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Synchronizing chaotic systems using filtered signals
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The concept of the synchronizing of cascaded chaotic systems may be extended to cases where the
driving signal has been altered by a filter, and reconstructed at the response system. Certain components
are subtracted from the driving signal at the transmitter, and added back in at the receiver in a process
using a feedback loop at the receiver. The drive and response systems are not identical for this experi-
ment, although they are effectively identical when they are synchronized. This type of synchronization
is demonstrated in both numerical simulations and circuit experiments.

PACS number{s): 05.45.+b

I. INTRODUCTION

It has been shown in recent work that a subsystem of a
chaotic system may be synchronized to the full chaotic
system by driving it with the proper signal from the full
system [1—8]. Others have shown how this work may be
applied in simple communications systems [9—12] or
nonautonomous (periodically forced) chaotic systems

The general idea of chaotic synchronization is to repro-
duce a signal or signals from a chaotic system by repro-
ducing a part of the chaotic system and driving it with a
signal from the original chaotic system [1,2]. Under con-
ditions described below, the signals in the reproduced
part (or subsystem) will synchronize with the signals in
the original chaotic system. It is also possible to cascade
subsystems of a chaotic system so that the original driv-
ing signal is reproduced [4,11,14,15]. In eff'ect, the cas-
caded response system is a kind of nonlinear filter, if the
proper chaotic signal is present, it is reproduced, while if
any other signal is used to drive the cascaded response
system, it is altered.

There has been much speculation on possible applica-
tions for synchronized chaotic systems. The most likely
field for using synchronized chaos seems to be communi-
cations [11,12,16—19]. There are several ideas for apply-
ing synchronized chaos to communications systems, most
of which use the chaotic signal to mask another signal or
use the chaotic signal as a carrier and vary some part of
the sending system to encode a signal onto the chaotic
carrier.

This present work was motivated by questions that
might be asked when using chaos for communications.
In communications, there are often requirements placed
on the frequency spectrum of a carrier signal, such as
having a limited bandwidth or having no large peaks at
certain frequencies. This requires the use of filters to al-
ter the carrier signal. This conflicts with one of the basic
properties of synchronized chaotic circuits; if the carrier
signal is not exactly the same as the correct chaotic sig-
nal, the response circuit will not synchronize with the
drive circuit. In the current work, it is shown that it is
possible to alter the carrier signal in certain ways and

then reverse this alteration at the response circuit. This
result also shows that it is possible to synchronize chaotic
circuits that are not identical.

While the work described below is applicable to auto-
nomous or nonautonomous chaotic systems, it is demon-
strated here in a nonautonomous chaotic system. One
advantage of synchronizing nonautonomous chaotic sys-
tems is that the periodic forcing terms for the two chaotic
systems may be synchronized even when a large amount
of noise or chaos is added to the driving signal. A disad-
vantage of nonautonomous systems for communications
is that the power spectrum of the driving signal contains
large peaks at the driving frequency and its harmonics.
These peaks may be removed by filters, but this leads to a
more general problem of reconstructing the driving signal
at the receiver. With the approach described here, the
problem becomes one of synchronizing two chaotic sys-
tems that are efFectively identical only when they are syn-
chronized; when they are not synchronized, they are not
identical. Pyragas has shown a diff'erent system [20], us-

ing unfiltered chaotic signals, where the drive and
response systems are efFectively identical only when they
are synchronized.

II. THEORY OF SYNCHRONIZATION

The theory of the synchronization of chaotic systems is
described in detail elsewhere [2], so only a brief descrip-
tion is included here. We begin with a dynamical system
that may be described by the ordinary difFerential equa-
tion

u(t)=f(u) .

The system is then divided into two subsystems,
u =(u, w);

u =g(u, w},

w=h(u, w),

where u =(u„. . . , u ), g =(f,(u), . . . ,f (u)),
w =(u +„.. . , u„), and h ={f +,(u), . . . , f„(u)}.
The division is truly arbitrary since the reordering of the
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u,. variables before assigning them to v, w, g, and h is al-
lowed.

A first response system may be created by duplicating a
new subsystem w' identical to the w system, substituting
the set of variables v for the corresponding v' in the func-
tion h, and augmenting Eqs. (2}with this new system, giv-
ing

u=g(v, w),

w =h(u, w),

w'=h(u, w') .

