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Exclusive diffusion on a one-dimensional lattice is studied. In the model, particles hop stochasti-
cally in both directions but with different rates. At the ends of the lattice, particles are injected and
removed. The exact stationary probability measure is represented in the form of a matrix product,
as a generalization of the solution given by Derrida et aL [J. Phys. A 28, 1493 (1993)] for the fully

asymmetric process. The phase diagram of the current on the innnite lattice is obtained. Analytic
expressions for the current in the different phases are derived. The model is equivalent to an XXZ-
Heisenberg chain with a certain type of boundary terms, the ground state of which corresponds to
the stationary solution of the master equation.

PACS number(s): 05.40.+j, 05.60.+w, 75.10.Jm

I. INTRODUCTION

The one-dimensional stochastic exclusion process is of
interest for several reasons. Besides being the simplest
example for diffusion of interacting particles [2, 3] it is
closely related to various other phenomena such as in-
terface growth [4, 5], the dynamics of shocks [6, 7 or of
directed polymers [4], as well as freeway traffic 8—10].
Furthermore it can be mapped onto vertex models [ll]
or quantum spin chains [12—14]. Although the models are
fairly simple, only few exact results are known [1—7,16—
24].

Of particular interest is the asymmetric exclusion pro-
cess with open boundaries as an example for a driven dif-

fusive system coupled to its environment. For the fully
asymmetric process where particles hop only in one direc-
tion, the exact stationary state is known. The problem
was solved by Derrida, Domany, and Mukamel [18) for
special choices of the system parameters and generalized

by Schiitz and Domany [20] and by Derrida et aL [1].
Several phase transitions were found for this model. The
partially asymmetric process where particles are allowed
to hop into both directions, but with diH'erent rates, is

a natural generalization of the fully asymmetric process.
Some exact results are known for periodic boundary con-
ditions [21] as well as for a closed chain [24, 14]. In both
cases characteristic time scales can be determined. In
case of open boundaries an algebraic representation of
the stationary solution was proposed in [1] for particular
choices of the input and output rates.

The aim of this paper is to study the partially asym-

metric process with open boundaries. The method used
here is the algebraic ansatz introduced in [1]. Our main

result is the stationary solution of the master equation.
From this, expressions for the current on a large lattice
are deduced [see eqs. (4.12)—(4.14)]. As for the fully
asymmetric process, three phases are encountered (see
Fig. 1 in Sec. IV), assuming that the direction of the drift
is Gxed. It turns out that these phases reduce to the ones
of the fully asymmetric process in the appropriate limit.

The paper is organized as follows. In Sec. II the raodel
is defined. Then, in Sec. III the stationary solution is
introduced and two representations are discussed. The
stationary current on a large lattice and its phase dia-
gram are studied in Sec. IV. Section V concludes with
some remarks on the density profile, mean Geld results,
the algebraic structure of the solution, and the ground
state of the corresponding XXZ chain.

II. MODEL

We consider a one-dimensional lattice of length I.
Each lattice site can be occupied by one particle or can
be empty. Hence the state of the system is defined by a
set of occupation numbers rq, ..., rr, while r, = 1 (r, = 0)
means site i is occupied (free). The particles are assumed
to move stochastically on the lattice. With rate p they
hop to their right if their nearest neighbor site on the
right is empty and with a rate q they hop to the left if
their leR neighbor site is empty. Particles are injected
at the left (right) boundary with a rate o. (h) and re-
moved on the left (right) with a rate p (P). The dynam-
ics is supposed to be sequential, i.e., only one particle can
hop at a time. Thus if the system has the configuration
wq(t), ..., rl. (t) at time t it will change to the following:

for 1 & i ( L,

1 with probability x; = r;(t) + [(pr; q(t) + qv;+q(t))(1 —v;(t) j
T;(t+ct) = i —p, (t){1—r;+, (t)) —q~;(t) (1 —r;, (t) )]Ct

0 with probability 1 —x,. ;

(2.1)

fori = 1,
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1 with probability zq ——rq(t) + ((a + qrz(t) }(1—rq(t) }—7q(t)(p[l —rz(t)]} + p})dt
~,(t+dh =

