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A nonlinear lattice with randomly distributed masses is considered within the framework of the
mean field method. It is stated that the mean field is described by an equation that reduces to the
Burgers one in the case of small scale inhomogeneities. The law of the mean field amplitude decay

is obtained to be t~1/2,
PACS number(s): 05.45.+b, 03.20.+i

I. INTRODUCTION

A great number of investigations devoted to the non-
linear lattice dynamics are based on the so-called long
wave approximation, which allows reduction of the sys-
tem of differential-difference equations to the partial dif-
ferential ones. Detailed discussion of the application of
this method to inhomogeneous lattices has been reported
recently [1]. As has been shown, it is possible to clas-
sify the respective problems on the basis of the relations
among the wavelength, the scale, and the amplitude of
inhomogeneities. Though the partial differential equa-
tion obtained with the help of that technique depends
on the scaling of the problem, it has been stated that
the equation of the continuum limit is of the Korteveg—
de Vries (KdV) type. The advantages of the long wave
approximation are evident. First, it is much easier to
deal with partial differential equations rather than with
discrete ones. Second, in some cases the final nonlinear
equation appears to be exactly integrable, which allows
one to write down the solution in the explicit form.

The long wave approximation, being essentially based
on the well-defined relations among scales, requires the
wavelength (or the characteristic size of the lattice ex-
citation) to be much greater than the distance between
adjacent particles. In the meantime, it has been demon-
strated in [2] that the discreteness can lead to new effects
not observed in the stochastic dynamics of the continuum
limit. Also, sometimes while studying random structures
the mean field is the main interest (so, for instance, the
divergence of the mean field is associated to the denatura-
tion of DNA [3]). Then, if the resulting partial differential
equation is nonintegrable, the long wave approximation
is only the first step of the study while the next one must
be another approach.

A number of publications have been concerned with the
mean field related to the nonlinear stochastic equations.
So it has been discovered that after averaging the ran-
domly “perturbed” nonlinear Schrodinger soliton [4] and
the KdV soliton [5] described by the exactly integrable
stochastic equations display decay of the amplitude ac-
cording to the law t=3/2. As is argued in [6] such a law is
stipulated by the type of the random perturbation and is
replaced by t~1/2 for special kinds of the stochastic term.
As a result of numerical experiments it has been found
in [7] that the decay of a soliton of the Toda lattice with
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randomly distributed masses is governed by the power
law n~P, n being a number of a site and p a constant
from the interval 1-1.2. Then, in [8] the law ¢~'/2 has
been obtained for the mean field of a lattice excitation in
the continuum approximation when randomness can be
treated as external noise.

The aim of the present paper is to provide direct expan-
sion of the averaged solution of the randomly perturbed
lattice in the weakly nonlinear limit. It will not be re-
quired for the length of the carrier wave to be large. The
amplitude of the inhomogeneities will be a small param-
eter of the approach. As long as the proposed expansion
has to take into account small scale fluctuations (and this
will be the subject of main interest) it is natural that it
will be based on the mean field method (see, e.g., [6]).

The paper is organized as follows. In Sec. II the equa-
tion for the mean field and the expression for the fluc-
tuations through the mean field are derived. In Sec. III
the lattice with small scale inhomogeneities is discussed.
It is shown that in the definite spatial-temporal region
the equation for the mean field is reduced to the Burg-
ers equation, which allows us to estimate the law of the
amplitude decay. In the last section the outcomes are
summarized and discussed.

II. EQUATION FOR THE MEAN FIELD

Let us consider a lattice, the dynamics of which is de-

scribed by the equation
dzqn / 1

(M + mn)w =U'(gn+1 — gn) = U'(gn — gn-1)- (1)
Here g, is the displacement of the n th particle from the
equilibrium position, M is the average mass of a parti-
cle, m,, is the deviation of the real mass M,, of the n th
particle from the average value: m, = M,, — M, U(q) is
the potential of the interaction between adjacent parti-
cles, the prime stands for the derivative with respect to
the argument: U’(q) = dU(q)/dq, and hereafter we do
not write explicitly the dependence of the displacement
on time. m,, are considered as random numbers.

