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Prerecorded history of a system as
an experimental tool to control chaos
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%e present experimental results of synchronizing the current state of a chaotic system with its
prerecorded history. This is achieved by a small self-controlling feedback perturbation in the form
of the difFerence between the current state of the system and its past dynamics. The perturbation
transforms an unpredictable chaotic behavior into a predictable chaotic or periodic motion via
stabilization of unstable, aperiodic, or periodic orbits of the strange attractor. One advantage
of the method is its robustness against noise. Furthermore, it does not require any analytical
knowledge of the system dynamics and can be simply implemented in experiment by a purely
analog technique. The experimental results are supported by a numerical analysis of the conditional
Lyapunov exponents and other characteristics of the model equations.

PACS number(s): 05.45.+b

I. INTRODUCTION

Control of chaotic systems has recently received in-
creased attention. The idea of using an aperiodic per-
turbation to achieve the desired behavior of a nonlinear
system has been formulated by Hiibler and Liischer [1].
The form of this perturbation depends on a goal function
defining the desired aim to be achieved. If the equations
governing the system dynamics are known, the optimal
driving force can be derived from a variational method.
In some cases, this force is similar to the transients of
the unperturbed system and can be found experimentally
kom a previous transient response. A nonlinear oscilla-
tor, for example, reacts xnost sensitively, if perturbed by
a driving force which mimics the time-reversed dynamics
of the unperturbed system.

Another case of driving systems with an aperiodic sig-
nal has been considered by Pecora and Carroll [2]. They
have investigated the synchronization efFect in a chaotic
system which can be decomposed into a drive and a re-
sponse subsystem. As an example of such a compound
system one can take any chaotic system, as driving sys-
tem, and a copy of a part of it as the respondin. g system.
To characterize synchronization effects, Pecora and Car-
roll have introduced the conditional Lyapunov exponents
for the response system. They have shown that a neces-
sary condition to synchronize a chaotic system is that all
these exponents have to be negative.

For both methods, one has to know the underlying
equations, in order to construct the aperiodic perturba-
tion acting upon the system behavior. Moreover, the
driving force is typically large and is applied to the sys-
tem as a perturbation. without any feedback, i.e., it does
not depend on the current state of the response system.
The subject of controlling chaotic systems has become
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most popular since the paper of Ott, Grebogi, and Yorke
(OGY) [3] was published. They have demonstrated that
one can convert the motion of a chaotic system to a peri-
odic motion by using only a small feedback perturbation
which acts on an accessible system parameter. Their idea
is based on stabilizing unstable periodic orbits (UPO),
which are dense in a typical strange attractor. The
method does not require any knowledge of the system
equations and has been successfully applied in various
physical experiments, including a magnetic ribbon [4], a
spin-wave system [5], a chemical system [6], an electric
diode [7], laser systems [8], and cardiac systems [9].

To use the OGY method, one has to analyze the reac-
tion of the system onto a variation of the perturbed con-
trol parameter. The method and its modifications [6—13]
are discrete in time, since they deal with the Poincare
map of the system and, therefore, they are sensitive to
noise [3]. Recently, one of us has suggested an alterna-
tive method based on a time-continuous self-controlling
feedback with a small perturbation [14—16]. This method
is able to stabilize UPO's [14] as well as aperiodic orbits
(AO's) [15,16]. The perturbation is applied to the sys-
tem in such a way that it remains unperturbed for a dy-
namics on the desired orbit (UPO or AO). There is only
a change in the Lyapunov exponents so that this orbit
becomes stable. Three different forms of the perturba-
tion, including the method of delayed feedback [14] and
external force control [14—17], have been suggested and
tested numerically for various chaotic systems. The effi-

ciency of the delayed feedback control has been recently
illustrated experimentally for a high-&equency chaotic
oscillator, using a simple analog control circuit [18]. In
this paper, we present results of the experimental realiza-
tion of the external force control. This control is based
on a synchronization of the current state of the system
with its prerecorded history using conventional feedback
[19].To some extent, it is similar to the synchronization
done by Pecora and Carroll. However, here, as well as
in the OGY method, the stabilization of the system is
achieved by a small feedback perturbation which can be
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constructed without any knowledge of the system equa-
tions. Unlike the OGY method, no computer analysis of
the system dynamics is required, and the method can be
implemented in an experiment by a purely analog tech-
nique. A similar approach was already applied by Ref.
[20], but there it was used to stabilize the steady state of
a chaotic system.

