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Synchronization efFects in the dynamical behavior of elevators
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We simulate the dynamical behavior of M elevators serving N floors of a building in which a
Poisson distribution of persons call elevators. Our simulation reproduces the jamming effect typically
seen in large buildings when a large number of persons decide to leave the building simultaneously.
The collective behavior of the elevators involves characteristics similar to those observed in systems
of coupled oscillators. In addition, there is an apparently rule-free critical population density above
which elevators start to arrive synchronously at the ground floor.

PACS number(s): 05.45.+b, 87.10.+e

The macroscopic effect of collective synchronization
is a remarkable phenomenon occurring in several fields
and is presently a topic of very active research. Effects
of collective synchroaization can be observed in situa-
tions as diverse as, for example, the dynamics of sliding
charge-density waves [1], the phase-locking of relativis-
tic magnetrons [2], and many other situations of interest
in physics and engineering [3]. In addition, as early ob-
served by Winfree [4], synchronization is a phenomenon
that also occurs in virtually all levels of biological organi-
zation. Interesting examples of mutual synchronization
involving biological phenomeaa are epileptic seizures in
the brain, electric synchrony among cardiac pacemaker
cells, Bashing synchroay among swarms of fireBies, crick-
ets chirpiag in unisoa, synchronization of meastrual cy-
cles in groups of women, and several others [5]. A com-
mon way of investigating the dynamics of such collections
of oscillators is by assuming a relatively weak coupling
K among them together with a random distribution of
eigen&equeacies. Increasing coupling &om zero one finds
incoherent collective behavior up to a critical threshold
after which the system starts to behave in a state dis-
playing relatively high degrees of synchronization among
the iadividual oscillators composing the system. A con-
venient way of dealing analytically with several coupled
oscillators is via a model proposed by Kuramoto [6], who
assumed the dynamics to be ruled by the set of equations

i = 1, 2, . . . , N. (1)

In this equation N is the number of coupled oscillators
while 8; and u; are their phase and natural &equency, re-
spectively. Recent progress in the understanding of the
dynamical behavior of systems containing relatively few
degrees of &eedom along with a strong motivation to un-
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derstand aontrivial temporal and spatial structures has
led to much interest in models for spatially extended sys-
tems [7]. In several of these investigations, not only the
somewhat more traditional mathematical approach of us-

ing sets of either ordinary or partial differential equations
has been used, but different aspects have been uncovered
by also using coupled map lattices and cellular automata
[7-9]

The purpose of this paper is to report synchroniza-
tion effects observed in a computer simulation of the dy-
namical behavior of M elevators serving N Hoors of a
building. Specifically, we report here the dynamics of
the jamming effect occurring at a certain time when a
large number of occupants of a building decide to leave it;

nearly simultaneously or, in other words, the Eeierubend
effect. Macroscopic synchronization effects between ele-
vators were observed under a number of difFerent condi-
tions, all of them variations around a simple set of "work-

