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The microscopic dynamics of one-dimensional self-gravitating many-body systems is studied. We
examine two courses of the evolution that have the isothermal or stationary water-bag distribution
as initial conditions. We investigate the evolution of the systems toward thermal equilibrium. It
is found that when the number of degrees of freedom of the system is increased, the water-bag
distribution becomes a quasiequilibrium, and the stochasticity of the system reduces. These results
suggest that the phase space of the system is effectively not ergodic and the system with large
degrees of freedom approaches the near-integrable one.

PACS number(s): 05.45.+b, 98.10.4z, 03.20.+i, 95.10.Ce

I. INTRODUCTION

A self-gravitating many-body system, which contains
many particles interacting with mutual gravity, is an ide-
alized model of wide classes of astronomical objects, such
as globular clusters, elliptical galaxies, and clusters of
galaxy. Dynamics of the system has two characteristic
aspects. One is the microscopic dynamics, which is con-
cerned with the motions of the individual particles. The
other is the macroscopic dynamics, which deals with the
averaged quantities. Evolution of the real system is de-
termined exactly by the microscopic dynamics. However,
the number of the particles contained in the system is so
large, e.g., 10° for globular clusters and 10! for elliptical
galaxies, that we can treat only macroscopic quantities
by the statistical method, in practice.

In many cases which are successfully treated by sta-
tistical mechanics, which include gas and liquid systems,
the particles interact with close neighbors, then the local
equilibrium is determined by the state of the neighbors.
Thus if the macroscopic quantities are defined by aver-
aging over the scale much larger than the range of the
force, their evolution is independent of the microscopic
dynamics and is governed only by themselves. In these
systems the statistical mechanics is easily applicable.

On the other hand, in the self-gravitating systems, the
motions of the individual particles are governed by the
summation of the forces from all the other, because the
gravity is long range force. Thus, the macroscopic dy-
namics is not decoupled with the microscopic dynamics.
Therefore, we must study how the microscopic dynamics
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influences the evolution of the macroscopic quantities in
the self-gravitating systems.

The microscopic dynamics is described as a trajectory
in the T space (N-body phase space). If the system has
some integrals of motion, the trajectory is confined in
the subspace which conserves the integrals. The system
is defined as ergodic if the time average of any dynamical
quantities are equal to the spatial average over the sub-
space. This subspace is referred to as the ergodic region.
In this case, the time average does not depend on the
initial condition of the system but only on the integrals,
and thus it is time independent. This gives the statis-
tical or microcanonical equilibrium. At the equilibrium,
energy is equally distributed to all degrees of freedom,
which is called equipartition.

The mixing system, which is included in the ergodic
system, has the property that a small but finite part of
the phase space volume spreads over a whole ergodic re-
gion by means of coarse graining. This property is closely
related to relaxation of the system, because information
of the initial state is lost and the microcanonical equilib-
rium is realised. Any time-correlation disappears after
the trajectory is mixed over the ergodic region [for more
detailed reviews, see, e.g., [1,2]]. We refer to the time that
mixing is realized as the microscopic relazation time.

Though ergodicity is the fundamental basis of statisti-
cal mechanics, not all systems are ergodic. For example,
the phase space of a near-integrable Hamiltonian sys-
tem contains both stochastic region and regular region
(tori). A trajectory initially located on a torus stays on
it forever. This system is not ergodic over the subspace
where the total energy of the system is constant. Fur-
thermore, it is shown that there exist stagnant layers
around tori and a trajectory in the stagnant layer stays
there for a long time [3]. In this system, the trajectory in
the stagnant layer moves in the stochastic region after a
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long interval of time, and then they could enter another
stagnant layer. Thus, in the system, transient station-
ary states can emerge in some era. We refer to them as
quasiequilibria.