For our purposes it is convenient to rewrite (1) in terms
of the new dependent variable

Qn = 4n+1 — qn- (2)
Evidently
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Here it is taken into account that we are interested in the
solutions of (1) tending to constants at infinity: g, — q+
at n — too, which means that |a,| — 0 at |n| — oo.

In the weakly nonlinear case the solution of (3) can
be found in the form of the expansion in the series of a
small parameter. To be concrete, we will assume that
such a parameter p is defined by the amplitude of fluctu-
ations of the inhomogeneities: u = O(m2/M?). On the
other hand, as far as m,, is a random value, it is natural
to represent a, in a form of the sum of the regular (or
coherent) and the random (or incoherent) components.
Namely, we write down

an = ac(n) + a;(n),

(4)

where (a,) = a.(n) and (a;(n)) = 0 (hereafter the an-
gular brackets designate averaging over all realizations of
the random numbers m,). Then the expansion in u has
the form

J
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ac(n) = pald(n) + el (n) + -, (5a)

ai(n) = p*%a{) (n) + PP (n) + -+ (5b)

The representation (4) means that the solution of the
original equation (1) will be obtained in the similar form

(6)

Here g; ,, describes the noise generated by the interaction
of the wave packet with inhomogeneities.

As is customary, in order to provide the expansion
without secular terms one has to use the multiscale
method. In our case this means that a,, depends not only
on the “fast” time ¢, but also on the slow time 7 = ut,
which is considered as an independent variable, so that

qn = (‘In) + Qin.

d? o?

i o

8 9

t2a 5

(7)
(in what follows the consideration is restricted to the
lowest orders and that is why higher scales are not dis-
cussed). Substitution of (4)-(5b) and (7) into (3) leads
to the equations

82al!) (n)
-_7%7—-=taAna9MnL (8)
9o (n) M ” 5 »”
oz =U1Ane; ' (n) _6n+lﬁl—z—: 0‘5:1)(1) +ﬁnwl; agl)(l)a (9)
__azaﬁz)(n) =U,A,a? (n) —2£2a(1)(n) + Uz An[aM (n))?
at? 15nTe ar ot © 2Tnl%e
9 o~ ? o
_{<eﬂ+lﬁl;ma,. ) - enﬁl;wai ), (10)
azaf.z)(n) —U A (2) o2 = (1) l o? " (1) I
oz N ne; (n) + €n+1ﬁl§:ooai U] _€n+1w’; a; U}
82 n—1 (1) 82 n—1 (1)
—{<€"w1;ooai @ —Engtiz—z—:ooai @ ¢ (11)
[
in the orders u, p3/2, u?, and p2, respectively. In (€n) =0, (enex) = B(|n — k|). (12)

Egs. (8)—(11) the following designations are introduced:
Ana(n) = a(n +1) — 2a(n) + a(n - 1),

v 12U _ 1 pu)
17 M o7 ' 2T oM a3 ’
q=0 q=0
e = 1 ™Mn
tyB M

Since the solution g, = gn+1 is considered as a state of
the equilibrium we have that U; > 0. Here we also define
the characteristics of the inhomogeneities. In the present
statement

Let us start with the brief discussion of the solution of
the linear equation (8), which can be represented in the
form

2m

dpA(¢) cos [nqS — 24/U; sin (%) t] ,

(13)

where A(¢@) characterizes the spectrum of the wave
packet. It displays the main peculiarity of the discrete
problem. Namely, there are three physical reasons for
the wave packet form to change. The first two are the
nonlinearity and the scattering by the inhomogeneities.

af(n) = 5
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The expansions (5a) and (5b) imply that the character-
istic times of both processes are of the same order, which
is taken into account by the dependence of the slow time
7. Another phenomenon we have to take into account
is a dispersion caused by the discreteness. Consider two
particular cases.

(a) First, let A(¢) = 240 (Ao being a constant). Then
the unperturbed solution is

alM(n) = 2402, (24/Ust), (14)

where Ji(t) is the Bessel function, and in terms of ¢,
it describes the evolution of a steplike (or “switching”
solution) between the states g¢_ = 0 (at n = —o0) and
g+ = 24, (at m = 00). Respectively, initially (¢ = 0) we
have q, =0 at n <0 and ¢, = 249 at n > 0.