(3)

If all the Lyapunov exponents of the w' system (as it is
driven) are less than zero, then w' —w ~0 as t ~ ao.

It is possible to take this system further. One may also
reproduce the v subsystem and drive it with the w' vari-
able [4], giving

o=g(v, w),

w =h(u, w),
w'=h (v, w'),

u"=g(u", w') .

(4)

If all the Lyapunov exponents of the m', v" subsystem are
less than 0, then u "~u as t ~ ao. The example of Eq. (4}
is referred to as cascaded synchronization.

III. NONAUTONOMOUS SYNCHRONIZATION

dx
dt

=p(y —z), (5)

dt
=p[ —I y —g (x)+a cos(cot) + A ], (6)

Although most of what will be said here applies to au-
tonomous cascaded synchronized chaotic systems, the
original motivation for this work involved nonauto-
nomous systems, so a nonautonomous circuit will be used
for the demonstrations here. The nonautonomous cir-
cuits used here are described in [13], and may be de-
scribed by the equations

dx
dt

=p(y" —z'),
II

=P[ —I y"—g (x")+acos(co„t +P„)+A "], (12)

with the x signal used as a drive. The parameter P„ is the
difference in phase between the sinusoidal forcing in the
response and the drive.

As written here, the nonautonomous systems will not
synchronize unless the phase difFerence ((}„is zero. Refer-
ence [13] shows how a phase detection technique may be
used with the chaotic driving signal to correct the phase
P„of the response circuit, bringing the two circuits into
synchronization.

Figure 1 is a plot of y versus x from the circuit of Eqs.
(5)—(9). Figure 2 is a plot of y versus x from Eqs. (5)—(9).
The Lyapunov exponents for the drive system, calculated
from Eqs. (5}—(9) by the method of Eckmann and Ruelle
[24], were 284, —1433, and —1854 s '. If the sinusoidal
forcing term were included, there would also be a zero
exponent, corresponding to changes in phase in the forc-
ing term. The sinusoidal forcing term is treated as a pa-
rameter in this calculation, so its 0 exponent does not
show up here. The Lyapunov exponents for the response
system [calculated from Eqs. (10)—(12)] were —780,—1002, and —1220 s '. Once again, the sinusoidal forc-
ing was treated as a parameter, so the zero exponent does
not show up here. The negative exponents show that if
the parameter P„ is zero, the response circuit described
by Eqs. (10}—(12} will synchronize with the drive circuit
described by Eqs. (5)—(9).

Reference [13] describes a technique for zeroing the
phase difference P„ in the receiver. The chaotic drive sig-
na1, x in this case, contains enough phase information
that it may be used with a second order phase locked
loop [25] to correct the response circuit phase. The drive
signal input may be strobed with the response system out-
put to create a series of voltages representing the value of
the drive signal when the response output crossed zero.
If the drive and response phases match, the response sys-
tem output is the same as the drive signal, so the series of
voltages are all zero. If the phases do not match, the

dz

dt
=P[f (x) I",z], —

g(x}=—3.8+-,'(Ix+2.6I+ lx —2 61

+ lx +1.2I+ lx —1.2I),
f (x)=

—,'x+ Ix —1
I

—Ix + 1 I,

(7)

(8)

(9)
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where g (x}and f (x) are piecewise linear functions. The
constants were a=1.9, I" =0.2, I,=0.1, 3=0, the time
factor p is 104 s ', and the frequency co is 2mf&, where
the forcing frequency f& is 780 Hz. The circuit for g (x)
was shown in [21],while the circuit for f (x) is quite simi-
lar. Both g (x) and f (x) are based on diode function gen-
erators [22,23]. The response system is

-2 0
x (V)

I I I I I I I

dz'

dt
=P[f(x)—I,z'], (10) FIG. 1. Chaotic attractor from the circuit described by Eqs.

(5)-(9).
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response output will not be the same as the input, so
some series of nonzero voltages is produced. This series
of voltages is electronically sampled and integrated to
produce a feedback signal which is proportional to the
phase difference P, . The feedback signal is used to
correct the periodic forcing frequency in the response
system. A similar procedure was used to track a parame-
ter value in an autonomous circuit [4]. The phase
difFerence P„ in the nonautonomous circuit may be
thought of as just another parameter to be varied, so that
this control scheme applies to autonomous and nonauto-
nomous circuits.

