN,+ )( )" 1+" s' for non-M~kovian DN.
a+Hg

(5.11)

This relation de6nes the stationary non-Markovian col-
ored Gaussian noise (GCN).

An interesting quantity seems to be the stationary vari-
ance, which reads

b242(a+ v)
a(a + Hg) (a + H2)

' (5.8)

(X ).t ——

a fo (2 a+Ho)
(5.9)

for the DN-driven process and for the WN-driven process:

Hence for the Markovian white noise the quan-
tity a(X ),q does not depend on a, whereas for non-
Markovian white noise it does; for the Markovian di-
chotomic noise the quantity a(a + C)(X2),q does not
depend on a, whereas for non-Markovian DN it does.
Therefore, it is possible to distinguish between these
types of noise, and also to determine the values of rele-
vant noise parameters, by measuring the stationary vari-
ance as the function of the deterministic parameter a.
Similar though more involved analysis can be done for
time-dependent variance and for stationary and non-
stationary correlation function.
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The quantity X(t) in Eq. (5.1) can be interpreted also
as the velocity in the second-order process, which in
turn can be interpreted as the (one-dimensional) damped
Brownian motion, For undamped Brownian motion, i.e.,
for a = 0 the time-dependent expressions contain terms
growing unboundedly with time. Thus, for example, the
asymptotic in time velocity dispersion grows unbound-
edly as t (more details can be found in the Appendix 8)
and position dispersion as t3. This behavior, identical as
in the Markovian case, is called anomalous difFusion. The
equation for the velocity probability density is just the
non-Markovian telegrapher's equation, Eq. (4.25) above.
The equation for the position density can be obtained
by methods constructed recently by Masoliver [31], but
the resulting expressions are rather lengthy and not very
illuminating.

B. Comparison with results from P,q(s:}

The approximations considered in the Sec. IV lead to
the following stationary expressions:

D,ir(z) = (Ei —ax)(b, s+ az), (5.12)

P,g(z) =N ')b, i —ax( ' ')Es+ax[ ' 'O(D, ir(z)),

a; = b„A(/a(d, i+ bs) . (5.13)

(X )„=5 b, /a(a+ /A), (5.14)

in disagreement with exact result (5.8) above. Moreover,
for ( & 0 these approximations predict strong increase of
variance, which also seems to be incorrect.

VI. FINAL REMARKS AND CGNCLUSIGNS

We have defined the non-Markovian dichotomic noise
by means of the master equations (2.4) containing ex-
plicit, exponentially damped memory. The correlation

Approximations (4.12), (4.21), and (4.23) suggest that
P,i(x) is nonsero for z C (—hs/a, 6i/a), and P,q(z) = 0
otherwise. For approximation (4.12), for which ( ) 0, the
general properties of the stationary distribution remain
the same as in the Markovian case, with one exception:
for the marginal point pi ———@ps we have ( = 0, Hs = 0,
a; = 0, and the whole density contracts towards both
acc»niulation points z = —b,s/a x~ ——Ei/a. Other
approximations may change the general shape of P,q(z),
particularly the location of most probable values of z,q.
Note that the extremal points —b,2/a, +6 / ioaf the dis-
tribution are attracting only when ai & 1, a2 & 1, re-
spectively. Therefore, ( & 0 implies that these points are
attracting always, regardless of the values of remaining
noise parameters.

These approximations lead to the stationary variance
of the same form as for linear process driven by Marko-
vian DN:

function of such noise is characterized by two difFerent
correlation times and for some combinations of the noise
parameters may become damped oscillatory.

White non-Markovian noises are defined as limits of
the dichotomic noise. The limiting procedures are well
defined only when there is the Markovian admixture in
the non-Markovian kernel of the master equation. In this
way the non-Markovian Fokker-Planck equation is de-
rived. Its form is difFerent &om that proposed by Risken
[32]. The latter is written ad hoc with the whole right-
hand side under non-Markovian memory integral.