(b) The second type of solution we can consider is an
excitation localized in the space. So, the function

oV (n) = Ao[Jz(n+1)(2V/Unt) —

describes evolution of the lattice if intially the only par-
ticle on the site n = 0 is excited with the amplitude of
the deviation Ag.

Clearly, both types of the solution in terms of aﬁl)(n)
are wave packets localized in the space. Using the asymp-
totics [9] J.(z) = (27)~161/3T'(4/3)z~ /3 + O(z~%/3) at
z — oo we find that the amplitude of the wave packet
decreases as t~'/3 along the characteristics n = Zwot,
where vo = /U is the sound velocity, i.e., the group ve-
locity of the long acoustic waves, and as t~1/2 along other
“directions” given by a fixed site number n and by the
velocity less than vg. All the trajectories characterized
by the velocities higher than vy manifest faster decay.

Now we pass to the order u3/2. Solving (9) subject to
the zero initial condition and taking into account (8) we
find

Jan(24/Ust)]  (15)

0 0 e,

—2—
ar ot

(n) + U2Bnfal) (n)]* ~

It is obtained by direct calculations that

2 {ennle®m+1) - a®(m) -

Now we differentiate (19) with respect to ¢t and trans-
form the first term taking into account (8). As a result
we have the equation

8ol (n)

8ol (n) U
— Usa ;_ _ _
= UsalP (n) Z B(|n — k)

k=—o0

t
x / dt' oD (k) Andymiy @VTr(t — ) = 0, (21)
0

which describes the evolution of the mean field in the

U {(ennrlaP(n+1) -

)(m+1)

(1) \/—U_l/ dt’ Z —

—al (m)]Ja(n—m)-1(2v/ U1 (t = ). (16)

Thus the leading order of the incoherent component g¢; »
is described by the formula

\/TJ_I/ dt’ Z <Qm>€mn t—‘t) (17)

m=-—00

where the designation

€mn(t) = €mJI2(n—m)-1(2V Uit)
—€em—1J2(n—m)+1(2V/Uit) (18)

is introduced. Some comments on the result (17) should
be made here. First, even in the case of the absolutely
random distribution of the masses the generated process
&mn(t) (and hence g; ;) is correlated: so {mi1,n # 0 even
if B(|n — k|) ~ 8nk. Second, the integral form of (17)
stipulates the dependence of the process on the history
(it has been mentioned in [7]). Third, the decay of the
dispersion (£Z, ,,(t)) with time and the correlation func-
tion (€m n(t)€m,n(t + 1)) with £ is governed by the power
law (i.e., manifests the property of the fractal noise). At
last, (17) and (18) give the linear transformation of the
noise, while the nonlinear process is governed by Eq. (11)
(the last, however, will not be discussed here).

The nonlmearity results in the slower decay of the ad-
dendum ol (n) with time compared with oe )(n) (see
Appendix A). Thus the dependence of the solution on
the slow time can be found from the requirement for the
right hand side of (10) to be zero [note also that under
such a condition the mean field is obtained with the ac-
curacy O(p?)]. This means that we have to set

a®(@)]) — (ealef™ (m) = 2P (n = 1)) } = 0. (19)

(enleV (m) = o (n = 1)) }

B(|n — k|) / dt' oD (k) Ando(n_k) (2T (E— ). (20)

lowest order. The second term in (21) is the contribu-
tion of the nonlinearity and the last one corresponds to
“dissipative” losses caused by the transformation of the
energy from the coherent component to the incoherent
one due to the scattering by the inhomogeneities.
Equation (21) has to be considered in the quadrant 7 >
0; t > 0. The “initial” condition with respect to 7 comes
from the following idea. When p = 0 the function ozC )(n)

has to satisfy (8). Hence at 7 = 0 the function ac )(n)
corresponds to the unperturbed motion. In other words,
the expression in the right hand side of (13) serves as
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an initial condition for (21). The “boundary” conditions
with respect to t follow from the natural requirement of
decay of the mean field and its derivative when ¢ tends
to infinity.