FIG. 2. Chaotic attractor from a numerical simulation of
Eqs. (5)-(9).

dx =p(y —z),
dt

(13)

dt
=p[ —I y —g (x )+a cos(cot)+ A ],

tern and the fact that when the transform. ation is properly
undone, the drive and response systems are in synchroni-
zation. In order to illustrate how this technique works, it
is easier to start with a simple numerical example using a
first order low pass filter. This filter is made by passing
the drive system output signal x through a high pass filter
(a model of a simple RC filter) and then subtracting the
filter output, which contains the output signal high fre-
quencies, from the output signal. This difference signal is
then transmitted to the response system as the transmit-
ted signal x„which contains the output signal low fre-
quencies. At the response system, the response system
output is filtered with an identical high pass filter, pro-
ducing a signal v which contains the response signal high
frequencies. This signal U is then added to the transmit-
ted signal x„producing a reconstructed drive signal xd,
which is used as an input to the response system, comp-
leting a feedback loop in the response system. This
scheme is shown in block diagram form in Fig. 3. The
filters do produce phase shifts in the signals, but if the
filters are matched, the phase shifts in the drive and
response systems should match.

This system may be described by adding filter equa-
tions to Eqs. (S)—(12). The set of equations for this new

synchronizing system is

IV. FILTERING AND SYNCHRONIZATION

The present work was motivated by problems in the
synchronization of nonautonomous systems, but the con-
cepts involved also apply to autonomous systems. There
were two main problems that arose from the synchroni-
zation of nonautonomous systems that suggested the use
of filtering in synchronization.

The first problem was that the chaotic drive signal sent
from the drive system to the response system contained
large peaks at the periodic forcing frequency and its har-
monics. If these peaks could be suppressed, one could
possibly communicate with a noise resistant broadband
signal that looked essentially like background noise.

The second problem was the question of whether the
synchronization of the two nonautonomous chaotic sys-
tems was really chaotic synchronization at all. The
periodic component of the chaotic drive signal was large
enough that it was possible that the phase matching tech-
nique was merely detecting the phase of a periodic signal,
with the chaos being irrelevant. In order to determine
whether the parameter matching technique did not de-
pend on the periodic component of the chaotic drive sig-
nal, it was necessary to suppress this component com-
pletely.

=P[f (x) I,z], —
dt

dQ dx Q

dt dt RC '

x, =x —u,
dU dx
dt dt

Xd =XI+V

RC '

dz =P[f (xd ) —I,z'],

(filters=

dx
dt

=p(y" z'), —

(1S)

(19)

(20)

(21)

A. Low pass Sltering: simulations

In general, the drive signal is first transformed, and
then the transformation is undone using the response sys-

FIG. 3. Block diagram of filtering and reconstruction scheme

for synchronization.
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FIG. 4. (a) Power spectrum of x signal from numerical simu-
lations of Eqs. (5)—(9). (b) Power spectrum of x, signal (low pass
filtered version of x) from numerical simulations of Eqs.
(13)—(22).

where all the parameters except R and C are the same as
in Eqs. (5)—(12). The parameter C is set at 10 F, while
the parameter R is chosen to set the break frequency of
the filter (the point where the filter output is down 3 dB
from its maximum}. Equations (16) and (18}represent the
high pass filters.

The new drive system of Eqs. (13}—(17) and the new
response system of Eqs. (18)—(22) are no longer identical.
The synchronization of nonidentical chaotic systems has
been studied before [26] but synchronization in this case
meant that the outputs of the systems were merely relat-
ed to each other, not identical. In the examples presented
here, synchronization is defined by the signals in the
response system converging asymptotically to the corre-
sponding signals in the drive system. The drive and
response systems are electively identical when they are
synchronized; the question is whether or not this syn-
chronized state is stable. There is other recent work that
demonstrates that it is possible to construct a response
system that will synchronize to a given signal [27], so a
response system that is identical to the drive system is not
a requirement for synchronization.