Lynden-Bell applied the concept of ergodicity to the
evolution of elliptical galaxies, and derived the unique
equilibrium state [4]. However, observations of elliptical
galaxies and numerical simulations show disagreement
with the Lynden-Bell distribution [5-7]. In particular,
elliptical galaxies are believed to be triaxial in the shape
and anisotropic in the velocity dispersion. This station-
ary state seems to suggest the existence of additional inte-
grals, which conserves the anisotropy, though it is unclear
whether the state is a stationary state induced by the ad-
ditional integrals or only a transient state approaching to
the statistical equilibrium. These facts suggest that ellip-
tical galaxies are not ergodic while it is generally believed
that the self-gravitating many-body systems are chaotic
and so ergodic. So it is very important and interesting
to study ergodicity of the self-gravitating many-body sys-
tems in order to analyze the present dynamical structures
of elliptical galaxies, and, moreover, to examine applica-
bility of usual statistical mechanics to the self-gravitating
many-body systems.

To study their ergodicity, we employ one-dimensional
system. Because in one-dimension the phase space is
compact, which makes the system tractable in consider-
ing ergodicity. Another reason is that the force law is
very simple and thus the evolution of the system can
be followed numerically with a good accuracy by us-
ing the “exact code” [8]. Though the force law in one-
dimensional system is different from that in the three-
dimensional system, we can study the properties induced
by long range forces even in the one-dimensional systems.

Hohl [9,8] studied the relaxation time of the one-
dimensional system consisting of N identical plane-
parallel sheets by using decay of correlation of oscillation
of the total kinetic energy. They found that the the time
scale is N2t., where t. is the characteristic time which
is approximately the time for a member to traverse the
system. However, Wright, Miller, and Stein [10] asserted
that some initial states do not approach microcanoni-
cal distribution after 2IN2¢t.. Later it is shown that the
weak correlation of density fluctuation persists for times
of order 103t [11]. Thus, the Hohl’s conjecture was ques-
tioned. In succeeding papers [11-17], it was shown that
the evolution of the system greatly depends on the initial
condition. Some initial states appear to relax on the time
scale of N't., which is much shorter than Hohl’s prediction
[12,13,18]. Then the complicated features of relaxation
in the self-gravitating systems were recognized.

Severne and Luwel [19] suggested that there are three
phase in relaxation. If the initial state is far from equi-
librium, violent oscillation of mean field gives rise to the
violent relaxation [4] for the first several oscillation. After
the system almost virialized, remaining small fluctuation
of gravitational field causes the change of the individual
particle energies. They called this era the collisionless
mixing phase. In astrophysics, the evolution in the vi-
olent relaxation and the collisionless mixing phase are
often referred to dynamical evolution. After that, the
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collisional relaxation phase takes place, in which the par-
ticle interactions tend to drive the system towards the
microscopic thermal equilibrium. This is the thermal
evolution. Luwel and Severne [14] examined the evo-
lution of the stationary water-bag distribution. They
showed that although there is no noticeable evolution in
the macroscopic distribution for a long time, the energy
of individual particles fluctuates broadly in the energy
space. They concluded that it is the collisionless mixing.
In the present paper, we found the collisional relaxation
occurs in the water-bag distribution on the time scale
10%t., which is much longer than the simulation time of
Luwel and Severne.

While the above studies are concerned with the evo-
lution of the macroscopic quantities, the microscopic dy-
namics, especially the ergodicity of the system also has
been studied by some authors. For small N (N < 10) it
is shown that the stochasticity of the system is strength-
ened as N increases [20-22]. Most of the phase space
is covered by stochastic orbits, but Reidl and Miller [23]
found an existing region which is covered by stable or-
bits with zero Lyapunov exponents. Thus such small N
systems are not exactly ergodic.

Reidl and Miller [23] also showed that for NV = 11 the
convergence of Lyapunov exponents occurs in a very long
time scale (~ 107t.). This suggests the segmentation of
the phase space which occurs for N < 10 disappears and
the system is ergodic.