0 with probability 1 —xq, (2.2)

and for i = L,

7L C+ dC
1 with probability zL, = rL, (t) + ((b+ prL, q(t)}{1—rL, (t)}—rL, (t)(q[l —rr, q(t)] + P})dt
0 with probability 1 —xg

(2.3)

This defines a master equation for the probability distri-
bution, which we may write as

BgP(rg, ..., rr„t) = H'P(rj, ..., rr„ t),
with

L—1

H = h~+ ) h;,;+g+ hL,

(2.4)

(2.5)

where the operator hz (hz) describes the change of the.
probability by means of particle input (and output) at
the left (right) boundary and h;, ;~q gives the impact of
the j»mps in the bulk. The explicit form of the operators
depends on the representation we choose.

The model exhibits two symmetries. It is invariant
under the following exchanges:

r

the Hamiltonian (2.8) can be try~formed into

H'=VHV ',
L-1-

H = ——
+ping ) o ~ tT.+g + tJ ~ o +(

I ~ N N

j=1

(2.ii)

with

1
+2(q+ q ')o;o;+i —

—,(q+ q ')

—A+~o, —iA, crf —Bgof —Ar+, of, —iAr or"

1
Br,o—r, + —(a+ P+ p+ &),

2
(2.12)

1 1 1 1A+= (~q+a-q ') Bi=-(~—a)+-(q-q ')
1 4

or

p~q, ac+8, pe+ad, (2.6) (2.i3)

7;Ml —r, , pMq, aMp, pub (2.7)

This enables us to restrict our study to the case p ( q
while results for the other part of the parameter space are
obtained by exploiting one of the the above symmetries.
Furthermore we may restrict our study to p+ q = l. Any
other value amounts to a rescaling of time only.

In the next section we are going to derive a stationary
solution of the master equation (2.4).

Here let us make some remarks on the relation of the
stochastic model to a quantum spin chain. We map the
master equation on a imaginary time Schrodinger equa-
tion (see, e.g. , [13, 23, 24]). In a basis defined by the
vectors Irq, 72, , rL, ) the ..H. amiltonian then reads:

1 1
Af = -(pq +bq );Br, ——-(p —8) —-(q —q '),L 4

(2.i4)

which is a spin-1/2 XXZ Hamiltionian with a certain
class of boundary terms.

III. STATIONARY SOLUTION

An algebraic ansatz for the stationary measure of the
fully asymmetric process was proposed in [1). Proceed-
ing in the same way we assume the system to have a
stationary probability distribution which can be written

H = —~pq ) ) q [c,c~+g —(1 —n~)n, +g]

+q[cJ+,cC —cc, (1 —cc,cc)]l

L

PJ, (rg, ..., rg) = 0 [r;D+ (1 —r&)A] 0 Z~, (3.1)
i=1

where

with

—a(c, —1+ng) —p(cg —ng)t

—b(c~ —1+ nL, ) —p(cr, —nL, ),t (2.S)

(2.9)

ZL, = (OIC~IO), C = D+ A i (3.2)

with some matrices D and A and vectors (0I and IO).
The following algebra was shown in [1] to give a station-
ary probability distribution for a lattice with up to three
sites:

(2.10)

Here the operators ct and c~ create and a»»ihilate par-
ticles at site j. They obey spin cow»mutation rela-
tions and may be written in terms of Pauli matrices:
c,. = (o +io".)/2, ct = (cr —io".)/2, and n,. = (1—o')/2.
Using the operator [15]

V —n —Z)=x &~~
7

pDA —qAD = D+ A,
(PD —hA)Io) = Io)

(0l( A-~D) =(oI .

(3.3)
(3.4)
(3.5)

This algebra defines a stationary solution for a lattice
of any n»mber of sites, which can be shown as follows.
Consider the action of the operator h, ,+q I'rom (2.5) on
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the probability of a certain state on a lattice of L + 1
sites:

ago ——P o. VIc )0, (3.i7)

hi iy i PL+ i (. . .Ti 11—0Ti +2 ~ ~ .) Gy~= 0! . p g pg +1
pP—L+i(. . .T; i 10T;+2. . .)

+qPL+i(. . .T; iolT, +2. . .) .

