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Multifractality and multiscaling in collision cascades
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It is shown that self-ion collisional cascades exhibit multifractality. The structure of the cascades
was studied by analyzing the length distribution n(l, L) of the free Sight path l traveled by particles
during the cascade evolution. It was found that the collisional cascade can be partitioned into an
in6nity of subsets, each one characterized by a fixed value of z = &'"z (where L is the system size)
and a distinct value of the fractal dimension P(x). The mechanism for multifractality based on
an underlying multiplicative process is illustrated on a simple geometrical model. The multiscaling
structure of the function n(l, L) is discussed.

PACS number(s): 05.90.+m, 05.60.+w

I. MOTIYATIONS

In the present paper, we investigate the multi&actal
structure of self-ion collision cascades in the &amework
of the binary collision approximation (BCA). Our aim is
to clarify the origin of multi&actality in collision cascades
and obtain a scaling form for the length distribution func-
tion on the basis of the multi&actal spectra.

An energetic ion penetrating into a solid loses part
of its kinetic energy through elastic collisions with the
target atoms. The energy transferred into atomic mo-
tion gives rise to a collision cascade. Prom the viewpoint
of the cascade geometry the scattered and the recoiled
particles are indistinguishable. Thus, the whole system
can be considered as a treelike geometrical object which
is composed of trajectories of the moving particles and
points where the collisions occurred. The limitations of
the present technology preclude the possibility of follow-

ing the cascade process by direct measurements, thus we
study multi&actal properties of collision cascades gener-
ated by Monte - Carlo models in the BCA approximation.

The basic idea of multi&actality is that by defining
a distribution on the object (&actal measure) a richer
structure can be revealed. Namely, the whole set can be
partitioned into an in6nite hierarchy of subsets with own
&actal dimensions, and the spectrum of these dimensions
(instead of a single dimension) gives the full character-
ization of the object. Moreover, within the &amework
of the multi&actal formalism the scaling behavior of the
distribution function can also be formulated and inter-
preted [1,2]. This characterization stresses again the ne-
cessity of considering a spectrum of exponents in order to
describe the scaling properties of &actal systems. In sev-
eral cases, the basic macroscopic quantities of the struc-
tures can be obtained as moments of the associated dis-
tribution [2) so the study of their scaling behavior can be
»»6ed within the &amework of multi&actal formalism.
Because of these properties, multi&actality has proven
to be a valuable tool in the study of numerous systems
of statistical mechanics. It enables us to understand the
complexity and richness of structures created by nonequi-
librium processes. Examples can be mentioned &om a

wide range of phenomena like growth processes [such as
diffusion-limited aggregation (DLA), ballistic deposition,
and river network], percolation, and &acture [1—10].

Collisional cascades have been investigated recently
from the viewpoint of &actal geometry [ll—15], but these
investigations have been restricted to the study of the
self-similarity properties of the cascade, to the determi-
nation of its &actal dimension for diH'erent interaction
potentials, and to the study of cascade-subcascade tran-
sitions and spikes. A simple deterministic model was
established [11] (called &actal-tree) as an average cas-
cade in the case of inverse power potential of the type
V(r) = G(m)r, 0 ( m & l. It was found that the
&actal dimension of the tree D =

z depends only on
the parameter of the potential. This result is supported
by Monte-Carlo simulations. In the more realistic case of
the universal potential [16) the situation is more involved,
as for the characterization it is necessary to introduce an
average fractal dimension [13] as a function of the bom-
barding energy and of the mass of the projectile.

We try to get a deeper insight into the cascade struc-
ture by analyzing its multi&actal properties. It will be
shown that the cascade process naturally leads to multi-
&actality within the &amework of the BCA approxima-
tion, so simple &actal models as mentioned above cannot
give a good description.