III. LATTICE WITH SMALL SCALE
INHOMOGENEITIES

As is known (see, e.g., [6]), it is the case of small scale
inhomogeneities that provides the most favorable condi-
tions for the application of the mean field method. In
the case B(|n — k|) = 2Bodn x (Bo being the constant),
(21) reduces to

dalV (n,t)
or

Hin,t)
Bt

t
_U?B, / dt' o (n, ¢) AoJo(2y/Ti(t — ') = 0
o

(22)

— UzaM(n, t)

(here we temporally use the explicit indication on the

dependence of the function o on time).

The integral equation (22) obtained as a result of the
direct multiscale expansion is hardly solvable in a generic
case. Meantime we can expect its simplification at large
times. Indeed, (22) describes evolution of the mean field
and does not contain rapidly varying random coefficients.
Any initial excitation of the lattice (even those having a
characteristic scale one) will become flat with time due
to the dispersion. Since all the parameters in (22) are
of order one, the characteristic time of that process is
of order one, as well. Hence at ¢t >> 1 the integral term
should be reducible to a local one.

Let us investigate the last term in (22) in the limit ¢t >
1 and concentrate on the solution in the neighborhood of
the trajectory n = v't where v’ is from the interval [0, vo].
To this end, using the properties of the Bessel functions
we rewrite it in the form

(1)
~U1 By ____aac ain, t)

o [t e
+U1305t—2‘ / dt'aﬁl) (Tl, ( t ))Jo 2 Ult ) 23
0

In order to estimate the last integral we note that
due to the Bessel function the main contribution is
given by the region where t' is of order one. On
the other hand, as follows from the representation (13)
the behavior of acl)(v't t) at vot > 1 is defined by
the stationary point ¢ of the phase s(¢) = v _

002

(1 - ﬁ) sin f. That point is found from the equation
N\ -1
cos L = (1 - ‘7) , which can be rewritten as fol-

lows: cos %— = (1 - ‘3—:) (1 + %) (here Av = vo—v'). If
now we consider the trajectory corresponding to Av = uv
(v being the constant of order of vg) the stationary phase

N\ 1/2
is found to be ¢g = 23/2 (uvo t ) . Thus ¢ is a
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small quantity, which complicates the analysis of the tem-
poral decay of aﬁl)(v' t,t) governed by (13) in a generic
case. However, for our goals it is not necessary to inves-
tigate it. The only thing we want to show is that

oM (v't, 1)

t < la® (W't t)|t= /2

(24)

at t > 1 (here t—1/2 describes decay of the envelope of
the Bessel function). Differentiating (13) with respect to
t and taking into account that according to the stationary
phase method the prefactor which appeared has to be
taken in the point ¢4, we come to the rough estimate

oM (v't,t —t')
at

(v st — 2vg sin E) la® (v't,t — t')]

5 t\?

~ 2325 (u—— - —) |tV (v't, t — )]
Vo t

Since we are dealing only with the leading order of the

expansion (5a) and required ac ®)(n) to be zero we have
to restrict the consideration to the region u3t <« 1 (or
p < t1/3). Then the last estimate leads to (24).
Consequently on the trajectory n = vt the function
a&l)(n,t) can be considered as slowly varying compared
with Jo(2v/T;t) and the integral (23) can be approxi-
mated by 2‘1U1_1/2a¢(;1)(n,t). Now by the use of new
independent variables (7,7T), with T = t — U1 BoT, (22)
is reduced to the Burgers equation

(1) 9
aca,r(n) U a(l) (n) ac (n)
1 1/2 aza(l) (n)
14
3 2 1
12}
t L
L1 1
n{h{ M 2P n
FIG.1. The lattice segments (the thick lines), the dynam-

ics of which is governed by the Bur ers equa.tion at different
moments of time: the segment [na ,n1 )] at t, and the seg-
ment [ng’),n“)] at tz (here t; > t; and, respectively, the last
interval is larger than the former one). These regions are de-
termined by the cone between the trajectories (1) ny = vot
and (3) n3 = vo(1 — pv)t where v is a constant of the order
of vo. Thus n{? = vo(1 — ;w')t. and n{" = vot;. The trajec-
tory 2 is given by n = vo(1 — pv3 Bo)t and corresponds to the
region of maximum of the mean field [also the characteristic
(2) corresponds to the moving frame in which the equation
for the mean field is written in the continuum limit].
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This equation is valid for the sites of the lattice in some
cone near the trajectory n = vo(1 — pviBy)t (as Fig. 1
explains).

