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Chaos and a quantum-classical correspondence in the kicked top
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The problem "what is the quantum signature of a classically chaotic system" is studied for the periodi-

cally kicked top. We find that the quantum variances initially grow exponentially if the corresponding
classical description is chaotic. The rate of growth is connected to the corresponding classical Jacobi
matrix and, thereby, to the local, classical, transient expansion rate. These connections were recently es-

tablished in an analysis of the kicked pendulum for the correspondence between quantum Husimi-

0 Connell-Wigner distributions and classical Gaussian ensembles. Here, we present closely related re-

sults for the kicked top by using generalized coherent states. An explanation is given for why this quan-

tum signature of classical chaos was missed in earlier studies of the kicked top.

PACS number(s): 05.45.+b, 03.65.Bz

I. INTRODUCTION

The problems presented by the concept of quantum
chaos are multifaceted [1—3]. Does it exist? If so, what
is it? What are the quantum manifestations of classical
chaos? How does a quantum treatment deal with classi-
cal phase space and with classical Lyapunov exponents?
These questions were addressed recently for the periodi-
cally kicked pendulum [4] and for the cat map [5]. A
general perspective has emerged from these studies which
is elucidated in this paper with analysis of the periodical-
ly kicked top.

In the pendulum case, a smoothed Wigner distribution
[6,7], the Husimi-0 Connell-Wigner distribution [8],
answers the question regarding phase space, and ap-
propriately constructed classical Gaussian ensembles
manifest a quantitatively close correspondence [4]. Both
the quantum variances and the classical variances initial-
ly grow exponentially if the initial distributions are
suSciently sharply peaked and the classical dynamics is
chaotic [4]. The rate of growth is the same for both until
saturation of the available, bounded phase space is
reached. Near and after saturation, quantum interfer-
ences are seen in the evolving quantum variances but are
absent from the corresponding evolving classical vari-
ances.

The exponential rate of growth of the variances de-
pends on where in phase space the evolving distributions
are initiated. The local, transient rate of expansion deter-
mines the variance growth rate for both the classical and
quantum treatments [4]. For the pendulum case, this lo-
cal rate of expansion, which is determined by the time
evolving Jacobi matrix, is not a uniform property of the
dynamics, but for the Arnold cat map it is [5]. Conse-
quently, for the cat map, a quantum measurement of the
variance growth rate determines the largest classical
Lyapunov exponent with great accuracy.

These studies have made clear that quantum-classical
correspondence exists between quantum wave packets
and classical ensembles. Classical chaos creates exponen-
tial growth of the variances for both [9]. Even in the

purely classical setting, the correspondence between the
behavior of individual trajectories and the statistical
properties of the entire ensemble breaks down rapidly for
chaotic dynamics. Nevertheless, the ensemble correspon-
dence with the quantum wave packet persists well beyond
this breakdown. Two reasons contribute to failure to
make these observations in numerical studies The first
involves using too large a value for Planck's constant
[10],or the equivalent of this, so that the initial distribu-
tions are not sufficiently sharply peaked. The second in-
volves not constructing the correct classical ensemble
correspondent for a particular quantum wave packet [11].
In our numerical studies, we have avoided the first reason
by picking a sufficiently small value for Planck's constant,
or an equivalent to this, and we have learned how to use
appropriately smoothed wave packets in order to obtain
nicely behaved classical ensemble correspondents.

In Sec. II of this paper, we present the dynamical
description of the periodically kicked top. We discuss
the important results from the SU(2) algebra [12] and
show how to derive the corresponding classical dynamics.
Generalized coherent states [2,10—12] are used to create
the wave packets, and they are used a second time in or-
der to introduce the smoothing. The construction of the
appropriate classical ensemble correspondents is ex-
plained. In Sec. III, we present our numerical results.
The details of our computational procedure are given and
comparisons with earlier work [2,10,11] is emphasized.
In Sec. IV, concluding remarks are made.

II. THE KICKED TOP

The kicked top is described by the Hamiltonian [11]

J ao

H =pJ +k g 5(t n), —
~J n=—

in which Planck's constant fi has been set equal to 1, p
and k are parameters, and

[Ji ~l l t E "k~k
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in which c, -k is the completely antisymmetric Levi-Civita
symbol. The corresponding Floquet operator for just
after a kick to just after the next kick is

J(t+1)=F J(t)F . (12)

Using Eqs. (2) and (3), we implement this evolution in
two steps [11].The first step is

J2
F =exp i—k . exp[ ip—J ] .