ing rules" assumed to de6ne the dynamical behavior of
the elevators. These rules were chosen in such a, way
to provide a reasonably fair represeatation of what one
usually gets &om not very sophisticated, not computer-
ized elevators. The definition of a set of rules controlling
the behavior of elevators is not a completely trivial task
since the movement of elevators depends on a quite large
number of factors. To start, while one might easily agree
on a working defiaition for small and large buildings, it
is hard to differeatiate unambiguously the "transition"
&om small to large buildings. This question is relevant
because elevator rules good for small buildings are not
practical for higher buildings and vice versa. In higher
buildings, it is common practice to divide the total aum-
ber of elevators into smaller groups in order to ensure
good service for all Boors. This division is not unique:
one may use some elevators to serve only odd-numbered
floors while the others serve even-numbered Boors; or one
may decide that a number of elevators will serve only the
Grst, say, ten floors, the next will serve Boors 10 to 20,
and so on. It is not dificult to imagine a number of other
possible combinations. In addition to all this, there are
a number of specific details that need to be defined in
order to optimize the process, i.e., to minimize the time
needed for a person to move between Boors and to mini-
mize energy consumption.
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In what follows we will assume the ground Boor to be
the only possible way to exit the building and that all
calls for elevators are from passengers wanting to exit
by going to this Boor. This choice reBects closely the
phenomena that we want to consider. Each elevator can
carry no more than 20 passengers simultaneously. The
specific working rules of the elevators are ass»med to be
as follows. Whenever &ee elevators are available, every
call originating &om a Boor from which there were no
previous unresolved calls will set the closest &ee eleva-
tor in motion. This will occur regardless of the relative
position of the Hoor originating the call and of any pre-
existing movement of elevators. After fulfilling the origi-
nal call that set it moving, every elevator will always try
to attend all other calls appearing in the Boors lying be-
low it, namely, it will stop at all levels lying below. While
in practice one knows that an elevator already full can-
not accept new passengers, real elevators are &equently
not able to recognize and use the information that they
are full to avoid stopping unnecessarily at lower Hoors.
We simulate both situations: "naive" elevators, elevators
which even after being full will continue to stop for every
unfulfilled call &om below, and "smart" elevators, eleva-
tors that once full will ignore all subsequent calls, moving
straight to the lowest Hoor. Empty elevators arriving at
empty Boors, i.e., Boors that have already been served,
or on the ground Hoor will stop and either wait for a new
call or move to Boors where there are passengers calling,
which could not be served earlier.

The updating of the dynamics is done at regularly
spaced time intervals, controlled by the discrete ticking of
a clock. At every clock step we assume p„(nl,) new pas-
sengers to call elevators from the kth Boor, distributed
according to a Poisson law

where p, is the Poisson parameter. At every clock step
the location and movement of every elevator will also be
updated. The speed of the elevators is one Hoor per time
step, either up or down. Whenever an elevator stops in
soxne Boor, it remains at the Boor during a few clock
units. This tixne is intended to represent an average time
consumed in opening the door, moving passengers and
closing the door. In the present sixnulations we assumed
this time to be five clock units. In absence of any new
call, elevators will either preserve their previous state of
movement or stop, if they reach the first Boor. Other-
wise, elevators wiH react to new calls as described above.
To investigate the dynaxnical behavior as a function of
p we perform simulations over relatively long time inter-
vals (typically t = 5000 clock steps) accumulating sev-
eral quantities at every clock step, e.g. , the total n»mber
of elevators that arrive at the ground Boor, the num-
ber of times that L elevators arrive simultaneouahI at the
ground level, the cumulative number of passengers trans-
ported, the ni~mber of passengers waiting in each queue,
etc.

Based on these assumptions we wrote a FORTRAN pro-
gram to simulate the dynamics of a few diferent buildings

1 2 3

FIG. 1. Schematic representation of a typical building.
The black shading of each elevator is proportional to the num-
ber of passengers that it carries.

with several possible number of elevators. Simulations
were done for different values of the Poisson parameter p, .
Apart &om storing the aforementioned relevant quanti-
ties describing the process, the program could also be run
interactively, generating a postscript on-screen animation
of the dynamics, which could be easily video recorded.
An schematic snapshot of a video &arne is given in Fig. 1.
The shading of each individual elevator is proportional
to the number of passengers that it carries. Further (not
shown in the schematic figure), the actual number of pas-
sengers waiting on every Hoor was displayed on the left
of the rectangle representing the building by a line seg-
ment with length proportional to the population density.
Line segments on the right side indicated the cumulative
number of passengers transported since the beginning of
every run. The majority of runs was done for M = 10
elevators and N = 50 Boors. For numerical values of this
order, the position, the population density inside every el-
evator (their shading) and the population density outside
every Hoor (line segments) may be comfortably updated
on screen at every time step, producing an actual movie
of the dynamics. In this way we are always able to vi-
sualize simultaneously the up-and-down movement of all
elevators and to monitor the behavior of the population
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FIG. 2. Accumulated population density after 5000 time
steps. Above p 0.03 the transport is not eKcient anymore.
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FIG. 3. Critical values of p, as functions of the number
of Boors and number of elevators. As seen in Fig. 2, beyond

p „~the transport is not eKcient anymore. The characteristic
exponent underlying aQ curves is p

50

inside every elevator and on the several waiting queues.
By monitoring the number of passengers in the waiting
queues and inside elevators, it was possible to recognize
many interesting effects such as, for example, when the
number of elevators was well adapted to the size of a
building, to the population density living in the build-
ing, etc. Simulation of a particular building consisted
essentially of "playing the elevator game" for different

values of p, and observing the dynamics on screen while
c»mulating important members for later analysis.