The basic quantity of our treatment is the length distri-
bution n(/, L) of the free Sight path traveled by particles
during the cascade evolution. The macroscopic quanti-
ties of the cascade, the average total number of collisions
N, and the average total &ee-Hight path R can be ob-
tained as the Qth and the 1st moments of this distribu-
tion, respectively. Therefore, the scaling behavior of the
length distribution determines that of the macroscopic
quantities.

The outline of the remainder of this paper is as follows.
In Sec. II. the multikactal concept is briefiy reviewed. It
should be emphasized that our formalism is based on the
multi&actal formalism established by Amitrano et aL [1]
and it is slightly different &om the concept of Halsey et.
al. [17],which uses the box-counting method. In Sec. III
a simple geometrical model is presented for collision cas-
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The basic concepts of multikactality is worth review-
ing [1, 3, 17] to connect it with the observables of the
cascade and to 6x the notations for the remaining part
of the paper.

For studying multi&actality at 6rst, we have to argue
on the system size L. The basic quantity of our treat-
ment is the length / of the free Sight path traveled by
particles during the cascade evolution. The minimum
value of the length of the branches in a cascade l;„ is
de6ned by the cutoE energy of the model where the par-
ticle is considered to be at rest, the maximum value is
the length L of the path traveled by the projectile up to
the 6rst collision. L depends only on the bombarding en-

ergy L = L(Eo). That is why L can be introduced as an
independent variable instead of the bombarding energy;
it plays the role of the system size in our considerations.

The complete information about the length distribu-
tion is contained in its moments. I et us consider these
moments as functions of L:

Z(q, L) = ) /~;/;„&/; & L,

the sum is over all the branches, l, is the length of the
ith branch and —oo & q & +oo. Let us rewrite (1) as

Z(q, L'( =fn(IL)Pd le l =, f e ~' ~d 1 t, n

Z(q, L) L~(~),

(2)

where n(/, L)d ln/ is the number of branches with length
in [ln/, ln/+ d ln/] and E(/, L) = inn(/, L) + q ln/. It
can be seen that; the 0th moment is the average total
number of collisions N(L) and the 1st moment is the
average total &ee fiigth path R(L) in the cascade. Other
moments provide useful additional information: higher
(lower) moments for example are related to the tail of
the distribution corresponding to long (short) branches.
The asymptotic relation serves to de6ne the exponents
$(q) for suKciently large L, assuming that this behavior
exists.

In performing multi&actal analysis the lengths of the
branches are usually normalized. The normalized length
of the ith branch, the normalized moments, and the
proper asymptotic relation are as follows:

cades as the modification of the model known in the liter-
ature. The length distribution of this hierarchical model
was calculated at the final collisional generation and it
is shown that this distribution is log-binomial leading
to multifractality. The full distribution including all the
generations is composed of such kind of subsets. We used
this model to illustrate how multi&actality arises in the
cascade and we found a scaling form for n(/, L). It turned
out that the fundamental variables of the system are not
l and L but x = &„"&. In Sec. IV numerical results are
presented. To test our predictions, we performed Monte
Carlo simulations in two diferent model systems.

II. MULTIPRACTALITY
/' = A(q)L

n(/') = B(q)L ( ),

therefore,

Z(q) e ((' s) L [e~ —f(~)l—

(6)

(7)

Using
&&

——P( & and neglecting terms of the order 1/ ln L8l Bl Bq
one obtains &om (5):

~(q) = — and f(q) =f(q) —q~(q)
4(q)

dq

with n as the singularity exponent. Since l* takes all the
possible values of l as q varies f'rom —oo to +oo, it can
be considered as an independent variable and we denote
it by l.

In the way outlined above the exponent ((q) character-
izing the qth moment of the length distribution decom-
poses into two factors. f (q) represents the dependence of
n(/, L) on L so this is the &actal dimension of the subset
of branches with length l. Similarly, o, characterizes the
manner how /(q) scales with the system size L. If (r(q)
were a linear function, the moments of the distribution
could be described by a single exponent and f(q) and

a(q) would be constant. This simple type of scaling is
usually found in critical phenomena and it is called gap
scaling. In our case, ((q) is a more complicated function
and f(q), n(q) have a nontrivial q dependence. This will

be veri6ed both by analytical calculations on a hierarchi-
cal model and by numerical simulations. The anomalous
behavior of the length distribution is responsible for the
infinite set of moment exponents ((q).