Using (3.3) results in

h;;+i PL+i(. . .T, ilOTi+2. . .)

+) (",'+, )p
"+' 'q VL & O,

v=O

0 ( i ( k + 1 (3.18)

k(P—L(. . . T; ioTi+2. . .) + PL( . . Ti . ilTi+2. . .))
(3 6) and

where k = ZL/ZL+i and similarly

hi, 'PiPL+i(. . T' iolT;+2. . .)

ayI, +q
——p q o. p VIc & 0,—A, k —1

@+X

Psr+i = ~ &a's'+ si

(3.19)

(3.20)

h;~, +iPL+i (...Ti iooT;+2. ..) = 0 (3 8)

h', '+iPL+i(. ..T; illT, +2...) = 0 . (3 9)

Using (3.4) and (3.5) we find

hiPL+1(1T2".) = kPL(T2" )

hiPL+1(OT2" ) kPL(T2".)

hLPL+i(. ..TLl) = kPL(. ..TL)—,
hLPL+i(. TLO) = kPL. .(...TL),

(3.10)

(3.ii)
(3.12)

(3.13)

Equations (3.6)—(3.13) explicitly describe the action of
the local parts of the Hamiltonian. Applying the full

Hamiltonian I= hi + p,. i h;;+i + hL to the probabil-
ity of any configuration on a lattice of length I, + 1, all
occurring terms add up to zero. Consequently the algebra
(3.3)—(3.5) defines a stationary probability distribution.

Let us remark that for periodic boundary conditions
the stationary solution can be written as PL[Ti, ..., TL] oc

Tl' g,. i[T;D+ (1 —T;)A] with the algebra (3.3). This
can be proved in the same way as above.

The algebra (3.3)—(3.5) in the above given form does
not allow for explicit calculation of probabilities. How-
ever, the following relations, equivalent to Eqs. (3.3)—
(3.5), define rules to compute PL(Ti...TL):

'"(kI = (oID" (3.14)

with

&'&(kIA=) o„~'&(iI,
i=O

~'l(k[0) =., vk = o, i, 2, ...

(3.15)

(3.i6)

= k(PL(. . . T; i07;+2. . .) + PL(. . . 7; ilT;+2. . .)) .

(3.7)

Obviously

Here we assumed a ) 0.
Equation (3.14) is the definition of the vectors ~il{kI.

Equations (3.15) and (3.17)—(3.18) are consequences of
Eq. (3.3) for the product DA and Eq. (3.5). Equa-
tions (3.16) and (3.20) follow from (3.4). A detailed proof
of the equivalence between the algebra (3.3)—(3.5) and
the rules (3.14)—(3.20) is given in Appendix A.

Note that in the case of totally asymmetric diH'usion

(p = 1 and q = p = b = 0) studied in [1,20] Eqs. (3.14)—
(3.20) simplify to

"(kI = (oID"

~ l{kIA=) ~ l{zI+n (0],
i=1

~'l{k]o) = p "Vk = o, i-, 2, ... .

(3.2i)

(3.22)

(3.23)

(3.24)

(3.25)

Another similar representation of the algebra (3.3)—(3.5)
can be found starting from Ik) = A" Io) and proceeding
in the same way as above.

The stationary probability distribution is given by
Eq. (3.1). In order to find the probability of a cer-
tain configuration we have to calculate expressions such
as (OIDADDDAA. ..IO), which reduce to linear combina-
tions of the scalar products 8~ after application of rules
(3.14)—(3.19). Fixing so, say, to so ——1, the latter quan-
tities can be computed from the recursion (3.20). Hence
Eqs. (3.1) and (3.2) combined with Eqs. (3.14)—(3.20)
give a representation of the stationary probability dis-
tribution and enable us to calculate the probability of
any configuration as well as any kind of averaged quan-
tity. They may be used for numerical calculations. The
dimension of the representation is L+ 1.