Alternatively, the Hamiltonian may be given by [10]

H = AS, yBS—„Q 5(t 2—mn),

where

(3)

(4)

J„=exp[ipJ ]J„exp[ i—pJ ]

=J„cos(p)+J,sin(p),

J» =exp[ip J» ]J»exp[ ip—J„]=J
J, =exp[ ip—J„]J,exp[ ip—J ]

=J,cos(p }—J„sin(p),

(13)

(14)

(15)

[S;,S ]=i%a; kS„. (5) in which the J components on the right-hand side are for
time t. In the second step, we need

l lF =exp —EBS exp ——2m ASX g S (6)

The corresponding Floquet operator for just after a kick
to just after the next kick is given by

J(t + 1)=exp i .J, J(t)exp i —J-, .
2J 2J

(16)

or for just before a kick to just before the next kick by
P

These expressions are most easily reduced using the fol-
lowing angular momentum algebra identities:

l 2 lF=exp ——2~ AS, exp —EBS„ (7)
Jz=J J+J—+Jz ~

where

(17)

In spite of the different roles for the linear and quadratic
operator terms in Eqs. (1}and (4), the Floquet operators
are clearly easily interconverted. The difference between
using S„ in Eq. (6) and J„ in Eq. (3) is minor since we
have

~ ~ ~ ~
exp —i—Jz Jxexp i—Jz =Jy (8)

from Eq. (2). In the following presentation, we use the
Floquet operator in Eq. (3), and discuss the work of
Nakamura and co-workers [10] by the interconversion
elucidated above.

The quantum map is created by the kick to kick time
evolution generated by the Floquet operator F, in Eq. (3}.
It is natural to choose the simultaneous eigenstates of J
and J, as a basis:

J~ =J„kiJ

[J„Jg)=+Jg,
[J~,J ]=2J, ,

[J+J,J, )=0,
[J~J ,J+]=—2J+J, ,

[J+J,J ]=2JJ
These imply

J„(t+ 1)=—,
' J+exp i . (2J, + 1)

2J

+—,'exp i . (2J—,+1) J
2J

(19)

(20)

(21}

(22}

(23)

(24)

J21j,m &
=j (j+ 1 ) lj, rn &,

J, lj, m & =mlj, m & .

The matrix elements of F in these states are simply

(j,mlFl j, rn'& =exp i m—d'1—'..(p)
J

(10} J (t+1)=—.J+exp i—.(2J, +1)1- . k
2i +

2J

——.exp i (2J +—1) J1 . k
2l 2J

(25)

in which the d'1' .(p}'s are the Wigner d functions [13].
The corresponding classical map is found [11]by inter-

preting the quantum description with the Heisenberg pic-
ture in which the operators evolve according to

(26)

The classical map emerges in the limit where noncommu-
tivity is negligible and the Heisenberg operators are rein-
terpreted as classical variables [11]:

J„(t+1)=—,'[J„cos(p)+J,sin(p)+iJ ]exp i {2[J,cos(p) —J„sin(p)]+1] +c.c. ,
2J

(27)

J»(t+1)=—[J„cos(p)+J,sin(p)+iJ„']exp i . {2[J,cos(p) —J„sin(p)]+I] +cc.1 . k
(28)
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J,(t +1)=J,cos(p) —J„sin(p) . (29)

To obtain a sharply peaked initial wave packet, we use a generalized SU(2) coherent state [12], since it will minimize

the initial uncertainty product. Such a state may be defined [2,10,11]by

[8,$& =exp[i8[J„sin(P) —
Juncos(P}]] j~,j &

=(I+&r*) exp[vJ —]Ij,j &

1/2

=( I+a~') J g +™
m= —j

2j1
(j +m)l( J —m}l (j,m&, (30)

where

8a=exp[i/]tan
2

Its properties are given succinctly by [2]

& 8,$~j,~8,$ &
=j cos(8),

& 8,$~J+ ~8,$ &
=jexp[+i/]sin(8),

(31)

(32)

(33)

(34)

De(p', p')=, fdx exp ——p'x (p'+ —I'@)

X %q' ——
2

(37)

As is well known, this expression is not always positive
and, therefore, is not a true probability distribution. Let
~a& for complex a denote a harmonic oscillator (with
mass m = 1}coherent state. If we write a =al+ia2, then
it follows [7,14] that

' 1/4

These identities justify the interpretation that the
coherent state

~ 8,P & essentially points in the direction of
the Cartesian unit vector

&q'~a&= exp[ ia, a—2]

1/2 '2

n=k cos(8)+i sin(8)cos(P)+ j sin(8)sin(P), (35)
Xexp q' —a1

' 1/2
with a solid angle uncertainty of b,Q=1/j. Since R=1
here, the classical limit amounts to j—+ 00, in which limit
the uncertainty vanishes.