Using the knowledge of c(.(q) and f(q), we can write
n(/, L) in a scaling form. Let us define the new quan-

tity x = &„~&~, which turns out to be the fundamental
variable of our system. It will be shown that n(/, L) is a
scaling function of this fundamental variable. For large

L we can write x = ((~~) from (6) neglecting the terms

of order 1/ ln L.
It is known &om the general theory that a is a

monotonous function of q. Thus we can invert x(q), so
as q = q(x). This way we are able to express q in terms
of physical quantities. We find &om (7)

n(/, L) = C(x)L

where

We do not use this normalization procedure. Following
the approach of Refs. [1] and [17] the integral in (2) can
be evaluated by the steepest descent method. If l' is the
value for which F(/, L) has a maximum we have

8 inn(/, L)
0 lnl

= —q.

In general, there is a corresponding value of /' = /'(q) for
each value of q, l' being the length of branches giving the
maximal contribution to the qth moment of the length
distribution. We made the following scaling ansatz:

&(x) = B(q(*)).



50 MULTIFRACTALITY AND MULTISCALING IN COLLISION CASCADES

It can be seen that assuming the nonlinearity of ((q), the
length distribution can be written as a power law in L,
but the exponent is length dependent. This scaling form
expresses the fact that the collision cascade can be parti-
tioned into subsets, each one being characterized by the
value of x = '"' . Each subset has an independent &ac-
tal dimension 4(x) and a singularity exponent o.. Similar
anomalous scaling behavior was found in growth phenom-
ena, where the growth probability distribution has these
features [4—6, 8] in percolation, where the voltage distri-
bution at the percolation threshold exhibits this behavior
[2]. The same was observed in fractions [3] and river net-
works [7] as well.

In the following section we analyze a hierarchical model
to illustrate how this type of anomalous scaling behavior
arises in collisional cascades.

III. LENGTH DISTRIBUTION
OF THE HIERARCHICAL MODEL

In a self-ion collision cascade where the projectile and
the target atoms are the same, the scattering angle falls
between 0 and 90 . The geometrical model of self-ion
collisional cascades established by Cheng. et a/. as an av-
erage cascade [11] is a deterministic one using the single
value 45' of the scattering angle (Fig. 1). We have mod-
ified this model by allowing any value between 0' and
90' and discuss the model of Cheng as a limiting case.
Our model calculation illustrates how the multiplicative
mechanism of the cascade process leads to multi&actal-
ity. Let us denote the ratios of lengths traveled by the
scattered and the recoiled particles to the L by /q and l2,
where /q ( l2 & 1. With these similarity ratios a two-
scale cascade tree can be generated, which is rigorously
self-similar up to the scale of the entire system (L). Our
aim was to analyze the total length distribution in the
cascade. It turned out to be convenient to analyze at
first only one collisional generation. Therefore, we start
with considering only one particular generation, the last
one, containing the cutoff length of the model /;„. In the
Nth collisional generation the possible different lengths
are /(i) = L/z/2 ', i = 0, 1, ..., N, and the number of
branches with the length /(i) is given by

n(/(~)) = I; I. (12)

This is a simple binomial in i, but i varies logarithmically
with /. Thus, we conclude that the length distribution in
the Nth generation is log binomial.