As we have mentioned above, non-Markovian white
noises discussed in this paper are characterized by
nonzero correlation time 80 . Therefore, one may argue
that the use of the term "white noise" for such entities
is self-contradictory. It can be also argued that the term
"non-Markovian white noise" itself is contradictory. In
present author's opinion this is largely the question of
definition what is white noise. " If we agree that this is
the uncorrelated (b-function-correlated) process, or the
process "without memory, " then indeed the process ((t)
in the limits (2.14) and (2.15) will not be white. How-
ever, if we agree that white process is that composed of
h spikes, then the mentioned limits of the process f(t)
do lead to non-Markovian white noises. In this paper we
have used the term "WN's" mainly for convenience, to
make a distinction between dichotomic process composed
of random signals of finite duration from that composed
of h-function spikes. These differences are important:
in the former case [$(t)]s is well defined [cf. Eq. (2.1)],
whereas in the latter j~ has no meaning.

We have sketched four different approximations for the
master equations describing the probability densities of
the general process X(t) driven by non-Markovian noise.
It is difficult to estimate fully their advantages and faults
on the basis of the results discussed above. Some insight
may be obtained &om the results discussed in the Ap-
pendix C.

What seems to be particularly interesting is the
difFerences between properties of Markovian and non-
Markovian noises, especially the differences in behavior
of stochastic processes driven by these noises. In that re-
spect, the non-Markovianity of the noise g(t) is best vis-
ible in time-dependent quantities, especially in the case
of mixed non-Markovianity, when the process oscillates,
i.e., when the inverse correlation times 8; contain nonzero
imaginary part. These oscillations are transferred to
driven processes X(t). This can be seen explicitly in
time-dependent quantities considered in Sec. V.

The oscillations are possible only for a mixed pro-
cess. For purely Markovian and purely non-Markovian
processes the time dependence is monotonic. That is,
the oscillations are the result of the competition between
Markovian and non-Markovian sub-processes. Moreover,
for a linear process the time-dependent quantities are
characterized by difFerent number of relaxation times:
one for Markovian white noises, two for non-Markovian
white noises and for Markovian dichotomic noise, and
three (or two and one frequency) for non-Markovian
DN's. Note that from this point of view there are no de-
tectable difFerences between processes driven by GWN's
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and WSN's, and between Markovian DN's and non-
Markovian WN's. However, the linear processes driven
by non-Markovian WN's and by Markovian DN's differ
in the dependence of their stationary variances on the
deterministic parameter a [cf. Eqs. (5.10) and (5.11)j.

The infiuence of non-Markovianity on stationary prop-
erties is more subtle. The stationary distributions of the
process ((t) are the same as for the Markovian process.
The stationary properties of driven processes are differ-
ent Rom the non-Markovian case, but direct calculation
of these differences is possible only in a small number of
simple cases (cf. Sec. V). All approximations discussed
explicitly above are unable to predict correctly the prop-
erties of stationary variance of the driven linear process.
Nevertheless, these approximations suggest that the non-
Markovianity of the driving noise manifests itself at least
in the rescaling of the correlation time A ~. Since usually
we do not know correlation times of the noise a prion, the
rescaling of A is insignificant at the level of description
by properties of P,q(z): number and location of extrema,
width of the distribution, etc. as long as rescaled A does
not change its sign. However, the change of the sign of
(A may shift the location of extrema and thus the most
probable stationary values of X. Therefore, even these
simple approximations may change the detailed shape of
stationary distribution, i.e. , may change at least some
of the stationary properties of the driven system. Still,
these approximations are unable to reproduce correctly
for example the properties of the stationary variance of
the driven linear process.

Higher-order terms of the short-memory expansion
(4.8), not discussed explicitly here, lead to higher-order
equations for P,q(z). The solutions of such equations
are no longer given by simple expressions of the type
of Eq. (4.33). This means that higher-order approxima-
tions may change also the general form of P,q(2:) and
the domain of x in which P,q is nonzero, i.e., change aO
stationary properties of the driven process. This means,
in turn, that the non-Markovianity of the driving noise
may change radically not only the time-dependent be-
havior but also the stationary properties of the driven
stochastic process.
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APPENDIX A: %'HITE NOISE LIMITS

p = (ieA —«)tji —
i

+ s —v —2S —V(v+ 2~) j»Ap+O(A ')

()). = »Ao+ s V p(v+ 2p)/2»Ap+0(A ),

~2 = ()'o + ((((v+ 2p)/2»Ap + O(A ),

+O(A '),
fp p

+O(A '),
PpAO

where p = pq/», s = »A2 for WSN and s = 0 for GWN.
This leads to

y(t) 1 + gl e
—p pht p(ep —8)t I4 e

—spt (A2)ypAp
)

yo&o

(A2) with (2.16) leads directly to (2.17).
For pp

——0, we get in the same way

where

@(t) = e " cos(ut) + — sin(ut)
247

(A3)

~ = ~(1 —a/(d ), (u = pgA m oo,

8a ~ —4pzA2 for WSN
v2 for GWN.