A low pass filter as described above might be useful if it
was necessary to limit the bandwidth of a chaotic signal.
Figure 4 shows the power spectrum of the drive signal x
and the transmitted signal x, when the arrangement of
Eqs. (13)—(22) is used with a value of R =31 380 Q. The
breakpoint for the high pass filter of Eqs. (16) and (18) is
500 Hz for this value of R. The transmitted signal x,
contains fewer higher frequencies than x, as can be seen
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FIG. 5. (a) Time series of x from numerical simulations of
Eqs. (13)—(22). (b) Difference 5 between x and x" in numerical
simulations of Eqs. (13)-(22), showing approach to synchroniza-
tion.

from Fig. 4. An important question is whether the
response system of Eqs. (18)—(22) is stable in the syn-
chronized state. A Lyapunov exponent calculation from
the equations shows that the largest Lyapunov exponent
in the response system is —319 s ', indicating that the
response system is stable. Without the filter, the largest
Lyapunov exponent for the response system was —780s, so the addition of the filtering to the dynamical sys-
tem has made the response system less stable. It is possi-
ble that there are stable states that are not synchronized,
but none were observed in this work.

The approach to synchronization is shown in Fig. 5.
Figure 5(a) is a time series of the x variable, while Fig.
5(b} is the diff'erence between x and x". The difference
does not decrease smoothly, but rather shows some bursts
caused by local instabilities in the response circuit. Al-
though the global Lyapunov exponents for the response
system are all less than zero, there may be places in phase
space where one of the local exponents is greater than
zero.

B. Band-stop Altering: experiment

In a periodically forced chaotic system such as that of
Eqs. (5)—(9), band-stop filtering has some practical in-
terest. As the unfiltered spectrum in Fig. 4 shows, the
normal driving signal x for this system contains a large
periodic component. Transmitting this periodic com-
ponent uses a large amount of power and produces an
easily recognizable feature in the power spectrum. In ad-
dition, transmitting a signa1 without the periodic com-
ponent would be a useful test of the phase locking tech-
nique of [13]. In that work, the large periodic component
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d [x —a cos(tot)]
W =

dt
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(23)

(24)

dUi
Qi (25)

in the transmitted drive signal made it impossible to
determine whether phase locking was simply due to the
filtering of the large periodic component of the transmit-
ted signal, or really was a case of parameter detection and
tracking as in [4]. If the phases of the periodic forcing
parts of two circuits could be matched when the periodic
component of the driving signal was suppressed, this
would prove that the nonperiodic components of the
driving signal still carried information about the phase of
the forcing part.

The band-stop filter arrangement uses the same ar-
rangement as the low pass filtered described above; the
signal x is first passed through a second order bandpass
filter [25] and the filter output is then subtracted from the
x signal to produce a transmitted signal with a particular
band of frequencies suppressed. Five bandpass filters
were used in parallel, one at the driving frequency of 780
Hz and one at each of the first four harmonics. It was
also noted that the periodic part of the x signal was al-
most identical to the periodic forcing signal, so the forc-
ing signal was subtracted from the x signal before filter-
ing to further attenuate the component of the x signal at
the forcing frequency. The equations of the bandpass
filter were

Rl
in ~ out

FIG. 6. Schematic of single bandpass filtered used to
suppress periodic components of x signal. Resistor values are
given in Table I.

actual resistor values were tuned with 20 turn potentiom-
eters to adjust for errors in the capacitors. The value of
C was 10 F. Figure 6 is a schematic of one of the
bandpass filters. The Q factor for each bandpass filter
was 20.

Figure 7(a) shows the power spectrum of the output
signal x from the circuit. Figure 7(b} shows the power
spectrum of the filtered signal [x, in Eq. (26)] that is
transmitted from the drive circuit to the response circuit.
The periodic component at the forcing frequency has
been attenuated by about 40 dB. The remaining periodic
component at this frequency is far too small to affect the
error correction circuit used in [13]. The response circuit
periodic forcing could be made to lock to a purely period-
ic signal, but the minimum amplitude of the periodic sig-
nal was about 0.3 U, much larger than the periodic com-
ponent of x, .

Synchronization of the drive and response circuits us-

ing the band-stop filters was not very good. The
Lyapunov exponents for the filtered system were calculat-
ed from Eqs. (5)—(9) and (23)—(29). In order to keep the

5
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where x is the same as in Eq. (13), and xd is used to drive
the response system as in Eq. (20). The variables R, are
defined for each of the bandpass filters in Table I. The

tQ
-20

0)

TABLE I. Resistor values for bandpass filters.