To analyze the decay of the wave packet amplitude
we solve (25) by means of the Cole-Hopf transformation
[a‘(:l)(n) = Ull/zUz,_lBo(c‘?/aT) Ing(n,T)]. Being inter-
ested in the region T' > 1 we can approximate the solu-
tion by the expression

0o T_tl 2
1S e, )T — ) exp [ T

—$')2
UsT [ dtrge(n, ') exp [_ E%}T;_/’EE)O_-;— ]
1

(26)

o (m) = -

Here go(n,T) has to be found from the effective initial
conditions for the Burgers equation [generally speaking
it differs from (13)].

It follows from the representation (26) that the main
contribution to the integrals is made by the region

(T - \/2U11/ZBOT,T + 2U11/ZBOT). Hence the charac-

teristic time of the diffusive process is t ~ u~=1 (7 ~ 1)

and the asymptotics of a((;l) (n) is defined by the behavior
of go(n,t’) in the region mentioned above. The function
go(n,t') cannot be obtained exactly [because it depends
on the “history” governed by the nonlocal equation (22)].
Nevertheless (26) can be transformed using rather gen-
eral ideas coming from the properties of the linear solu-
tion (13). Indeed, let us rewrite (26) in the form

_ T 1i(71,1: T)

(1) -
o’ (n) Ust In(n, T, 1)’

(27)

where

L(n,T,7) = / dzgo(n,zT)(z — 1)Pe~2="17  (28)
0

A= %‘J—T, and p = 0,1. We are going to estimate (28)

in the limit T > 1, 7 > 1, which means that A\~ is a
small parameter and we can write

oo

dygo(n, (1 +y)T)yPe ™" (29)

L(n,T,7) = /

— 00

(hereafter we hold only the leading orders of the asymp-
totic expansions). The general form of the Cole-Hopf
transformation suggests that there exists a representa-
tion go(n,t) = exp G(n,t), where G(n,t) is a real func-
tion. The decay of the wave packet amplitude means that
the derivative 8G(n,t)/8t goes to zero with t. However,
here, taking into account that G(n,t) is defined to within
a constant, we assume that G(n,t) itself is small enough
at large t. Then I;(n,T,7) can be approximated by

oo

L(n,T,7) ~ / dyG(n, (1 + y)T)ye ¥’ (30)

and Iy(n,T,7) = y/7/A. Thus there is the estimate

1 T?
T _Li(n,T,7) 31
Uy v3uoBor o 1T 7) (31)

agl)(n) =~
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Now we recall two facts: first, otV (n) is an auxiliary vari-
able linked with the displacements of the masses by (2),
second, it is a region near the trajectory n = voT (inside
the cone between lines 1 and 3 in Fig. 1) that corresponds

to the maximum of aﬁl)(n). Thus the estimate for ¢, can
be written in the form

1 T &
N Ii(n,T, 32
" B 7578 2 BT )

(n; being defined by Fig. 1).

For the next consideration it is necessary to concretize
G(n,t) since the integral I;(n,T,T) contains two func-
tions with the large parameter 7. While doing this
we can restrict the analysis to the asymptotic form of
G(n,t). That is why the consideration will be carried
out for a particular case when the initial condition for
(25) coincides with (15). Thus it is taken that

U,A
go(n,t) = exp { 20 °J2,,_1(2vot)} . (33)
v0130

It seems that this choice reflects the general situation.
This is, first, due to the completeness of the set of the
Bessel function (see, e.g., [10]) and, second, due to the
fact that for the large diversity of the functions A(¢) the
asymptotic properties of the solution given by (13) are
determined only by the phase of the expression in the
integrand.