The rest of the paper is organized as follows. The
method and the experimental system under investigation
are described in Secs. II and III, respectively. The exper-
imental results of stabilizing AO's and UPO's are consid-
ered in Secs. IV and V, and a conclusion is presented in
Sec. VI.

II. THE METHOD

Let us consider a chaotic system which can be de-
scribed by a set of ordinary difFerential equations [14—16]:

y = P(y, s) + F(y, t),
a = Q(y, e).

It is supposed that Eq. (1) is unknown, but some scalar
variable y(t) can be measured as a system output. Vector
a describes the remaining variables of the system that are
not available or are not of interest for observation. F(y, t)
denotes an external perturbation. Following [14—16), we
consider two forms of this perturbation corresponding to
the stabilization of AO's and UPO's, respectively.

The AO's of the strange attractor can be stabilized by
a negative feedback perturbation of the form [15,16]

(2)

Here y ~(t) is a segment of a time trace on an AO corre-
sponding to the previous system behavior and K is an ad-
justable weight of the perturbation. The experiment has
to be carried out in two stages. In the first preparatory
stage, a segment of the aperiodic output signal y ~(t) of
the unperturbed (F = 0) system has to be recorded in a
memory. In the second stage, the system can be forced to
repeat exactly the recorded signal y ~(t) after a transient
process, when the perturbation is switched on. The main
feature of this perturbation is that it does not change the
particular solution of the system corresponding to the
recorded signal y ~(t): F(y, t) = 0 at y = y ~(t). Ad-
justing the weight K, the stabilization of this particular
solution can be achieved with an extremely small pertur-
bation. This stabilization can be interpreted in terms of
Pecora and Carroll's method of synchronization [2]. The
prerecorded signal y z(t) in Eq. (2) can be replaced by the
output signal of an additional, identical chaotic system.
The latter one can be seen as the driving system, and
the original one can be interpreted as a response system
[16]. Thus the problem of stabilizing a prerecorded AO is
equivalent to the problem of synchronizing two identical
chaotic systems. This permits the use of the conditional
Lyapunov exponents introduced by Pecora and Carroll,
as a criterion of stabilization.

In Ref. [16], the effect of synchronizing the current
state of a chaotic system with its prerecorded history

is suggested to be used as an alternative approach in the
field of forecasting. The small perturbation can trans-
form an unpredictable chaotic behavior into a predictable
one via changing the maximal initially positive Lyapunov
exponent into a negative one.

The stabilization of the UPO's can be achieved by us-

ing the perturbation of the form [14]

Here, y;(t) is the periodic solution y;(t) = y;(t + T;) of
the system corresponding to the ith UPO, T; is its period.
The periodic signal y;(t) can be reconstructed from the
chaotic output signal y(t), using the standard method of
delay coordinates [21]. In this paper, we emphasize a new
aspect in the problem of UPO stabilization. We demon-
strate that some of the UPO's can be stabilized without
applying the procedure of reconstruction. This is possi-
ble due to the fact that the UPO's are robust [22]. They
vary slowly with smooth parameter changes, although
the attractor can undergo a dramatic change with alter-
nating periodic and chaotic regimes. The sudden changes
in the asymptotic behavior of chaotic systems are related
to the change of the stability of the periodic orbits and
not to the change of their form. Therefore a stable pe-
riodic state of the system can be recorded in a memory
and then used as an external signal y;(t) in the perturba-
tion (3) to stabilize the UPO in the neighboring chaotic
states, corresponding to a small variation of the control
parameter.