Here we introduce another representation of the alge-
bra (3.3)—(3.5) which is more convenient for the large
lattice approximations done in Sec. IV. Let us start with
defining operators F and Ft by
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The relation (3.3) reads, in terms of F and Ft,
FtF —q FFt = 1 —q (q = gp/q & 1 ) . (s.26)

Ft)k)&'& =(&+1),' ')k+ l)~'&,

F)k)& & = (k)— )k —1)&'&

with

(3.27)

(3.28)

zq ——1 —q for any z & 0, (3.29)

where the )k)i &, with k = 0, 1,2, ..., form an orthogonal
basis in an infinite-dimensional Hilbert space. Ft is ad-
joint to F Equa. tions (3.24), (3.25), and (3.27)—(3.29)
specify the action of the operators D and A in this ba-
sis. Note that up to a factor the q-oscillator operators
at and a act like Ft and F here. The consistence of the
representation with Eqs. (3.26) is obvious.

For the computation of probabilities according to (3.1)
we need furthermore to project the vectors (0) and )0) on
the basis vectors in a way that the relations (3.4) and
(3.5) representing the boundary conditions are ensured.
Let us write

Operators commuting as above are known to be related
to creation and s~nihilation operators of a q-deformed
harmonic oscillator [25—27]. The latter operators may
be defined as at = (q —q ) i~2q ~2Ft and a = (q-
q i) i~sFq~~2, where N is a particle number operator
[25].

We choose a representation of (3.26) as [25]

placing rs by ls, P by a, and b by p. Equations (3.30)
and (3.31) give a representation of the boundary vectors
in the above defined basis. Together with Eq. (3.24),
(3.25), and (3.27)—(3.29), which specify the action of D
and A, we may calculate any probability supposing we

have computed the coefficient rI, and lp by means of
the recursions (3.33) and (3.35). The procedure is not
very convenient for m~merical examples since we have to
deal with an infinite-dimensional representation. How-

ever large lattice approximations are seen more easily
here than in the first representation. This is because of
the impact of the left boundary, of the right boundary,
and of the bulk enter in the left vector, in the right vector,
and in the matrices, respectively.

The physical quant&ty we are to analyze in detail is the
current j, which in the stationary state is independent of
the position. It can be written in a convenient way as

C~)k)i'& =) c')i)~'&
i=p

(3.38)

and using the rules (3.27) and (3.28) we get a recursion
relation

g = (0)C (pDA —qAD)C)0)Zz ——Zr, iZ& (3.37)

because of Eqs. (3.1)—(3.3). Therefore we have to cal-
culate Zl, = (0)C )0). Let us define the coefficients

c,&
—— i &(i)C~)k)& & as the matrix elements of the oper-

ator C . Applying C = (Ft + F + 2)/(p —q) from the
left to

i=p

(s.so)

(3.31) with

circe vik s cia = v

(s.s9)

Equation (3.4) reads, in terms of Ft and F,

[PF —bFt + P —b —p+ q])0) = 0, (3.32)
for i & k+ L or i ( max(k —L, 0) . (3.40)

which results after using Eq. (3.30) as well as (3.27) and
(3.28) in

Using the decompositions of the boundary vectors (3.30)
and (3.31) as well as Eq. (3.38) we find the following
expression for Z~ = (0)C~)0):

0 =P(k + 1)q~ rs+i

+(P —b —J +q) a —&&k),'~'
s i, -- ZL = ) iicqsrsL

k,i=p
(3.41)

where

rp ——1, r g
——0. (3.34)

where

From Equation (3.5), in the same way we find, for the
left vector,

O = ~(k+1),'~'&,+, +(~ q p+q)4 —p(k—),'~'4 i—, -
(3.35)

After solving the recursions for /s, r;, and c&, the above
equation allows for the calculation of ZI. and hence of
the current. In the next section we are going to do this
for a large lattice.