The moments of this distribution can be easily calcu-
lated:

To calculate the moment exponents ((q) we have to con-
nect the generation number with the physical length
scale. The cutoff value of the model /;„ is fixed, it should
be the length of the shortest branch in the tree. In our
two-scale cascade tree the shortest branch has the length

/z xL. From/~;„= /z xL we get the connection between
NandL: N= " '" " . Thenwefind

1n lg

((q) = — ln 1 +
~

—
(

ln/g (/g )
(14)

It should be noted that ((q) is a nonlinear function of q,
thus an infinite set of exponents is required to describe
the scaling behavior of the moments. The exponents de-
scribing the scaling of n(/') and /' are given by

( )
8

(( )
ln(/2//g) 1

E")

f(q) =4(q) + q~(q)

l ~~

1+
i

—
iln/a 1+ (~~i")

(16)

Now we demonstrate how these exponents can be ob-
tained &om the opposite direction by taking first the
continuum approximation for n(/, L) and using the ap-
proach outlined in Sec. II. For the continuum limit, we
used the lowest order form of the Stirling approximation
ln kt k ln k —k and replaced the sum by its saddle point
approximation:

Z(q, L) = ) n(/;)/~ n(/;)/, '. ~,

where l,- satisfies the equation

Bin (n(/))
0 ln/

From (5) and (12) we get

i(q) = N

FIG. 1. Fractal tree in the deterministic model of Cheng
et al. for the sinai&arity ratio lo ——0.7.

/'(i(q)) = L/*, ~l/2 ' l - L

Prom these equations we find that

(19)
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ln(lz/lx) 1

lated ~~{' )
and from (5) and (12)

(20)
= = ii

——0.2
= = ],=0.4

~(l'(x(q))) =
I

i, x(q) )
(21) 0.8X

and the fractal dimension using the Stirling formula is

0.4

f(q)= &
~

~
—ln 1+/ —

/

1 1+ jl i, xj
lg

(22)

Finally, substituting (20) and (22) into (9), the moment
exponent ((q) takes the form

o.%.o

flz't ~

&(q)=- I &+I —'
I

(23)

FIG. 2. Function f(q{z)) of the idealized model for vari-
ous l~ values. The change of l~ corresponds the change of the
scat tering angle.

Relations (20), (22), and (23) are identical to (14), (15),
and (16). Thus, we have shown that the moment expo-
nents Lc(q) can be obtained correctly from the continuum
form of the length distribution by applying the general
formalism of Sec. II.

In the continuum limit the length distribution can be
cast into a scaling form:

n(l, L) = C(z)L

where

1
O(z) = [z ln z + (1 —z) ln(l —z)],

ln lg

(24)

(25)

C(z) = '"
[z lnz —(1 —z) ln(1 —z)].

ln lg
(26)

Here, n(/, L) shows a power law behavior as a function of
L but both the exponent 4(z) and the coefficient C(z)
depend on the ratio of the logarithms of lengths z. Fig-
ure 2 shows f(q(z)) for various lx values. It is easy to
show that 4(z) = f(q(z)). Furthermore, 4(z) does not
contain any specific information on the collisional gener-
ation considered. It is valid for all sufficiently small l
values, only C(z) depends on l

So far we have considered only one particular genera-
tion. The total length distribution in the cascade con-
tains all the collisional generations up to the generation
of the cutoH'value. To calculate the moments of this total
distribution we have to sum over the generations k:

Z(, I.) = L~ ) [P, + q]" = L«ix + ",
k=o

(27)

with the ¹hgeneration containing the cutoff length l
The moment exponents can be calculated analytically
only in the large and low q limits:
(i) If q » 1, then Z(q, L) Lx, thus, ((q)
q, a(q) = —1, and f(q) = 0. In this limit the
moments Z(q, L) are dominated by the longest branch of
length I (ii) If q « 1,. then Z(q, L) L'x[2~+ l~~]

thus, ((q) = —
x„xx ln 1+ iz . This is identical with

(14) so in this region cx(q) and f (q) are also identical with

(15) and (16), respectively. Thus in this low q limit the
last generation dominates the moments. Our arguments
above can be generalized to the case when the similarity
ratio lq varies stochastically according to a probability
distribution, similarly to the P xnodel of the turbulent
fiow [18].