In this paper, we are interested in the relation between
the microscopic dynamics and the macroscopic evolution
in larger N. In order to get more information of micro-
scopic dynamics, we have investigated the time correla-
tion of the fluctuation of the individual particle energies,
the equipartition of the individual particle energies, and
the convergence of the maximum Lyapunov exponent. In
general, the motion in an ergodic region shows fast decay
of correlation. On the other hand, in the near integrable
Hamilton system an essential feature of the diffusion pro-
cess (including the Arnold diffusion) is the appearance
of long time tails of the correlation or the enhancement
of the diffusion mode with the zero frequency, e.g., the
power spectrum density (PSD) function S(f) satisfies,

S(fy~f" (fk1), (1)

where f stands for the frequency and v a positive con-
stant (2 > v > 1) [3,24]. Therefore the time correlation
or the PSD is a good tool to understand the ergodicity
of the phase space, besides the equipartition of the en-
ergies and the convergence of the maximum Lyapunov
exponents.

In Sec. II we describe the model and the initial condi-
tions. Three quantities which we employ to analyze the
system are explained in Sec. III and results of the nu-
merical simulations are given in Sec. IV. We devote Sec.
V to the conclusions and discussions.

II. DESCRIPTION OF THE MODEL

The one-dimensional self-gravitating system consists of
N identical mass sheets, each of uniform mass density
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and infinite in extent in the (y, z) plane. We call the sheet
a particle in this paper. The particles are free to move
along z axis and accelerate as a result of their mutual
gravitational attraction. The Hamiltonian of the system
is given by

N
-m 2 2 oz
H= —2-;111- + (27Gm )Z[zJ z;|, (2)

1<j

where m, v;, and z; are the mass (surface density), veloc-
ity, and position of the ith particle, respectively. Since
the gravitational field is uniform, the individual particles
moves parabolically, until they intersect with the neigh-
bors. Thus, the evolution of the system can be followed
by connecting the parabolic motions. When an encounter
occurs between two particles, they pass freely through
each other.

Our code is the application of that for one-dimensional
sheet plasma [25] to the self-gravitating systems, which is
very similar to the “new exact code” referred in Ref. [19],
but the exchange of particles at an encounter is arranged
by the heap sort algorithm. During the integration, time
is measured in the unit

te = (47Gpay)~Y/?, (3)

where p,, is the mass divided by the width of the distri-
bution at the initial time.

All calculations were performed in double precision (16
significant figures) on DEC station 3000AXP and SONY
NEWS 5000 computers. The total energy was conserved
to better than one part in 1013,

We examined two courses of evolution, IT and WB,
which begin with the isothermal and water-bag distribu-
tions as their initial condition, respectively. In the water-
bag distribution, all particles are randomly distributed
in a rectangle region in the yu space to form a uniform
averaged phase density (Fig. 1). This is not a exact sta-
tionary solution of the collisionless Boltzmann-Poisson

2 T — 1 T T T
1 F —
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FIG. 1. The water-bag initial distribution in u space.
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equations because the shape is a rectangle, but the dif-
ference is very small and then after several oscillations it
is transformed into the stationary water-bag configura-
tion. The isothermal distribution is given by

6(n) = 72 exp(—n?) (velocity), @
p(€) = %sechzf (position), )
where
n = (v/2)(3M/E)"/?, (6)
and
¢ = (3rGM?/2E)z, (7)

M and F represent the total system mass and total en-
ergy, respectively (Fig. 2). It is a stationary solution
of the collisionless Boltzmann-Poisson equations. In all
our simulations, the total mass and energy set to 1 and
1/4, respectively. The typical period of oscillation of a
particle is 27t..

We choose the initial distributions which are dynami-
cally stable, because our studies are concentrated on the
thermal evolution (collisional relaxation) of the system.
If the system is ergodic, IT and WB should coincide af-
ter the relaxation time. Therefore we compare the be-
haviours of IT and WB for a long time.