IV. THE STATIONARY CURRENT
FOR A LARGE LATTICE

The following approximation is derived in Appendix
B.

lp ——1, l j=0. (3.36)

Equation (3.35) can be obtained f'rom Eq. (3.33) by re-
[e+(P,h)]" for ~+(P, b) & 1, k && 1
[m (P, b)]" for ace(P, b) (1, k && 1

(4.1)
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with

1
~+(»b) = —[ P—+ b+» —q2P

+V'( p-+ b+ p q-)'+4Pb] . (4.2)

Similarly we find, for the coefficients lg,

For all choices of parameters [rc (p, b)[ & 1. That
means for e+(p, b) & 1 the coefficient ri, decreases ex-
ponentially with Ic whereas it increases exponentially for
e+(p, b) & 1. Note that the condition tc(p, b) & 1 is
equivalent to p —b & "2s.

extends over terms such as [tc+(P, b)tc+(a, p)]". In or-
der to avoid this divergence we redefine (Ol as (Ol

limiv~~( P, Ol; ~ l(i[ [P. o A~] j with some real
A. Choosing A & e+ (p, b)e+ (n, p) ensures convergence of
the sum for ZL, . Consider now the product (OlC F[0).
Since F[0) = Ps ~(k+ 1}q ri,+ilk) we may write

N oo

(OlC 'FlO) = lim ) ) (k+1},'~'
i=O k=O

N

x l, c mrs+ i ) A~

j=O
[~p(n, p)]" for ~+(n, p) ) 1, k )) 1

[z (n, p)]" for x+(cr, p) & 1, k » 1
= ~+(p, b)ZL, i, (4.7)

with

1
~+(~, w) = —

[
—~+ v+ p —q

2A

+V'( —~+ ~+ p —q)'+4~~] (4.4)

4
c,&/c,.& — for k « L, i « L, » 1

(4.5)

This can be shown analytically for q —+ oo, where a re-
cursion of the same type as for the c~s was solved in [1].
We did not succeed in deriving Eq. (4.5) for general q,
but the recursion (3.39) can be solved numerically. For
all choices of q the above relation turns out to be correct.
This result is plausible since, after removing the factor
1/(p —q), the recursion is similar to that for the simpler

special case. Only additional factors (k j-~ occur, which
are approximately 1 for almost all k.

We use this approximation for the calculation of ZL,

by means of Eq. (3.41). DifFerent cases have to be dis-
tinguished.

The case e+(P, b) & 1 and e+(a, p) & 1. Here both of
the coefficients r, ,/; fall exponentially with i. Hence the
main contribution to ZL, is given by the terms with small
i, k in the sum. For small i, k the approximation (4.5)
for the c+s can be used. The region of validity of (4.5)
increases with L while the descent of r, and l,. is indepen-
dent of L. Therefore we find, for L &) 1, ZL, /ZL, P
and, for the current,

~ P
4

(4.6)

The case K+(p, b) & z+(a, p) and e+(p, b) & 1. Here
the coefficient rg increases exponentially with k.
may or may not increase with i. In any case l,. can-
not increase faster than r;. Suppose now l; increases
as well. Then the sum (3.41) does not exist since it

and [e (o., p)[ & 1. That means for a —p & "z~, where

z~(a, p) & 1, the coefficient ri, decreases exponentially
with k whereas it increases exponentially for e+(o., p) &
1.

The coefficients c~s are found to obey a simple relation

1=b ' ((p+b —p+q)ZL, -i
P

+(P+ b)(OIC' 'FIo) j . (4.8)

Inserting Eq. (4.7) into Eq. (4.8) results in

Zi, = ZL, ib ' ((P+b —p+q)+(P+b)K~(P, p) j .] 1

(4.9)

Finally, using Eq. (4.2) for ~+(P, p) we find, for the cur-
rent j = ZL, ,/ZL„

( (P —b)(p —q) —(P + b)'
2(» —q)

+(p+b)V'(p —b —p+q)'+4Pb } . (4.10)

The «se ~+(n, p) & ~+(p, b) and r+(n, p) & 1. The
current for this case can be derived simply &om the above
result by applying both symmetry operations (2.6) and
(2.7). Since the current does not depend on the position
on the lattice we just have to replace P by n and b by p
in Eq. (4.10):

( (~ —~)(p —q) —(~ + ~)'
2(» -q)
+(~+ ~) V'(~ —~ p+ q)' + 4~~ j . — (4.11)

In summary, assuming the above approximations to be
exact for L —+ oo, we have found analytic expressions for
the current j on an in6nite lattice. The dependence of

where we have used the fact that the main contribution
to the k sum for any i stems &om large Ic terms. Small k
terms with large i contribute less to the whole sum than
large k terms since rI, increases faster than /;. For k && 1

we can approximate rs oc [e+(P, b)]" and (k+ 1}& l.
In the case that l; does not increase with i, the same
argument applies.