The particular case of /] = I2 = Lo is worth consid-
ering, it corresponds to the deterministic model of cas-
cades known in the literature as a case allowing the scat-
tering angle 45' only [11]. In this model the potential

V(r) = G(m)r results in lo ——(z) and the object is

a simple fractal with dimension D =
z [11].In this case

the total length distribution n(l, I,) can be easily calcu-
lated since all the branches have the same length I, = lo~I

in the kth generation. So the total length distribution

lnQ lng
xx(f L) —I 1n(0 t ln (o (28)

exhibits a simple power law in both I and t. This
property leads to constant values for both ct and f If.
q & —&„"&z then ((q) = q so n(q) = —1 and f(q) = 0
and the moments are dominated by the longest branch.
If q & —

&„"x then cx(q) = 0, f(q) = —
x

xz, this describes
how the number of the shortest branches scales and for
lo ——(z)2™we get f(q) = D = z, which coincides
with the dimension of Cheng for the cascade [11]. Such
a simple scaling behavior was found by Meakin et al. [6]
for polygons, needles, and stars studying the harmonic
probability measure on these objects.

The crucial point to be stressed here is that we do
not find multifractality in this symxnetric case (lx ——lz),
but it naturally arises in the nonsymmetric (Lx g lz) and
stochastic cases. In the next section, we present nurner-
ical results which verify that collisional cascades exhibit
multifractal properties and the multiscaling structure of
the distribution function can be understood on the ba-
sis of the multi&actal spectra. The deterministic model
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of cascades in the literature is based on the facts that
in the hard sphere approximation the expectatioa value
of the particle energy (scattered and recoiled) is given
by E~ = zE (which belongs to the 45' scattering an-

gle) and the main free-fiight path has the simple energy
dependence Lg„(E) = XE (X is independent of the
energy) [ll]. Thus the average cascade might be sub-
stituted by a deterministic one with the similarity ratio

Lp = (z) being the ratio of two successive branches
at the scattering angle 45'. This results in the simple
scaling behavior of the length distribution. These argu-
ments can be generalized. The geometrical properties of
the average cascade can be approximated by a symmetric
model (lq ——lz) if the expectation value of the particle
energy has a form E~ = CE (C is indepeadent of E) and
if the main free-fiight path is a homogeneous function
of the energy, which means that Ls„(AE) = A Ls„(E),
for any value of A, where a is the order of homogeneity.
In this case, the similarity ratio of the substituting de-
terministic object is lq ——C and its fractal dimension
is D = ——

&' &. Since we have shown that multifractal
properties and the scaling structure of the distribution
function cannot be understood on the basis of a symmet-
ric model, these models should be considered as a first
approximation only.

IV. NUMERICAL ANALYSIS
OF THE LENGTH DISTRIBUTION

To test our predictions for the scaling behavior of the
length distribution and its moments we have performed
numerical simulations in two different model systems dis-
tinguished by the interaction potential applied. In the

case of the inverse power potential we used the scatter-
ing cross section do = CE ~T dT. In order to get
rid of the divergency around T = 0 the minimum possible
value of the scattering angle was fixed at Op. In the case
of the realistic Biersack-Ziegler potential (B.-Z. pot. ), the
cross-section cannot be obtained in a closed form, thus
simulation was based on the potential function itself and
the impact parameter b was chosen at random in an in-
terval tI C [0, fI ] .

Simulations were performed in the 10 keV —100 keV
bombarding energy range with an increment of 10 keV
for both systems. The parameter of the inverse power
Potential (m) was chosen m = 2, s, s and the cutoff angle
was Oo ——O'. Averages were done over 3000 events at
each particular bombarding energy.