III. ANALYSES
A. Equipartition

The specific energy (energy per unit mass) €;(t) of ith
particle is given by

N
it) = uR(0) + 20Gm Y Iz (0) ~ (). (8)

i=1

FIG. 2. The isothermal initial distribution in p space.
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If the evolution of the system is ergodic in the I' space,
the long time average of the specific energy takes a unique
value for all i, i.e.,

T
F= lim & / ei(t)dt = €0 = 5E/3. 9)
T Jo

T—o0

The degree of the deviation from the equipartition is mea-
sured by the quantity,

1 N
Al =e5ty| 5 DIED - <ol (10)

where &;(t) is the averaged value until ¢. In the numerical
scheme, ¢;(t)s are sampled at every At = 0.781 25¢., and
the average is defined simply by the summation of the
samples divided by the number of the samples.

If the system is ergodic and has a finite correlation time
(the relaxation time), it behaves like a random number
from Markovian process and we can estimate the tem-
poral evolution of A(t). In this case, a trajectory in the
I" space visits almost every point in the ergodic region,
thus, the individual particle energy relaxes to equilibrium
value and A(t) decreases as t~1/2 for the time longer than
the relaxation time, according to the central limit theo-
rem. Therefore, the evolution of A(t) is a good tool to
understand the relaxation property of the system.

The initial value of the deviation from the equiparti-
tion, A(0), depends on the initial distribution. Figure 3
shows the cumulative distribution of the specific energy,

U(€), which is defined by
v(e) = (1/N)N(e: < ¢), (11)

1.0

0.8}

0.6

V(E)

0.4

0.2

FIG. 3. The cumulative specific energy distribution of the
isothermal (solid line) and water-bag (dashed line) distribu-
tion for N = 512. The dotted line indicates the energy at
equipartition.
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where N(e; < €) is the number of particles with e; < e.
The isothermal and water-bag distribution are repre-
sented by the solid and dashed lines, respectively. Also
the energy at the equipartition, €g, is shown by dotted
line. Since the isothermal distribution spreads wider in
the energy space than the water-bag, A(0) of the isother-
mal distribution is larger than that of the water-bag dis-
tribution.

B. Power spectrum density

The power spectrum density (PSD) S(f) is given by
N
S(f) = (1/N) Y IC(H)I%, (12)
=1

where C;(f) is Fourier transform of ¢;(t), i.e.,
s(t) = [ ety (13)

The PSD, on the other hand, is the Fourier transform of
the autocorrelation function, thus the long time correla-
tion gives rise to a peak at small f. In order to obtain
PSD numerically, a sequence of “locally averaged” energy
{{eY(t1 = To/n), (e)(t2 = 2To/n), ..., {e)(tn = To)} is

sampled, where

(€)alty) = = /t ‘] ei(t)dt. (14)

T h

The maximum integration time T, determines the min-
imum frequency fmin = 1/T, and the interval of sam-
pling determines the maximum frequency fmax. This
local averaging suppresses the frequency modes higher
than fpax thus it prevents the higher frequency modes
from falling into the interval of f < fmax [26]. The
procedure of the local averaging, Eq. (14), is the same
as that described in the previous section. We inte-
grated the motion to Ty = 107t. for N =32 and 128,
hence fonin = 10_7tc_1. The number of samples n
is limited to 256 due to the computer’s ability, hence
fmax = 2.56 x 107%t;1. In order to obtain higher f,
we gathered n samples with shorter time interval, {(e;)
(To/lOTL) ) <El)(T0/10’n) y <E.,'>(2T0/10'n), ceey (6,;>(T0/10)},
which covers the range of the frequency from 1076t to
2.56 x 10~%¢t;!. If the amplitude of oscillation with the
frequency 10787 < f < 2.56 x 1075¢;! for t > 10%¢.
is the same as during ¢t < 10%¢., two S(f) merge into
one curve. In this way, we extended the range of the
frequency beyond 1072¢_1. The system with N = 128 is
the exception that makes the values of S(f) of Tp = 107¢t.
and Tp < 106¢,, for 105t < f < 2.56 x 10~ 5¢_"! different
(Fig. 4). This is discussed in the next section.