The derivation of Eq. (4.27) is as follows:

We shall present here some details of the calculations
leading to the formula (2.17). Applying the limits (2.14),
(2.15) we get for» g 0

iim A, exp[ —R(x t t')) = lim A, exp — (A, +Re) pe+p 7 (t t') + —f(x)+mekong(x) (t —t'))
Ag -+oo Ag mOO Bx

(A4)

where

t

T(t, t') =, dtgX(tg, tp).t —t' (A.5)

Then
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t+r
7 (t, t)h(t) = lim — dtgX(tg)h(tg)

v-+0 7

'+ & Bl
'

dt,
,
v+ —

~ h(t~)
v-+0 7 g Bt)

. . . h(tg)
~+~ B= lim — dt's 1 — +

vmo ~pl vBtg ( v8tg )

= l'm —[H(t+ ~) —H(t)] —-[h(t+ ~) —h(t)]+ —,[h(t+ ~) —h(t)] —.. . ~

1 1
T-+o 7 P P P

which implies

1 1 1- ( Bl= — h(t) —-h(t) + —,h(t) —.. . = v+ — h(t),
v v v ( Bt)

Therefore,

7(t, t) =Z(t). (A6)

) 8
lim A&exp[ —R(x t t )] = pp+tap —g(z)+pyX(t tp)

Ag moo Bz
h(t —t,), (A7)

lim Agp(x, hg, t) = pp+mp g(x)+—pgZ(t, tp)
Ag -+oo Bz [pp + p Z(t, t )]A'sP(z, t) . (As)

Recalling (4.16) and substituting these formulas to
Eqs. (4.11), (4.13), we obtain Eq. (4.27).

APPENDIX B:MOMENTS OF RANDOM
TELEGRAPH PROCESS

I

for long times, when all transients die out. There are
quantitative difFerences, moreover, transients may be-
come oscillatory. The asymptotic behavior, however, . is
governed by the same power law as in the Markovian
case, though with difFerent rate coefficients a„: the ratio
of non-Markovian to Markovian coefficients is

&(t) = ~(t) (B1)

assunung for simplicity the symmetric DN: b, q ——E2 ——

4, Aq ——A2 ——A, 40 ——0. It is easy to find that

n —j

To obtain an insight into the consequences of the basic
assumption of the Sec. III, let us find the properties of
the moments describing the random telegraph process:

(o)-M
(1 ) )

(& )M
(B4)

Therefore, the non-Markovianity slows down the spread
off rate when p = pq/pp ) 0, and enhances (unbound-
edly) the spread off when Markovian and non-Markovian
contributions are of opposite sign.

The moments of the second-order process, mentioned
at the end of Sec. V, grow as t3".

(*'"(t))= ) f, (e "',e-"')t +a„t",

with

(B2) APPENDIX C: CHECK OF APPROXIMATIONS
OF SECTION IV

n
(2n)! b, 2 ~gg —v 82 —v \

+n = Ite, e, ,
(2n)! v42
n! (vip + pg)A

(83)

and f„being rather complicated functions of noise pa-
rameters. Therefore, the non-Markovian DN defined in
Sec. III leads to the random telegraph process roughly
simi&ar to that driven by Markovian kinetics, especially

In this appendix we shall compare various approxi-
mations for the probability density P(x, t) for the ran-
dom telegraph process (C.l). In this case, P(x, t) is gov-
erned by various versions of the telegrapher's equation:
Eq. (4.25) in the approximation (4.9), Eq. (4.25) with the
kernel containing the factor b,2$(t —t') in the approxi-
mation (4.19), or Eq. (4.26) in the approximation (4.20).
Equation (4.25) with the right-hand side put equal to
zero describes the Markovian case.