It is tempting to use
~ 8,P & directly to obtain the corre-

sponding classical ensemble. It is easy to show from Eq.
(30}that

%(8,$;O', P') =( I+~~')

CO

+2ia2
2A

exp[ia, a2]

1/2

q

'2

(38)

x g
(j+m }!(j—m )!

X YJ (8', tl}'),

' 1/2

(36)

Xexp

1—2ial 2f

a2

1/2

(39)

in which the Y (O', P')'s are the normalized spherical
harmonics and %(8,$;O', P') is the Schrodinger state la-
beled by (8,$) with variables (O', P'). The squared
modulus of this Schrodinger state is a probability distri-
bution in (O', P') labeled by (8,$}. It may be used to de-
scribe the classical ensemble. However, this probability
distribution is a double m sum that does not simplify and
does not lead to an easily tractable j~ 00 limit.

An alternative approach is suggested by the smoothed
Wigner distribution used in the treatment of the kicked
pendulum [4,6]. The Husimi-0 Connell-Wigner distribu-
tion [8) is the result of Gaussian smoothing. In a funda-
mental paper [7], Chang and Shi have shown that
smoothing of the Wig ner distribution facilitates the
quantum-classical transition.

Let
~
4 & denote an arbitrary state for a system with one

degree of freedom, q. The Wigner distribution may be
written [7]

Therefore, the probability distribution associated with
~a& is Gaussian in both q' and p', is centered at
[(2A'/to)' a„(2%co)' a2]=(q,p), and has variances
A'/2' and Ace/2, respectively. While the coherent states
are overcomplete, they are a very useful basis and provide
a resolution of the identity I given by [14]

fda )—a&&a(=I .1
(40)

(41)

In this expression, we have divided the published expres-
sion. [7] by n so that Eq. (40) may be used together with
Eqs. (38) and (39) to write the normalization integral

A Gaussian smoothing of D~(q', p') with the Gaussian
parameters associated with the coherent state ~a& is
given by
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DH q~P
cfq6fp

(42)

in which we correctly see Planck's constant h and not the
usual A. The analog of this detail regarding normaliza-
tion is crucial in our generalized coherent state treatment
of the kicked top which follows. DH is a proper probabil-
ity distribution and is equivalent with the Gaussian wave
packets we used in our earlier kicked pendulum studies
[4]~

D„(e,y', e, y)=)&e, y ~e, y&)'. (43)

Using Eq. (30) for ~8, $& and a similar expression for
~8', (!)'&, we obtain

These results suggest that smoothing may be useful in
the case of the kicked top as well. In this case, it seems
appropriate to use the SU(2) generalized coherent states
instead of harmonic oscillator coherent states. Thus we
are naturally led to a generalized Husimi-O' Connell-
%igner distribution given tentatively by

gl g J
(O', P'~!8,$ & =cos 1 —cos~' — g (r"r)J

2 2 -=-
2j!

(j+m )!(j—m )!

gi g 2J
=cos —cos

2 „0 n!(2j —n)!

=cos J —cos J
8'

p 8
2 2

I +exp[i (P—(()') ]tan —tan
8' 0
2 2

By means of trigonometric identities, this leads to

DH(8', P', 8,$)=( ,'[1+cos(y—)])',
where

cos(y ) =cos(8')cos(8)+cos(P —P')sin(8')sin(8)

=n' n,

(45)

(46)

Writing ( —,
' [1+cos( y ) ] ) J as

( —,'[1+cos(y)]) J=exp[2j(ln[1+cos(y)] —ln2)],

and expanding the exponent around its maximum at
8=8' and P =P' produces

in which Eq. (35) has been invoked. There is duality re-
garding the interpretation of (O', P') and (8,$) as labels
and variables.

Qualitatively [10],it is clear that, as j~ m,

1 for y=O
0 otherwise (47)

The meaning of y=0 is clear from Eq. (46); it means
8=8' and (()=P'. The SU(2) generalized coherent states

~ 8,P & are overcomplete and yield a resolution of the iden-
tity operator I given by [12]

fan'!e', y'&&e, y!,=I,

D (8',y', e,y)= ~ ((8', Ip'(8, $&[', (49)

so that

in which (O', P') are now state labels for the smoothing
states. This means thai ~(8', t)!)'~8,$&~ is not properly
normalized, i.e., we must amend Eq. (43) by writing

P(8', P') = exp —+(8—8')2j +1 2

4m 2

—+sin (8)(P—P')
2

(53)

for very large j. With the solid angle measure dQ' it is
seen that this distribution is a properly normalized
Gaussian distribution in both 8' and P'.