Since the PSD is the Fourier transform of the autocor-
relation function,

&(t) = /e(t +te(t)dt', (15)
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FIG. 4. Same as Fig. 6, but for N = 128.

we can find the time scale on which the correlation de-
cays. For example, the Brownian motion, u(t), subjected
by the Langevin equation,

du

7t + yu = R(t), (16)

where « is the friction coefficient and R(¢) is a random
force (white noise), gives the PSD of the Lorentz distri-
bution,

S(f) (17)

1
f 2 4 ,),2 .

For f > v, S(f) o f~2, which describes the short time
scale nature of the system. In this phase, the random
force R(t) is dominated and the dispersion ([u(t)—u(0)]?)
increases proportional to ¢t. In other words, it is the dif-
fusion phase from its initial value. On the other hand,
for f < v, S(f) is constant. Thus any correlation dis-
appears in the time scale v~ !, and then the fluctuation
becomes like a thermal noise. Since this time scale is
closely related to the relaxation time, the PSD gives us
complemental information about the mixing property of
the system.

We should mention more about the PSD with a peak
or divergence as f goes to zero, e.g., S(f) o f~1, which
means the existence of a long time correlation. Such a
PSD is often observed in a near-integrable system. In
the system, the phase space is divided into stochastic
region and regular region (tori). The well known Arnold
diffusion states that it takes a long time for a trajectory
to travel across the web of the tori. This slow diffusion
gives rise to a long time correlation [3].

C. Lyapunov exponent

The evolution of the system can be described as a tra-
jectory in the I' space. The Lyapunov exponents of a
given trajectory characterized the mean exponential rate
of divergence of trajectories surrounding it (a general dis-
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cussion of the Lyapunov exponents is provided by Licht-
enberg and Lieberman [2]).
The maximum Lyapunov exponent is defined as

1. d()
= —Iln—=% 1
A= Jlim 21n 30y (18)
t— o0

where d(t) and d(0) are the separations in the I' space
between two nearby orbits at times ¢ and 0, respectively.
The numerical procedure follows mostly Shimada and
Nagashima [27], where d(t) is determined by the lin-
earized equations of motion:

Ag; = Av;, (19)
N
Ab; = —4nGm Y " (Az; — Az;)é(z; — z;), (20)
Jj=1
N
d=,|) (Az? + Av?), (21)
i=1

where Az; and Av; are the first order deviation of the
position and velocity. Since d(t) diverges exponentially,
when the separation d becomes 10° times the initial value,
the separation is rescaled to d(0).

The linearized equation (20) contains the ¢ functions,
but is is not harmful. Because the § function comes from
the singularity in time (at the intersection of sheets), then
displacement at a given time is a smooth function of the
positions and the velocities. To make sure, we calculated
the Lyapunov exponents by tracing two nearby orbits,
which is used, e.g., in Ref. [18], and we got the same
value as the one we obtain by linearization.

The Lyapunov exponent is originally defined by the
limit of infinite ¢, but here we use “time-dependent Lya-
punov exponent” defined by

A(t) = %m%. (22)

If the system is mixing, the time average becomes roughly
the same as the space average over ergodic region, in
the relaxation time. Thus the convergence of A(t) gives
another measure of relaxation.

IV. RESULTS
A. N =32

Figure 5 shows the time evolution of the deviation from
the equipartition, A(¢) (bold lines) and the Lyapunov
exponents, A(t) (light lines). The PSD, S(f), are shown
in Fig. 6. The curves of IT and WB are represented by
solid and dashed lines, respectively.

The features of the curves are not so simple as we ex-
pected in the previous section. A(t) begins to decrease at
t ~ 3 x 103t., but does not show monotonic decrease like
t~1/2. From t ~ 3 x 10%t., A(t) of IT and WB coincide,
but at ¢ ~ 10*,, IT begins to increase again and the
difference between IT and WB lasts until ¢ ~ 3 x 105¢,.
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FIG. 5. Evolution of the deviation from the equipartition,
A(t) (bold lines), and the maximum Lyapunov exponent, A(¢)
(light lines) for N = 32. The solid and dashed lines represents
IT and WB, respectively. The unit of time is t..