Center frequency (Hz)

780
1560
2340
3120
3900

RI (0)
204000
102 000
68 000
51 000
40 800

R2 (0)
408 000
204000
136000
102 000
82 000

R, (Q)

1026
513
342
256
205

-80
0

I I I I l I I I I I I I I ~ I I I I I I I 1 I I I l I I I

500 1000 1 500 2000 2500 3000

f (Hz)

FIG. 7. (a) Power spectrum of the x signal from the circuit of
Eqs. (5)—(9). (b) Power spectrum of the x, signal from the cir-
cuit {band-stop filtered version of x).
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FIG. 8. Attractor from the circuit of Eqs. (5)-(9) when an
offset of 1.0 V has been added to the periodic forcing.

FIG. 10. Time series of the difference 5 between x and x"
showing synchronization between two circuits when a band-stop
filter is used.

number of variables manageable, only the filter at the
fundamental frequency was used in the Lyapunov ex-
ponent calculations. The largest Lyapunov exponent for
the response system was found to be —10 s ', which is
much larger than the largest exponent for the unfiltered
response system of —780 s '. %Ith a global exponent so
close to zero, the response circuit was very sensitive to lo-
cal instabilities. It was possible to reduce the effect of the
local instabilities by reducing the symmetry of the circuit
attractor. Adding a 1.0-V ofFset to the drive signal [mak-
ing A in Eq. (6) equal to 1.0] made the circuit spend less
time in regions of local stability, improving the synchron-
ization properties. The attractor for the circuit when A
was equal to 1.0 is shown in Fig. 8. This attractor is simi-

lar to the original attractor of Fig. 1, but it has a lesser
extent in the negative y direction. Most of the synchroni-
zation errors take place when y is near zero, so synchron-
ization is improved because y spends less time near zero.

A time series of the x signal from the circuit is shown
in Fig. 9(a), the transmitted signal x, in Fig. 9(b), and the
difference between x and x" in Fig. 10. The difference
signal in Fig. 10 shows much more bursting than when
the simulated low pass filter was used. This is because
the response system is much less stable and the real cir-
cuits are not perfectly matched. The synchronization,
while not ideal, is still good enough to allow the phases of
the periodic forcing parts of the drive and response to be
matched.

I I I I I I I I I I I I I I I I I I I I 1 I I I I I I I I I I ~ I ~ I I I I II I I I I I ~ V. PHASE SYNCHRONIZATION USING CHAOS
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t (s)
FIG. 9. (a) Time series of the x signal from the circuit of Eqs.

(5)-(9). (b) Time series of the transmitted signal x, from the cir-
cuit.

A previously described controller [13]was used to con-
trol the phase of the response circuit periodic forcing to
match that of the drive circuit. The controller generated
a series of voltages that corresponded to the value of the
input signal xd when the output signal x" crossed zero.
If the drive and response circuits were synchronized,
these voltages would all be zero. An integrator with a
time constant of 1 s averaged the series of voltages to pro-
duce an error signal 5, which was used to vary the fre-
quency of the response periodic forcing to zero the phase
difference (()„between the drive and response periodic
forcing. Figure 11 shows the periodic forcing F" for the
response versus the periodic forcing F for the drive.
There is some fluctuation of the response phase and a
constant phase offset which is an artifact of the control
circuit, but the basic principle works. This demonstrates
that the nonperiodic part of the chaotic signal carries in-
formation about the phase of the periodic part. Most of
the phase fluctuation is believed to be caused by com-
ponent mismatch between the two circuits. There is also
a phase flip caused by a signal change in the filters.

The response circuit still has some noise resistance as
in the unfiltered case. The noise resistance was tested
with white noise, but this is an easy type of noise to over-
come. The noise resistance was also tested by adding a
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FIG. 11. Periodic forcing F" for the response circuit vs
periodic forcing F for the drive circuit when a band-stop Alter is
used.