As is shown in Appendix B the function go(n,t) given
by (33) leads to the following asymptotic expression for
the mean field amplitude (n = voT):

(an) ~ Ao 1
qn) =~ 7[_21/41]3/2(‘“7)1/4 T1/2

25/2
X cos (—T(uﬁ)B/ZUOT + %) . (34)

This result can be rewritten in another form. To this end
we recall that o ~ v,  can be estimated as (m2)/M?2,

and hence 7 = %’—;%lT. Then (34) takes the form

Ama)/ 1 (_-US” (m2) z)

— =Y
vg/4M1/4 T1/2 @

(35)

where A and & are constants.

IV. DISCUSSION AND CONCLUSION

The result (35) valid in the time region p™! < t < p=°
has two new parameters, A and &, which must be consid-
ered as constants. In order to determine them we either
have to solve (22) explicitly or to solve (25) at t > 1
using for the initial condition the results following from
Egs. (8)—(10) of the direct expansion. The last way is
available if there exists a large enough overlapping region
1 €« t € p~ !, where the direct expansion is still valid
(t <« p~!) and the transformation of the regular term
in (22) already works (¢ > 1). In the last case we have
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that A ~ Ao where Ay is the true amplitude of the initial
excitation and hence the decay of the amplitude charac-
terized by the quantity {(g,,)/A¢ does not depend on Ao
in the leading order. Though this conclusion differs from
the observation reported in [7] it is not in contradiction
with the result mentioned since we have dealt with the
weakly nonlinear case. As it is expected at t ~ u~! the
transition between laws t~1/3 and t~1/2 occurs.

The sum in (32) contains the terms with n > n3. Ev-
idently we can spread out the sum for all n < nj at
least because the respective terms decay not slower than
t~1/2, Thus roughly the law of the amplitude decay can
be referred to as t—1/2, i.e., it coincides with the result
obtained in [8] within the framework of the long wave ap-
proximation. In the meantime there are two distinctions.
First, the above law is modulated by a cosine, which be-
comes important at t ~ p~3/2, Second, and this is also
related to a series of other previous results on the exactly
integrable models [4,5,2], the exact stochastic one-soliton
solution does not display the decreasing of the amplitude
on each realization of the random mass distribution. The
decay of the mean field is the result of the mathematical
procedure, that is, averaging over fluctuating velocities
and phases of the soliton. In contrast, the weakly non-
linear expansion given by (5a) and (5b) implies that the
mean field, being a term of the leading order, is a quan-
tity observable on one realization [in the case at hand
the fluctuations (17) are the small addendum of a higher
order].

The analysis provided above can be generalized to the
pulses of the steplike form. For a representative of that
class of solutions given by (14) we have to choose

U2A0 2vpt , ,
5, /0 dt' Ton(#) ) . (36)

To conclude we have obtained that the evolution of
the mean field of the wave propagating along the disor-
dered lattice is described by the Burgers equation if the
scale of inhomogeneities is small enough. The law of the
amplitude decay is t=1/2. Also the dissipation leads to
the slowing of the wave packet, which in the above situa-
tions is expressed by the renormalization of the velocity
vo = vo(1 — pvZBy) of the maximum of the amplitude.
Though to simplify consideration the particular exam-
ples of the lattice excitations were used, the asymptotics
have very weak dependence on the type of initial condi-
tion and are valid for a rather general situation. Since
we dealt with the discrete system it is natural that the
equation for the amplitude has appeared in terms of the
slow and fast times (rather than in terms of the traveling
coordinate, as happens in the long wave approximation).

go(n,t) = exp {

APPENDIX A: STRUCTURE OF
SECULAR TERMS

Let us consider the equation

8%a(n)
Jt2

- U1Aa(n) = UsAn[aM (n))?, (A1)

where a )(n) is a function given by (13) [evidently (A1)
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has the form of (10) if the dependence of T is not intro-
duced].
The solution of (Al) is represented as follows:
zn—m—lﬂ( Z)

1 U,
e % dt'
27i Uy / m__oo

x sin [Q(z)(t — t')] [l (m))2. (A2)

Here Q(z) = {/U1(2 — z — z~1) and the loop integral is
around the unit circle.