After that, though the range of ¢t is not so long, A(t)
seems to decrease as t~1/2. At this time, t ~ 3 x 10%¢,,
also the convergence of A(t) becomes quite clear. From
the PSD (Fig. 6), it is found that S(f) is constant for
f < 1075¢;1, which gives the time scale of disappear-
ance of correlation of ¢ ~ 10%¢.. Therefore, it is probable
that the system relaxes on this time, ¢ ~ 10%¢.

From Fig. 5, there seems to exist another time scale,
t ~ 103t,, at which A(t) begins to decrease. For shorter
period, t <« 10%t., the PSD indicates that the variation
of €;(t) is well approximated by the random walk be-
cause S(f) o« f~2. For t 2 3 x 103t,, the trajectory in
the T" space travels farther so that the individual parti-
cle energies vary widely over the energy space. However,
the long time correlation seems to last for several 10%¢,,
because A(t) does not decrease monotonically like ¢ /2
but sometimes decrease more rapidly and sometimes in-
creases. Also, convergence of A(t) is not good.
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FIG. 6. Power spectrum densities of IT (solid line) and WB
(dashed line) for N = 32. The unit of frequency is t; .
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From the facts that the Lyapunov exponents obtained
for different initial conditions tend to converge to the
same value, it is speculated that the system has ergodic
property and an orbit covers the whole phase space.
However, it is interesting that the diffusion in the phase
space is different from that of the Markovian random
number. The complicated behavior of A(t) suggest a
long time correlation of about ¢t ~ 105¢,.

B. N=128

Figures 7 and 4 are the same as Figs. 5 and 6, but for
N = 128. The PSD for WB is that S(f) is separated into
two part, 1077¢71 < f < 2.56 x 107°¢;! and 10751 <
f <256 x 1072¢;1. The former is calculated from the
sample of Ty = 107t and n = 256 (see Sec. IIIB). The
other is calculated from that of T, < 108t., thus this
part does not contain the behavior during 10%t. < ¢t. The
difference between the two means that evolution with a
period 108t. later than ¢t = 10%¢, is different from that
of 0 < t < 10%,.. The transition of state at t ~ 105t
is found in Fig. 7. A(t) of WB decreases as ¢t~/ until
t < 10%¢. and then suddenly increases to approach to IT.
Also A(t) shows the transition at t ~ 2 x 10t.. After
that A(t) and A(t) of WB show a tendency to approach
to that of IT. Therefore the system is expected to relax
on the time scale of 107..

Another interesting feature of this system is the be-
havior of WB for t < 10%t.. A(t) shows a good agree-
ment with t71/2 from t ~ 10%t., and A(t) converges
to the local value, 5.5 x 1072, while that of IT con-
verges to 6.2 x 1072, Furthermore, S(f) calculated from
the sample of Ty < 10°t. shows almost flat spectrum
for f < 10731, These features indicate that WB re-
laxes in t ~ 103t to a quasiequilibrium which lasts until
t ~ 10%t.. Figure 8 shows the cumulative energy distri-
bution, U(e), of IT at the beginning, ¢t = 0, (solid line),
WB at the beginning (dashed line), and WB at ¢ = 106¢,
(dotted line). The distribution of WB at t = 10%¢, is
very close to the initial distribution compared with the

10 E 8x10°
1 3 6
o - >
< o1 4 =
i N
0.01§ ; |
0

10° 10" 10% 10® 10* 10° 10° 10

t
FIG. 7. Same as Fig. 5, but for N = 128.
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FIG. 8. Cumulative energy distributions, ©(¢), of IT at the
beginning, ¢ = 0 (solid line), WB at the beginning (dashed
line), and WB at t = 10°¢. (dotted line).

isothermal distribution. Therefore the quasiequilibrium
has, in fact, the water-bag distribution. On the other
hand, the difference between IT and WB disappears af-
ter the transition. Figure 9 shows ©(g) of IT (solid line)
and WB (dashed line) at ¢t = 107¢,.