The solution to all these equations, subject to the ini-
tial condition:
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P(z, 0) = b(z)

can be written (for Ep = 0) as

(C1) ag 2
——2(ap 6 Jap —4Dvk ), ao ——Dk + v —g,

(c14)

+OO

P(z, t) = — dk cos(kz) T(t, k)2K— (C2)
with D = Dp, v = v, g = p, for the approximation (4.9),
and

with T(t = 0, k) = 1, T(t, k = 0) = 1 representing the
initial condition and normalization, respectively.

The even moments (all odd moments vanish) of P(t, k)
can be calculated &om the formula

82"
(*'"(t))= (—)"

~~,„(t k) „,. (C3)

To simplify the calculations and the discussion as far
as possible, we shall consider only the white noise limit.
In this case,

b, Q(t) = D [b(t) —ye "], (C4)

(cf. Appendix A) with ep = p+ v, p = fy/ fp, which
leads to

O(t) = —(e"' —1)/Dpp (C5)

(here, Dp ——b,2/2App) and the telegrapher's equation be-
comes the Fokker-Planck equation. Therefore, the func-
tion T(t, k) fulfills the equation

D = Do/(1 —@Do), v = v+ Ho, g = p, —D (C15)

for the approximation (4.19).
Therefore, approximations (4.9) and (4.19) are in this

case rather similar —they dier mainly in the detailed
dependence on various noise parameters. The approxi-
mation (4.19) seems to be more "stiK" than the approx-
imation (4.9): for (4.9) ai 2 become complex conjugate
when y, ) v, whereas for (4.19)—when

—qi~(1+ y 1 —8vD) ( p ( —2D(1 —Q1 —8vD),

(C16)

P(z, t) = [4xD (p(t)] 'i'e ' i' ' ('). (C17)

and 8vD & 1, which gives much more narrow range of p
allowing for oscillatory behavior than (4.9).

The probability density can be expressed in terms of
elementary functions only for the Markovian case, and
for the approximation (4.20)

( ~~, + Dpk2) T(t, k) = A(T)

with A = 0 for the Markovian case,

(C6)
Nevertheless, the moments can be calculated direcly

for all considered approximations. We present results for
the second moment, i.e., for the time-dependent disper-
sion (z (t))ii = D (t):

t
A = y, dt'K(& —t'), T(t'),

dt' (C7) D, (t) = 2as(p(t) (C18)

with K(t) = exp( —vt) for the approximation (4.9),
K(t) = exp( —vt)b2vg(t) for the approximation (4.19),
and

A = —p,O(t) ~, T(t) (C8)

T(t, k) =Pge '+P2e

for the approximations (4.9) and (4.19), and

for the approximation (4.20). The solutions of these
equations read

for the approximation (4.20) (for the Markovian case
D.'(t) = 2Dpt), and

D (t)= vt—2D
P —g

1 —e " s' . (C19)

These results are to be compared with the exact re-
sults, obtained by direct calculation in the Appendix B.
In that light the most suspect seems to be the approxi-
mation (4.20), which predicts the spreading of the prob-
ability density over the whole real axis, and the infinite
value of the dispersion after a finite time

T(t k) DPk (P(t)— (C10)
g*= iln ]+l

V P (C20)

y(t) = as[t ——„'ln Ps(e"t —1) ], (C11)

and

as Dop A'o(1 + Dol ) Ps = ~oDp/a (C12)

a2(ag —v)
v(ay —a2)

(C13)

for the approximation (4.20) and in the Markovian case.
In the latter case p(t) = t, whereas for (4.20)

Therefore, the approximation (4.20) might be useful for
short times only.

In the approximation (4.19) v —g = 2v + p + y2D,
and thus the growth of the dispersion is asymptotically
proportional to Qt, as it should be. The approximation
(4.9), for which v —g = v —y, , predicts, however, that
for p ) v the growth of the dispersion becomes exponen-
tial. Results of the Appendix 8 show that such expo-
nential growth is an artefact of the approximation (4.9).
Therefore the approximation (4.19) is—at least in this
respect —a distinct improvement over the approximation
(4.9).
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