III. THE MODEL

We have used an electronic autonomous chaos oscilla-
tor suggested by Shinriki et aL [23] to test the method
at a real experimental system. The circuit is shown in
Fig. 1, while the equations of state are

CqVq ——Vq(& —
& ) —f(Vq —V2) + Ic,

C2 V2 ——f(Vj —V2) —Is,
LI3 — I3R3 + V2)

(4)

where Vq, V2, and I3 are the voltage across the capacitor
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FIG. 1. The scheme of the nonlinear oscillator and the con-
trol circuit. At the lower right a scheme of the NIC is plotted.
The variable resistor R~ is a precise potentiometer fixed by
hand. The operational amplifier is of the type TL071 biased
with +15 V. Dq and Dq are 3.3 V zener diodes BZX55C 3V3.
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Cy, the voltage across the capacitor C2, and the cur-
rent through the inductor L, respectively. The negative
impedance converter (NIC) has been constructed on the
basis of the operation amplifier TI 071. It can be approx-
imated by a linear resistor with the negative resistivity
—R in the working range of the voltage AV. The paral-

lel resistor Rq compensates the negative slope of the NIC
and serves as a basic control parameter of the oscillator.
The only nonlinearity in the system has its origin in two
zener diodes. Their current versus voltage characteristic
can be approximated as follows:

0, iV/(Vg
sgn(V)(Ab, V + Bb,V + Cb, V j, i

V i& Vg

where Vg ——2.5 V, A = 2.2500, B = —1.9460, C =
0.8188, 6V =~ V

~

—Vq, and sgn(V) = +1 for V & 0 and
V ( 0, respectively. The voltage V is given in volts, and
the current Id, is given in milliamps. The parallel resistor
R2 serves to vary the shunt of the capacitor Cq and the
resonant circuit LC2.

V
IN —= f(V) = fa(V)+

2

as Chua's circuit or double-scroll oscillator [24].
In our experiment, we have fixed the parameters as

follows: Cy = 10 nF, C2 ——100 nF, L = 270 mH,
R = 6.91 kO, Rq ——12 kO, R3 ——100 O. Rq was used as
a control parameter. Figure 2(a) shows the experimental
bifurcation diagram of the unperturbed (Ic = 0) sys-
tem. With increasing Rq, the system behavior develops
via the following scenario: Stable fixed point (I), period

Note that a similar oscillator where the diodes are re-
moved and the nonlinearity is carried in the NIC is known
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FIG. 2. (a) Calculated and (b) experimental bifurcation
diagrams. The distribution of the maxima of the voltage Vq

is plotted as a function of the control parameter Bq. Roman
numerals mark distinct regimes: (I) stable lixed point, (II)
period doubling scenario, (III) mono-scroll chaos, (IV) dou-
ble-scroll chaos.

(e)
FIG. 3. Typical experimental phase portraits of the system

corresponding to difFerent regimes: (a) period-1 cycle taken
from region II in Fig. 2 (Rq ——24.8kQ), (b) period-2 cycle
from region II (Rq = 27.8kQ), (c) period-4 cycle from re-
gion II (Rq ——2S.0kQ), (d) mone-scroll chaos from region
III (Rq ——33.8kQ), (e) double-scroll chaos from region IV
(Rq ——3S.8kQ), (f) double-scroll cycle of period 5 f'rom re-
gion IV (Rq ——41.8 kQ).
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doubling scenario (II), mono-scroll (Rossler type) chaos
(III), double-scroll chaos (IV). The typical experimental
phase portraits corresponding to these distinct states are
presented in Fig. 3. We have also calculated the bifur-
cation diagram using Eqs. (4)—(6) and the above values
of parameters [Fig. 2 (b)]. The calculated and the ex-
perimental bifurcation diagrams are in good qualitative
agreement. The quantitative difference can be explained
by an extreme sensitivity of the system to small difFer-
ences of the parameters, particularly to a small variation
of the function (5).