Writing now C as C = b i[ (PD —b—A) + „(p+
b) + „(P+ b)F ] we get

zl =b '(0 c~ ~( (pD —bA)—

+ (P+ &) + )8+ ~)+
Io)s
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FIG. 1. Phase diagram for the current on a large lattice
for p & q in terms of e~(a, p) and ~+(P, b), where ~~(z, y) =
~' [

—*+y +p —q + g(—z + y +p —q) ~ + 4zy ]. The phases
are separated by the dashed lines.

j on the systexn parameters is difFerent in three regions
of the parameter space. Figure 1 shows the phase dia-
gram. The phase separation lines are de6ned by means of
the nonlinear expressions e~(P, 8) and e+(a, p) [see Eqs.
(4.2) and (4.4) ]. In the fully asymmetric limit these func-
tions reduce to m~ (a, p) = (1—a)/a, e+(P, b) = (1 P)/P—
for a, p & 1 and the phase diagram is the one described
in [1,20).

The currents in the three phases are as follows:
Phase A. e~(p, b) & e+(a, p) and e+(p, b) & 1

1
( (P b)(p q) ——(P+—b)'2(p- q)

+(p+ ~) V'(p ~ p+ q)'+ 4p-~ 3 . (4.12)

Note that the condition e+(p, b) & 1 is fulfilled if p-
b & "2~. In the fully asymmetric limit, i.e., for p = 1,
q = p = b = 0, the high density phase described in [20,
1] is recovered.

Phase B. e~(a, p) & e+(P, b) and tc+(a, p) & 1:

1
( (a ~)(p q) —(a+ ~)'-2(p- q)

+(a+ ~) V'(a ~ p+ q)'+ 4a~-) . (4.13)

The condition e+ (a, p) & 1 is fulfilled if a —p & (p —q) /2.
This phase corresponds to the low density phase in the
fully asymxnetric limit.

Phase C. m+(p, b) & 1 and e+(a, p) & 1:

~ pj =
4

(4.14)

In the fully asymxnetric limit the maximum current phase
is recovered.

These phases were found for p & q. For p ( q similar
results are derived in a trivial manner using one of the
symmetries (2.6) or (2.7).

Numerical calculations can be done most easily in the
first representation of the algebra. They show that for
typical choices of parameters (not to close to the phase
lines) in the phases A or B the current has its value given
above already for $ & 50. In the phase C the convergence
is much slower (about factor 10).

V. CONCLUSION

By fixing the preferred direction of the difFusion, three
phases have been found for which the current on an in-
6nite lattice obeys difFerent equations. They correspond
to the phases known for the fully asymmetric process
which are recovered in the appropriate limit. The transi-
tion lines as well as the current are described by nonlin-
ear functions of the system parameters. The full phase
structure of the process may be richer taking into account
transitions in the behavior of other quantities such as the
density pro61e which have not been studied here. We ar-
gue that the situation here is similar to the one observed
in the fully asymmetric model [20].

A mean 6eld approximation can be applied in a way
similar to what was done for the fully asymmetric process
[18]. As in Ref. [18], it turns out that the obtained
current and the phase structure are exact.

The density pro6le is expected to be similar to the one
for the fully asymmetric process. As it can be seen by
numerical calculations or by simple arguments using the
first representation discussed in Sec. III, the density pro-
file in phases A and B approaches a constant value &om
one of the boundaries. In phase C the density is constant
in the bulk while it varies near both of the boundaries.

The stationary solution exhibits an interesting alge-
braic structure. The commutation relations (3.26) are
related to the ones of creation and annihilation opera-
tors of a q-deformed oscillator. The latter ones can be
use to construct the generators of the quantum group
U~[SU(2)] [25], which is the symmetry group of asym-
metric difFusion on a closed chain [24, 14]. On the other
hand, the q-oscillator algebra can be obtained &om the
quantum group U~[SU(2)] as a large j limit [27).