The evolution of IT is similar to that of N = 32. There
is a long time correlation, which is found from the evo-
lution of A(t) and A(t). Especially for N = 128, PSD
shows clear bend at f = 2 x 10~%¢_!, and the power of f
for 10781 < f < 1074t ! is less steep than f~2. This
smaller power means slower diffusion than the random
walk diffusion. The similar feature of PSD can be found
in that of WB for f < 2.56x10%¢!. This is the transition
phase from the water-bag distribution to the isothermal
one. Thus in this transition phase the diffusion the phase
space is slower than in the quasiequilibrium.

1.0

0.6

A

V(€)

0.4

0.2

FIG. 9. Cumulative energy distributions, ©(¢), of IT (solid
line) and WB (dashed line) at t = 107¢..
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C. N =512

Figures 10 and 11 are the same as Figs. 5 and 6 but
for N = 512, respectively.

The PSD indicates that the behavior in a shorter time
scale than 103t. is the same for IT and WB. It is the
diffusion process of the individual particle energy from
its initial value.

Since the integration time is limited to 10%¢. from the
constraint of computer’s ability, the transition of WB
from the water bag to the isothermal distribution, which
is expected to occur at later than 10%¢., is not observed.
The behavior of WB for t < 10%t. is quite similar to
that for N = 128. Thus water-bag distribution is one
of quasiequilibrium and the relaxation time to the quasi-
equilibrium is about several 103¢..

Increasing the number of the particles for IT strength-
ens the property that disappearance of time-correlation
which is found by the bend of the PSD occurs later for
the larger N. In fact, the frequency at which the fea-
ture of PSD changes from flat to inclined is 1075¢_1 for
N = 32 and 107%¢;! for N = 128. Together with the
fact that A(t) does not decrease as t~1/2, we found that
the relaxation time, at which the trajectory covers almost
whole ergodic region, becomes longer for larger N.

V. CONCLUSIONS AND DISCUSSIONS

We performed N-body simulations of the evolution of
one-dimensional self-gravitating systems for different V.
We examined two courses of evolution, IT and WB, which
have the initial distributions of the isothermal and wa-
ter bag, respectively. We obtained the following lines of
conclusion.

(1) These systems relax to the isothermal distribution.
The time at which the difference between IT and WB
disappears is about 10%¢. for N = 32, 108t for N = 128,
and longer than 10%t. for N = 512.

(2) As N increases, the water-bag distribution becomes
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FIG. 10. Same as Fig. 5, but for N = 512.
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FIG. 11. Same as Fig. 6, but for N = 512.

a quasiequilibrium, which yields ergodic properties ap-
parently. The microscopic relaxation time of the water
bag, at which the time correlation disappears, is 103t. for
N = 128 and 10%, for N = 512. The water-bag distribu-
tion lasts stably for a period orders of magnitude longer
time than the time that the correlation disappears.

(3) Since the isothermal distribution is the micro-
canonical equilibrium, IT shows no evolution macroscop-
ically. As one can see in the figures of PSD, the mi-
croscopic relaxation time is, however, much longer than
that of the water-bag quasi-equilibrium. For N = 32, the
microscopic relaxation time is about 10%t, and 10%¢, for
N = 128. For N = 512, we did not observe the micro-
scopic relaxation in 10%¢.. The transition of the water
bag to the isothermal distribution occurs in the same
time scale.

(4) Convergence of the maximum time-dependent Lya-
punov exponents to the different values for IT and WB
indicates that the phase space is separated into at least
two ergodiclike regions which give the quasiequilibria.