By using the precise normalized form of the classical
limit distribution given in Eq. (53},we are able to obtain
substantial quantitative refinements of previously pub-
lished results [2,10,11].The presence of sin (8) in the dis-
tribution enables us to examine any value of the label 8,
and not just the value m/2 examined previously [10].
Moreover, the use of a genuine Gaussian distribution is
found to be quantitatively superior to the uniform disk
distributions [10,11]used in the earlier work. These facts
are exhibited in Sec. III.

There is one additional subtlety to be noted. From
Eqs. (32) and (33), it is clear that the classical variables
are

f an'D (e,y', e,y)=1. (50)

Therefore, the classical distribution P(8', P') is given by

J„=j sin(8')cos(p'),

J» =j sin(8')sin(p'),

J,=j cos(8') .

(54)

(55)

(56)

P(8', P')=limit ( —,'[1+cos(y)]}J .2j+1
4m

(51) If we use Eq. (53) to compute the classical analog to Eq.
(34), we obtain
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J dQ'P(8', P'}J JdQ—'P(8', $')Jj
=—cos (8)+—. 1+ sin (8)

1 2 1 1

j j sin (8}

'2

(57)

which is twice as large as in Eq. (34}. This factor of 2 is
caused by the generalized coherent state smoothing of a
generalized coherent state, each of which contributes a
variance of I/j, and the fact that the variances of Gauss-
ian products add. Consequently, if we study a quantum
wave packet coherent state i 8, P ) and use P (O', P') for
the classical ensemble distribution, we must use 2j in

FIG. 1. Quantum and classical evolution of the variance of
the total angular momentum as a function of kick number. Plus
signs are for the quantum results, and asterisks are for the clas-
sical results. p =m/2, k =2.4, and j=500. 8=n./2 and
P=n /2. The classical ensemble contains 5000 points.

8 ' 0
0 0 4 0 8 0 1 2 0 1 6 0 20 0

Kick
FIG. 3. The same quantities and parameters as in Fig. 2, but

with a uniform circular disk satisfying Eq. (57) for the initial
classical ensemble.

P(8', P') when we use j in i8, $). Our numerical results,
exhibited in Sec. III, clearly demonstrate the high degree
of quantitative correspondence achievable when this ob-
servation is heeded.

III. NUMERICAL RESULTS

The numerical computations exhibited below demon-
strate the concepts developed in Sec. II. The quantum
version is performed by evolving the generalized coherent
state given in Eq. (30) with the Floquet matrix given in
Eq. (11). For a specific choice of parameters 8 and P for
the initial, generalized coherent state i 8,$ ), the
coefficients of the basis states i j,m ) are determined by
the last line of Eq. (30). The presence of the factorials in
these coeScients and also in the Wigner d functions in
the Floquet matrix require special treatment. This is
achieved by using expressions giving the Wigner d func-
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Kick

FIG. 2. The same quantities and parameters as in Fig. 1, but
with a uniform circular disk for the initial classical ensemble.

FIG. 4. The same quantities and parameters as in Fig. 1, ex-
cept that k =3.0.
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FIG. 5. The same quantities and parameters as in Fig. 2, ex-

cept that k =3.0.
FIG. 7. The same quantities and parameters as in Fig. l, ex-

cept that k =1.865, j=100, 8=@/4, and P=m/4.

tions in terms of Jacobi polynomials [15] and using well
established numerical routines for the Jacobi polynomi-
als, and Stirling's logarithmic treatment of the remaining
factorials. The classical version is performed by generat-
ing an ensemble of initial points, (8,$ ), in accord with the
classical probability distribution given in Eq. (53). Since
this distribution is Gaussian in both variables, we can im-

plement the generation of the initial ensemble using the
Box-Muller algorithm [16]. However, in accord with the
discussion at the end of Sec. II, when we use j for the
quantum evolution, we must use 2j for the classical evo-
lution. This is because we use a generalized coherent
state for the quantum evolution but use a generalized
coherent state smoothed by another generalized coherent
state for the classical evolution.

Figure 1 shows both the quantum and classical evolu-
tions of the natural logarithm of the variance of the total
angular momentum as a function of kick for 20 kicks.