Figure 2 shows for p, between 0 and 0.1 the number of
passengers transported and waiting elevators aRer 5000
clock steps. One clearly sees the existence of an oper-
ational "jamming threshoM. " For p, slightly above the
criticc/ value p,, 0.03 the ten elevators are not able to
cope with the tradBc anymore: the number of waiting pas-
sengers increases rapidly while the number of passengers
transported tends rapidly to the maxim»m limit afforded
by the capacity of the total number of elevators. Figure
3 shows a plot the critical values of y, obtained by simu-
lation the dynamics of buildings containing 10 & N & 80
fioors and served by either M = 1,2, 5, 10, or 20 elevators.
As one sees from the graph, the behavior on a log-log plot
may be very well fit by straight lines. By changing the
size of the building, the capacity of the elevators and/or
the number of elevators serving the building one obtains
curves displaying qualitatively identical behaviors. For
example, for N = 50, we find y,,»t 0.00312 M for
1 & M & 25. A typical recording of the time evolu-

tion of all elevators is shown in Fig. 4, which displays
simultaneously the movement of all ten elevators as a
function of time. Each line in this graph represents the
actual trajectory followed by an individual elevator. The
ten lines are not individually discernible in Fig. 4: for

p = 0.01 because the ten elevators move in an uncorre-
lated way with their individual trajectories significantly
overlapping each other, and for higher p values because
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FIG. 4. Up-and-doom movement of ten elevators as a func-
tion of time for three diferent Poisson distributions of calls.
In this and subsequent figures, the time is measured in arbi-
trary "clock" units, used to update the dynamics.

FIG. 5. Time evolution of the cumulative number of ele-

vators arriving on the ground Soor. The lower picture is a
magni6cation of the portion inside the rectangle in the upper
one.
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FIG. 6. Histograms showing the number of simultaneous
arrivals as a function of time and population density.

they then synchronize. The point of the figure is to show
that for p values of the order of 0.1 the elevators move
always stochastically, i.e., independently of each other,
reBecting essentiaOy the raadomaess of the arrival of call-
ing passengers in each Boor. As p increases oae sees
the appearance of white intervals along the lowest level.

Such intervals represent quiescent periods, when all ele-
vators are busy elsewhere. Thus, as p, increases there are
sequences of roughly periodic time intervals where the
majority of elevators bunch at the lowest quota (ground
level), indicating a relatively high synchronization of the
arrivals on the ground Boor as the number of calls in-
creases.

An alternative way to recognize the synchronization
is by monitoring the time evolution of the cumulative
number of elevators arriving at the ground Boor. This
time evolution is recorded in Fig. 5. For small popula-
tion densities one observes essentially a linear increase in
arrivals vs time. For higher densities the number of ar-
rivals increases discontinuously, roughly periodically, via
"quant»m" jumps. These increases occur ia the rela-
tively short time intervals when several elevators arrive
simultaneously. The smallest (and barely visible) vertical
jump corresponding to the arrival of a 8ingle elevator may
be more easily recognized &om the curve corresponding
to the lowest density, i.e., p = 0.01. The synchroniza-
tion and its corresponding characteristic &equency may
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FIG. 8. Total number of waiting passen-
gers for both naive and smart elevators.
Numbers refer to the elapsed time after which
measurements were done, in units of 1000
clock steps.
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be also recognized from Fig. 6. As a function of time,
this figure shows the number of coincidental arrivals at
the ground Boor for three difFerent values of p. For low