The control of the oscillator has been achieved by a
simple control circuit shown in Fig. 1. The key k is used
to switch the circuit &om the data-collecting regime M to
the control regime C. In the control regime, this circuit
provides the required form of the control current:

Ic = = K(VM(t) —Vj).
VM (t) —Vj

Ra

be observed. The threshold of synchronization can be
determined numerically &om the variational equations:

CgbVj —
(—— )bVj —f'(V~ —Vz )R Rg
x (be —bVz) —KbVg,

CzbVz ——f'(V~ —Vz )(bVj —bVz) —bIs,

LbIs = Rsb—Is+ bVz.

Here, be = Vj —V~ (t), bVz —— Vz —V2 (t),
bI3 —Is Is (t) are the small deviations from the AO

(Vz (t), V2 (t), Is (t)) and f' denotes the deriva-
tive of the function (6). These equations define the con-
ditional Lyapunov exponents [2,16). At K = 0, these
exponents coincide with the usual Lyapunov exponents

Here, VM (t) is the prerecorded output signal. The control
resistor R~ determines the weight of the perturbation
(K —= 1(R~).

IV. STABILIZATION OF APERIODIC ORBITS
50

An experimental control of AO's is very easy. At Grst
k (Fig. 1) is switched into position M, to record a chaotic

signal VM (t) of arbitrary length in the memory. After-
wards, k is switched to the position C, to synchronize the
system with this prerecorded AO. The results of such a
synchronization for two distinct chaotic regimes (mono-
scroll and double-scroll) are presented in Fig. 4. Before
activating the control, the system generates a signal dif-
ferent to that recorded in the memory. The magnitude
of the difFerence AV(t) = Vq(t) —VM (t) is of the or-
der of the output signal Vj(t). This means there is no
correlation between these signals. After activating the
control, this di8erence decreases rapidly to a small value.
The system starts to repeat exactly its previous behavior
corresponding to the recorded signal VM (t). After a
transition process, the control current Ic ——AV/Rc is
extremely small, Ic 2 yA (root mean square value),
compared with the total current Iq through capacitor Cq,
Iz 3 mA. Therefore the synchronization of the system
with its prerecorded history is provided by a very small
control signal with a relative value less than Q.l jo.

For some experimental situations the large transient
value of perturbation can be undesired. There are two
possibilities to solve this problem. First, as in the OGY
method, the perturbation can be switched on at the mo-
ment when the system comes close to the state corre-
sponding to the beginning of the recorded trajectory.
Second, one can introduce in the feedback a limitation
of the perturbation. As shown in [14—16] a stabilization
in this case is also possible but this leads to a longer
transient.

In the experiment, the synchronization was possible for
Rc & 10 kO (K ) 0.1 kO ~). For values of Rc larger
than 100 kO (K &0.01 kO ), no sy'nchronization can
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FIG. 4. Time traces of the recorded aperiodic output sig-
nal V~ (t), the dynamics of the output signal Vq, and the
diiference h.V = Vj —V~~ for mono-scroll chaos regime (a)
(Rq = 33.8kB, R, = 10kQ) and double-scroll chaos regime
(b) (Rq ——39.8kB, R, = 10kB). The arrows and the dashed
lines mark the moment of sr&itching onto the control.
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FIG. 5. The maximal conditional Lyapunov exponent A

calculated from Eq. (9) as a function of the reciprocal of the
control resistor R~. Curves 1 and 2 correspond to mono-scroll
chaos (Ri ——32kB) and double-scroll chaos (R~ ——40kB),
respectively. The arrows shower the thresholds of the synchro-
nization.