Since the stochastic model can be xnapped on a spin-
1/2 XXZ chain its stationary solution corresponds to the
ground state of this quantum system. Precisely speak-
ing, the state ]Qp) = Qf ) Pl, (7g, , ..., 71,)~~g, , ..., 71,),
with Pr, (71, , ..., +L, ) given in Eq. (3.1), is the ground
state of the Hamiltonian (2.8). Here r~ = 0 means spin
up and ~~ = 1 means spin down. The ground state
of the Hamiltonian H' defined by Eqs. (2.12)—(2.14) is

vip, ) = q'~'="'I@.)

ACKNOWLEDGMENTS

The author would like to thank D. Mukamel for stixn-
ulating discussions and for a careful reading of the
manuscript;. Financial support by the Minerva Founda-
tion is gratefully acknowledged.

APPENDIX A

Here we prove the equivalence between the algebras
(3.3)—(3.5) and (3.14)—(3.20). Equation (3.14) is the def-
inition of the vectors ( l(0[. Equation (3.15) reduces for
k = 0 to Eq. (3.5). To show its equivalence to (3.3) and
(3.5) for any k, we have to apply A to (k] iteratively, i.e,
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(A1)

(0~A = ~-'(0] + ~-'& &') (1],
(') (1[A = (O[DA

=p '(0](D + A + qAD)

=p '(q~ '~ "(21+(1+~ '~+q~ ')
(')(1]+--'(0]~,

&'&(2]A = &')(1(DA =

which is Eq. (3.20). This completes the proof of the
equivalence of the algebras {3.14)—(3.20) on the one hand
and (3.3)—(3.5) on the other.

APPENDIX B

Bom this we see

&+1
(')(k~A =) a„(')(i] (A2)

In this appendix the large k approxiination (4.1) and
(4.2) for the components of the right boundary vector rs
is derived. For k &) 1 the recursion relation (3.33) reads

with

i=0

a&o —P 'a-' Vk Oo,

I, p q Vq . +1
k —i+1

(A3)

0 = pry+i + (p —b —p+ q)rs —br'

It is solved by the ansatz rI, ——b~", which results in

0 = pK + (p —b —p+ q)K —b

This quadratic equation for K, has two solutions:

{82)

+J -'a'„VI & O, O & i & k+ &,
ah.,g+1 ——J 'q'O. 'P VI &0 .

(A4)

(A5)

1
~+(P, b) = —[—P+b+ p —q

2P

kQ( —P+ b+ p —q)2+ 4Pb ] . (83)

&'a; = paa i; i +;,' I
q' ' &« i & k,

2 —1) (AS)

The coefficients as, obey the following recursion relation:
Hence we may approximate, for k && 1,

rs = b+[&+(P b)]" + b-[&-(»b)]" . (84)
which results in

2+v~] v i —v-1
aki —~ - ]E )]q p

v=O
(A7)

%+1

psfe+1 —b ) Qsisi + sg
i=O

(A9)

Inserting Eq. (A7) into (A4) results in the expression
(3.1S) for the coeKcients cs, , which prove the equivalence
of Eqs. (3.3) and (3.5) to Eqs. (3.14), (3.15) and (3.17)—
(3.1S).

Multiplying ( ) (k[ from the left by Eq. (3.4) and using
Eq. (3.1S) gives

' (k](PD —bA)]0) = ss (AS)

Using Eqs. (3.14) and (3.15) we find

[K+(p, b)]" for e+(p, b) & 1, k » 1
[tc (p, b)]" for e+(p, b) ( 1, k )& 1 . (85)

This is the large k approximation for the rI, . For the left
boundary vector components lI, we find a similar expres-
sion since the recursion for Ig has the same structure as
the one for rs Only P is. replaced by a and p is replaced
by b.

From Eq. (83) we see that for p —b ( (p —q)/2,
K+(P, b) & 1 whereas for all choices of parameters

(p, b) ( 1. For z+(p, b) & 1 the second decreas-
ing term in Eq. (84) is negligible. On the other hand,
if p —b & (p —q)/2, i.e., e+(p, b) ( 1, we still find
]ac (p, b) [ ( 1 and ]~ (p, b)] & ]~+(p, b) [. Then the first
term in Eq. (84) becomes negligible in comparison to the
second one. Consequently
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