In the limit of N — oo the evolution of the system,
both the isothermal and water-bag distribution are the
stationary solution of the collisionless Boltzmann-Poisson
equations. The distribution function which depends only
on the individual particle energy is always the stationary
solution of the collisionless Boltzmann equation. Among
these solutions many satisfy the Poisson equation, so
many classes of analytic stationary solutions for the col-
lisionless Boltzmann-Poisson equations exist. These so-
lutions are expected to be also quasiequilibria, and they
should depend on the initial condition. In fact, we have
examined another initial condition, in which all particles
have the same energy. The distribution of particles is
shown in Fig. 12. Since this distribution is unstable, the
ellipse in the phase space is broken rapidly, then the sys-
tem approaches not to the isothermal distribution but
to the water-bag distribution. So in this case, the final
results are similar to the one for WB mentioned before.
Furthermore, we are presently studying the dependence
of the initial condition in more detail. The result will be
described in the succeeding paper.

After a very long time [e.g., (t > 10%t.) in Fig. 7]
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FIG. 12. Distribution of particle in a stationary solution of
collisionless Boltzmann-Poisson equations. All the particles
have the same energy.

the system appears to be ergodic. However, from the
above facts, it is obvious that in view in shorter time
(t < 10%t.) the ergodicity is effectively broken. This
means that there are many regions in the phase space, in
which trajectories are confined for a long time and give
the quasiequilibria. In those regions trajectories show
normal diffusion like the random walk, and the trajectlies
covers the whole subregions like ergodic systems. We
call this era “quasiequilibrium.” The trajectories tempo-
raly trapped in the subregions eventually cover the whole
phase space. However, during transition from a quasi-
equilibrium to the true equilibrium the diffusion of the
trajectories exhibit a long time correlation.

Though the origin of the substructures is not clear, we
have a speculation that tori play an important role. This
idea conflicts with the usual idea that chaos is strength-
ened as the number of degrees of freedom increases, thus
the system approaches to ergodic. The latter idea is sup-
ported by some numerical results, in which the volume
of the Kolmogorov-Arnold-Moser tori is reduced as the
number of degrees of freedom increases [28,29]. However,
we believe our idea, because of the following reasons: in
the limit of N — oo, the distribution function which de-
pends only on the individual particle energy is alway the
stationary solution of the collisionless Boltzmann equa-
tion. These solutions form tori because all phase elements
in the phase space (i.e., all degrees of freedom) conserves
their energy, and the motion which has the same number
of integrals of motion as the degree of freedom is a torus.
Thus, in the limit the system contains many tori, which
seem to produce the multiergodicity [3]. The other reason
is that, in fact, chaos is getting weaker as IV increases.
Figure 13 shows the converged value of the maximum
time-dependent Lyapunov exponents of IT and WB for
various N. That of IT decreases as N~'/% and of WB as
N~—1/4, This fact suggests that the system approaches to
near-integrable system as IV increases.

The property that chaos becomes weaker as the num-
ber of degrees of freedom of the system increases seems
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FIG. 13. The maximum Lyapunov exponents of IT (solid
line) and WB (dashed line) after convergence.

due to the long range force, because the force acting on
a particle is the summation of the force of all the others,
thus, the effect of close encounter, which is usually be-
lieved to be the origin of chaos, becomes weaker as the
system population increases. The results for N < 10 that
the stochasticity of the systems are strengthened [20-22]
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seem to be due to the small number of particles in the
system. In such systems, the properties of the long range
force are not prominent. Thus, it is inferred that there
exists the number of degrees of freedom which maximizes
the stochasticity of the system between 10 and 30.

In the three-dimensional system, the properties de-
scribed above are expected to hold, because the force is
also long range. In fact, elliptical galaxies have the sta-
tionary state which is triaxial in shape and anisotropic
in the velocity dispersion. Also, the stationary states
depend on the initial conditions [5,6]. This state is com-
pletely different from what Lynden-Bell predicted by us-
ing ergodic hypotheses [4]. This state can be explained
as the quasiequilibrium mentioned in this paper.
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