of the unperturbed system (A = 0.50xns i for the mono-
scroll regime at R» ——32kB and A = 0.63ms for the
double-scroll regime at Ri ——40kO). As well as usual
Lyapunov exponents, they do not depend on the initial
conditions of AO, because they are averaged along the
whole strange attractor. Figure 5 shows the dependence
of the maximal conditional Lyapunov exponent on K for
two distinct chaotic regimes (mono-scroll and double-
scroll). This characteristic defines the operation range
of the method. The synchronization is possible only in
the intervals of K where the maximal conditional Lya-
punov exponent is negative [A(K) & 0] and, therefore, a
threshold of synchronization is defined by A(K) = 0. The
calculated threshold values are in agreement with those
obtained in experiment. However, the calculated values
of the Lyapunov exponent remain small in some inter-
val beyond the threshold (Fig. 5). The rapid decrease of
A(K) begins at the characteristic value of K = 0.1 kA
Because of that, the experimental threshold of synchro-
nization may be shifted towards greater values of K.

For the results presented in Fig. 4, we have used an
analog/digital converter (100 kHz sampling rate, 16bit
resolution, and record length of 200 000 samples), a com-
puter, and a digital/analog converter (same specification)
as a memory element to record the AO's to be stabilized.
In our experiment, we also have replaced the computer by
a tape recorder, and have obtained similar results. More-
over, besides the driving with the prerecorded data, we
have driven the system with a replica of the system and
with the numerical data calculated from Eq. (3). In both
cases, we have achieved the synchronization, but with a
larger control signal (& l%%uo, relative value) compared to
the case above.
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y;(t) can either be reconstructed from a chaotic output
signal or it can be obtained directly from the experiment
with a shifted value of the control parameter at which
the corresponding periodic orbit y;(t) is stable.

We start the synchronization with the reconstructed.
UPO's. An asymptotic return map of our oscillator is
nearly one dimensional (Fig. 6). This permits a simple
procedure to reconstruct the UPO's. The period-i UPO's
can be obtained from the intersection points of the ith
order return map V»"+' versus V»" with the identity

line Vi("+') = Vi(") (Vi(") denotes the nth maximum of
a time trace of the voltage Vi). The results of stabiliz-
ing the period-1 and period-8 UPO's using the described
procedure of reconstruction are presented in Fig. 7. Even
higher periodic orbits were stabilized by an extremely
small control signal, the relative value of which in the
posttransient regime did not exceed 0.1%.

In order to investigate the in6uence of noise on. the con-
trol, we have connected a white noise generator (HP 3562
with a frequency span of 100kHz) in series with the mem-
ory element. The dependence of the control current on
the noise amplitude at two different values of the control

-2,0 0,0 2,0 4,0

U. STABILIZATION
OF UNSTABLE PERIODIC ORBITS

The UPO's of a chaotic system can be stabilized by
using the perturbation (3). The external periodic signal

g (n) (V)

FIG. 6. Experimental return maps for the mono-scroll
chaos regime (a) (Rq ——33.8kB) and the double-scroll chaos
regime (b) (Rq ——3$.8kB).
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window. This permits the use of the stable periodic or-
bits recorded inside the periodic window instead of the
reconstructed UPO's. Figure 10 displays the results of
stabilizing the period-3 UPO in the chaotic regimes close
to the period-3 window making use of the recorded time
trace of the system corresponding to this window. The
above periodic window is obvious in the bifurcation di-
agram which is presented in Fig. 2(b). In this case, the
relative value of the control current was less than 0.2%.

VI. CONCLUSION

Therefore it is not necessary to know any equation which
describes the system or to analyze the system. In ad-
dition, the method only needs a small perturbation to
achieve the synchronization. Purthermore, we were able
to demonstrate the robustness of the method against
noise, which is necessary for the control of many systems.
A particularly interesting application of this method can
be expected in the 6eld of forecasting. Using only a small
perturbation, an unpredictable chaotic dynamics can be
transformed into a predictable one via synchronizing the
system with its prerecorded history.

We have implemented a recently proposed method of
chaos control [14—16] in an experimental system. The
advantage of the method is its simple realization by the
synchronization of the current state of the system with
its pre-recorded history. It permits the stabilization of
unstable periodic orbits as well as aperiodic orbits of
a chaotic system by an extremely small perturbation.
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