Figure 3 shows the length distribution at different sys-
tem sizes for both model systems. For the evaluation
of the length distribution we used logarithmic bining of
the length to obtain a nonsingular shape because of the
log-binomial-like distribution. We adjusted the horizon-
tal scales of the figures so that the increment in z = &' &
is the same for every system size, the left edge of the dis-
tribution being defined by /; = L ', where zp is fixed
for a particular model system. It can be seen that all the
distributions have long tails at the edge of the longest
branches and the sharp maximum in the range of the
shorter ones.

To demonstrate that the moments of the length distri-
bution scale independently we calculated the quantity

t'~(q) & '
z(q) =

I g(0) )I

as a function of the system size L If the functi. on ((q)

3.0
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a) 9
7
5
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FIG. 4. z(q) vs L, for vari-
ous q values. The Stted straight
lines are not parallel, show-

ing that the moments of the
length distribution scale inde-
pendently.
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(q)'s or both systems. It is evident that the moments

Then the functions ((q), o;(q), and f (q) were calculated

noting again that ((0) and f(1) describe how the aver-
age total number of collisions N(L a d h

ee- ig t path R(L) of the cascade scale as a function of
the system size. Figure 5 shows the ( 's and Fi

cia ed functions f(q), these are the fractal d'

s o e subsets giving the maximum contr'but'
the moments Z(q). f (q = 0) = ((q = 0) and the limiting
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Besides multi actal analysis our aim was t t hocas t e

multifrac
g is n ution into a scaling form on th b

' fe asiso t e

it turne out t at
mu ifractal spectra. From the general theory of Sec. II
't t that for a system showing multi&actality
the natural variable is z = " t d . a—

& & ins ea o and L. So a
scaling form can be found fo / L for n, as a unction of z,
rather than as a function of l a d L Th'
t e iog-binomial-like distributions. The scaling form is

n(/, L) = C(x)L ( ) (30)

where 4(z) should be equal to f(q(z)), C(z) depends
also only on z.

To prove the validity of this scaling structure two dif-
ferent tests were performed. At fi trs we ca culated f (q
from the general theory of Sec. II d thec. an t en inverting the
function z (q) =

i &, we obtained f(q(z)). Further-
more, we derived 4(z) by independent means. Fix
values for z =

en means. ixing

tion of lnL
&, inn(/, I) was calculated as a f

ln L, then straight lines were fitted to these data.~ ~

a unc-

4 (x) was obtained as the slope of the straight lines at a
given z and &om the additive term we evaluated the func-
tion (z). igure 7 shows the comparison of f(q(z)) and
C'(z) obtained independently in both model systems. A

the
reasonable agreement was fou d b tun e ween t e two curves,

The second test i
t ey differ only slightly in the vicinit f th'

i y o e maximum.
e second test is the usual data collapse analysis. If

s ou depend solely on z, thus calculating it for different
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functions f(q(z)) and 4(x) ob-
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good agreement veri6es the va-

lidity of the scaling structure
(3o)
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FIG. 8. Results of the data
collapse analysis. The excellent
collapse of the amplitude func-
tions C(x) is shown for ten dif-
ferent system sizes.
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system sizes these curves should collapse onto each other.
Figure 8 shows that we found a suKciently good collapse.

V. DISCUSSION

In the present paper, we have studied the structure of
self-ion collision cascades by the means of multi&actal-
ity. We focused our attention on the length distribution
of the free-flight path traveled by particles during the
cascade evolution and made calculations in two differ-
ent model systems. It was presented that the moments
of the length distribution scale independently, which is a
direct consequence of the fact that the length distribution
can be written naturally in terms of the logarithm of the
length. It turned out that the cascade tree can be par-
titioned into &actual subsets corresponding to particular
values of x = &„&. These fractal subsets are described

by the fractal dimensions 4(x) and the singularity ex-
ponents a(z), respectively. This multifractal structure
leads to the anomalous scaling behavior of the distribu-
tion function. We illustrated on a simple hierarchical
model that multifractality does arise in a collision cas-
cade because of the underlying multiplicative process. It
was found that a symmetric model cannot account for
multifractality observed in Monte Carlo simulations.
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