FIG. 13. Periodic forcing F" for the response circuit vs

periodic forcing F for the drive circuit when the response circuit
is driven by the sum of x, and another chaotic signal as seen in

Fig. 12.

d 4

dt
=10 f, (30)

contaminating chaotic signal from another circuit [14] to
the transmitted signal x, at about twice the amplitude.
Figure 12 is a power spectrum of the combined signal.
Figure 13 shows the periodic forcing F" for the response
versus the periodic forcing I' for the drive when the con-
taminating chaos has been added to the transmitted sig-
nal. The phase fluctuation has increased, but the phase of
the response periodic part is still under control. The cir-
cuit that adds the contamination also adds another inver-
sion to the transmitted signal x„so the phases in Fig. 13
are flipped relative to Fig. 11. Phase control in the pres-
ence of additive signals is still possible if the additive sig-
nal has zero mean when strobed with the response system
output x". If the additive signal becomes too large, this
condition can break down.

Synchronization of unfiltered periodically forced
chaotic systems can be particularly difficult if the con-
taminating signal is from a system forced at the same fre-
quency. The band-stop filtering minimizes this problem.
As an example, another Duf6ng circuit with di8'erent pa-
rameters was built. This second DufFing circuit was de-
scribed by the equations

=10 [Pcos(rot +Pz)+ A2 —0.256$—
g ], (31)

where P was 6.20 V and A2 was 0.5 V. This second
DuSng circuit was forced with an independent periodic
forcing source at 780 Hz, so the phase P2 was not the
same as the phase of the periodic forcing for the drive cir-
cuit. The g signal was filtered with a band-stop filter to
remove the forcing frequency and the first four harmon-
ics and then added to the transmitted signal x, with up to
the same amplitude as x, . Figure 14 is the power spec-
trum of the filtered g signal (the contaminating signal)
from the second Duffing circuit. Synchronization of the
periodic forcing in the drive and response systems was
not lost when the filtered g signal was as large as the x,
signal. Synchronization was lost for larger amplitudes of
the filtered g signal. The response circuit periodic forcing
source would not synchronize to the periodic forcing
source for the second DufBng circuit, demonstrating sig-
nal rejection when a similar but incorrect signal was
present. Synchronization is possible because the non-
periodic parts of the signal carry information about the
forcing phase.
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FIG. 12. Power spectrum of the sum of xt and a signal from
another chaotic circuit.

FIG. 14. Power spectrum of the filtered g signal from the cir-

cuit of Eqs. (30) and (31).
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VI. CONCLUSIONS

It has been shown above that when the proper type of
transformation is used, the driving signal for a synchron-
ized chaotic system can be transformed and then recon-
structed at the response system so that synchronization
takes place. The transformation used here consists of
passing the synchronizing signal through a filter and sub-
tracting the filter output from the synchronizing signal to
produce a transmitted signal. The reconstruction then
involves a feedback loop where the output of the response
system is filtered and the filter output is added to the
transmitted signal to produce a reconstructed synchron-
izing signal to drive the response system. The recon-
struction is not an inverse transformation, so problems
such as having an ill-conditioned transformation do not
occur.

The filtering is orily one example of a more general
type of transformation. In general, a transformation
T(x) is applied to the drive signal x. At the response sys-
tem, the output x" of the response system is used with
the signal T(x) to generate a signal xd which then drives
the response system: xd=G(T(x), x"). When the
response system is synchronized to the drive system, the

response output x" is equal to the driving signal for the
response, xd. In this case, G(T(x),x")=x". A trivial
example would be that 6 is an identity with respect to
x". This actually gives the original complete chaotic cir-
cuit, but this function would not be responsive to x, so
synchronization would not take place, and no informa-
tion could be transferred. An example where T(x)=x,
and G(x,x")Ax" has also been shown [28]. In a system
described by Pyragas [20], T(x ) =x and G (x,x"

)

=I(. jx —x"]. Pyragas also does numerical calculations
to find conditional Lyapunov exponents to demonstrate
that the response system is stable for some ranges of E.

In the system described in the present work,
G(T(x),x") is like a cascaded synchronizing system
[4,14] (because the output is synchronized to the input)
except that the part that depends on T(x) is varying.
The concepts described in this paper may be applied to
autonomous as well as nonautonomous systems.

For synchronization to be observable, the synchronized
state must be stable. This is a more complex problem
than simply requiring the response system to be stable,
for it is possible that some nonsynchronized state is
stable. A simple application of this system to communi-
cations and signal separation will be shown elsewhere.
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