Let us consider it in the point n = N at the moment
of time t = N/vp and investigate the limit N — oco. In
other words, after the calculation of the loop integral we
are interested in

/ i TN - m)(2(N“1‘))

m=—00

a(n) =

x[a (m, 2)]? (A3)
[here the temporal dependence of a‘(:l)(m) is indicated
explicitly].

Both the Bessel function and [oz(l)(m)]2 display their
maxima in the region where z ~ m. In order to use
this fact we have to take into account the asymmetry
of the decay of both functions. So the Bessel function
decreases exponentially at ¢ > m while [af:l)(m, z)]?
exponentially small at ¢ < m. Respectively from other
sides, i.e., at £ < m and z > m, both functions have
power decay (such behavior is a consequence of the exist-
ing limiting group velocity ve). Thus in order to simplify
(A3) further we have to split the integration of each term
as follows: foN = [+ f,iv, and replace z by m in the

Bessel function for the first integral and in [agl)(m, z)]?
for the sceond one. After this approximation the inte-
grals are evaluated exactly. Leaving the leading order we
can write

U2 }: Jo(v—m)(2(N —m))

x {[af:’(m,mnz ~ [a{(m, N)2} .

The above arguments allow us to restrict the sum to the
terms with 0 < m < 2N. Then we can exclude a finite
number of terms in the neighborhood of N [where the dif-
ference in (A4) tends to zero| and neglect [ac )(m N)?
for the other ones characterized by m <« N. Now as-
suming that |a{") (m,m)| = O(m~1/3), using the asymp-
totics of the Bessel function Jy(n_m)(2(N — m)) ~
(N —m)~1/3 ~ N~1/3] and taking into account that
the number N of terms satisfying the condition m < N
grows linearly with N (say we can fix this growth by the
law N = 8N, & being a small constant) we arrive at the
estimate I(N) = O((N/N)'/3). Thus I(N) and hence
aﬁz)(n) decay much slower than a.(,l)(n) on the trajec-
tory n = vot. This means that at ut > 1 the expansion
(5a), (5b) fails unless the dependence on the slow time is
introduced.

I(N)~

(A4)



2606

APPENDIX B: ASYMPTOTICS OF THE
SOLUTION

In the case at hand I;(n,T,7) can be represented as
A [ 2
Li(n,T,1) :2—/ dyye™
™ Jo

X /" d¢sin {(2n — 1)¢ — 2vetsin @}
0
x sin(2vpy sin @),

_ UzA
whereA—;&—g,

(B1)

Z’U()t = 2'00(1 + 6+)T = V(]. + (S+),

and §; = uviBy. The integral over y and then the sum
over n are calculated explicitly to give

o Av
E Il(n,T,T)=—W
X dé exp(¢p — sin ¢ + iy sin® @)

x (e—ivp,ﬁqS _ eiu5+d)) .

n=ng

(B2)

In this representation o ~ §, ~ p are the constants and
v > 1 is a large parameter. This is a typical situation of
the confluence of the critical points which requires rather
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delicate analysis. However, (B2) can be reduced to the
known asymptotics taking into account that the main
contribution to the integral is given by small ¢, when the
term with v can be neglected compared with exponents
containing ¥ and 6. In this way we come to the estimate

o Av
D e

X [Jo(—us)(¥) = Ju—s,)(¥)] - (B3)
At v > 1 the second Bessel function at g > 1 is es-
timated [9] by the Airy function decaying exponentially
with v, while for the first Bessel function we can use the
asymptotics obtained by the stationary phase method [9]

J,(va) = \/%:(1:2 —1)7He

X coS [1/ (arccos z7l— yx2 - 1) + Z] , (B4)

with z > 1.

Now taking into account that z = 1 4+ uo and holding
the lowest order expansion in p we arrive at (34).

It is worth pointing out here that the direct estimate
of agl)(n) in the same way allows us to ensure that the
solution indeed displays the property (24).
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