p, the most salient feature is that elevators tend to ar-
rive independently, as indicated by the large number of
siagle events recorded. As p increases, there is a redis-
tribution, with many more elevators arriving simultane-
ously. For p = 0.03, near the jamming threshold, one
may already recognize visually the presence of an under-
lying periodicity in arrivals. With respect to Fig. 6, it is
important to notice that the 6gure gives the total num-
ber of elevators arriving at every single clock step. This
is a very striagent defiaition of synchronization because
it only considers as "simultaaeous" those arrivals hap-
pening at exactly one single time step. A more tolerant
characterization would very likely involve considering as
"simultaneous" all arrivals occurring within a time win-
dow larger than a single clock unit. The increase in the
number of quasi-simultaneous arrivals seen in Fig. 6 is
responsible for the regularly spaced jumps appearing in
Fig. 5.

To recogaize quantitatively the &equencies underlying
the regularities seen in the spacings of Fig. 6 we com-
puted Fourier transforms for the time series shown in
Fig. 5. Three such traasforms are given in Fig. 7, for val-
ues of p, as indicated. From these figures one recognizes
the appearance of a clear peak as p increases, giving the
characteristic &equency with which elevators synchronize
among themselves.

So far, all results presented were obtained assuming
"naive" elevators, i.e., elevators that while going down
will stop for every call originating &om Boors below them,
evea after beiag full. Although this is a quite common
behavior in real elevators, it is of interest to investigate
what happens if elevators are smart enough to notice
when they are full and use this information to avoid un-
aecessary stops. This question is important because full
elevators will not further contribute to the transport and
their excessive stops will only lead to a decrease of the
average speed aad to a bunching at the highest elevator
velocity (versus Boor coordinate) gradient. Froxn these
heuristic considerations one may expect synchronization
to disappear for smart nonstopping elevators. Figure 8
shows the evolution of the total number of passengers
waiting for elevators as a function of p for both types
of elevators. The four sets of curves display the total of
passengers waiting for elevators after the indicated num-
ber of clock steps, divided by 1000. It is clear that be-
yond p„;qthe transport is not efficient anymore and the
number of passengers waiting will diverge if one waits
long enough. These curves are given to indicate how this
divergeace sets in four both types of elevators. Notice
the dHFerences in the behavior around p„;q.The differ-
ences may be also recognized from Fig. 9, which shows
on a single plot two sets of curves: the total number
of passengers transported after 5000 clock units and the
total number of arrivals at the bottom of the building.
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FIG. 9. Total number of transported passengers and total
number of arrivals at the ground Hoor for both rules, naive
and smart, measured after 5000 clock steps.

As expected, one sees that smart elevators have larger
p„;q,being therefore able to provide a much more effi-
cient transport. We also made plots similar to Fig. 5 to
check that synchronization is still happening. The figure
obtained is similar to Fig. 5 with smart elevators showing
synchronization over a very small p interval.

One interesting aspect of the simulation is the way in
which the asymptotic number of transported passengers
is reached as p, increases. While the asymptotic num-
ber of traasported passengers is clearly limited by the
number of elevators and their capacity, it is somewhat
surprising to 6nd for naive elevators that as p increases,
this limit is attained after an "overshoot" of the number
of transported passengers occurring exactly at the jam-
ming threshold. As clearly seen &om Fig. 2, rather than
converging monotonically to the saturation level dictated
by the number and capacity of the elevators, the most
efficient transport occurs around the jamming threshold
where one 6nds a marked discontinuity in the derivative
of the number of transported passengers as a function of
p. Beyond the jamming threshold, the simulatioas indi-
cate the existence of two basic behaviors while passengers
start to accumulate in all Boors, waiting for elevators that
tend more and more to appear full. Immediately after the
jamming threshold there is a "relaxation iaterval" of Ij;

values characterized by negative derivatives in the plots
of passengers waiting vs p. After this regime the num-
ber of transported passengers becomes independent of p, .
All in all, the best compromise &om the point of view of
the passengers wanting to leave the building using naive
elevators is to plan the building to operate at the jam-
ming threshold. In contrast, for smart elevators there is
no advantage in operating at the jamming threshold.
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