The plus signs are for the quantum results and the aster-
isks are for the classical results. It is clear that the results
are indistinguishable until kick 10 after which small
differences are discerned. The parameter values p =~/2,
k =2.4, and j =500 have been used in Eq. (11). The gen-
eralized coherent state angles are 8=m/2 and P=m/2.
The nearly linear initial growth stage of the semilog plot
means that the variances grow nearly exponentially until
saturation of the bounded phase space occurs around
kick 6. Because both the classical and quantum results
coincide, the rate of growth of the quantum variance
reproduces the local expansion rate of the classical dy-
namics, which may be thought of as a local, transient
Lyapunov exponent [4]. This is not the same as the glo-
bal Lyapunov exponent that requires an ergodic sampling
of the entire attractor. These observations parallel the
kind of results we obtained earlier for the kicked pendu-
lum [4]. The initial exponential growth stage seen here is

0.0
w

3V

—2.0— —2.0—

CV

3

V
—4.0 -',

—6.0 -j
—6.0

—8.0
0.0

I
i

i

&.0 8.0 1 2.0

Kick

IT
1 6.0 20.0 4.0 8.0 12.0 'l 6.0 20.0

Kick

FIG. 6. The same quantities and parameters as in Fig. 3, ex-

cept that k =3.0.

FIG. 8. The same quantities and parameters as in Fig. 7, but
with a uniform circular disk satisfying Eq. (57) for the initial

classical ensemble.
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FIG. 9. The same quantities and parameters as in Fig. 8, but
with a uniform elliptical disk satisfying Eq. (57) for the initial
classical ensemble.

FIG. 11. The same classical quantities and parameters as in

Fig. 1, except that j=10.

exp(nA, )=j . (58)

This is similar to the relation published by Haake, Kus,
and Scharf [ll] (in [11], A, denotes the global Lyapunov
exponent}. For Fig. 1 we find A, =1.2 for the first four
kicks, which is consistent with Eq. (58) since full satura-

missing from the numerical work of Nakamura and co-
workers [10]because their parameter values are such that
the local expansion rate is so large, and for it the initial
distribution is broad enough (j= 128 ) that saturation
occurs just after the first kick. By the second kick their
distribution supersaturates and has wrapped itself around
the P domain about five times.

Since the initial uncertainty product for the angles is of
order 1/j, the number of kicks, n, required to achieve
saturation when the local, transient expansion rate is A,

must be given by

tion does not occur until kick 6. In the calculations by
Nakamura and co-workers [10], j =128 and A, =40,
which imply n «1 according to Eq. (58). The rapid
oversaturation seen from kick 1 to kick 2 in their results
is a consequence of the highly chaotic behavior of the top
that is associated with their choice of parameters (it often
happens that very little change is seen between the initial
state and kick 1 [4]).

Instead of using the highly accurate Gaussian distribu-
tion given by Eq. (53} for the initial classical ensemble,
Haake, Kus, and Scharf, [11]used a uniform circular disk
matching the size of the uncertainty, b,0=1/j, for the
generalized coherent state. Figure 2 shows the results for
the same parameter values used for Fig. 1. The quantum
plus signs are the same as in Fig. 1 but the classical aster-
isks obtained for a uniform disk (with radius 2/v~j [11])
are not nearly so good. However, if we use this uniform
disk to compute the left-hand side of Eq. (57), we find 2/j

0.0
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CV
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—6.0—

+
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+
+
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Kick

0.0
—1.0

I

0.0 1.0

FIG. 10. The same quantities and parameters as in Fig. 7,
but with a Gaussian distribution that does not include the
sin (e) term in Eq. (53) for the initial classical ensemble.

FIG. 12. Absolute probability distribution for J, for the pa-
rameters used in Fig. 1. This is the initial distribution quantum
mechanically. The abscissa is divided into 1001 m values.



2560 RONALD F. FOX AND T. C. ELSTON 50

3.0
)

3.0 ——

N
l

CL

CO

2.25 1

1.5 -i

N

CL
]

2,25

0.75 -'

0.0 ——-r—~-
—1.0 0.0

0.0—

FIG. 13. Classical version of Fig. 12 for an ensemble of
50000 points.

FIG. 15. Same as Fig. 13 for kick 2.

instead of 1/j. We can adjust the radius of the circular
disk (use &2/~j instead) in order to make the result
agree with 1/j. When this is done, we obtain Fig. 3. The
agreement between the quantum and classical results is
better than in Fig. 2 but still inferior to Fig. 1.
Differences are already discernible by kick 4 in Fig. 3,
while they begin with the initial states in Fig. 2 because
the left-hand side of Eq. (57) is not 1/j for Fig. 2.

Figures 4, 5, and 6 reiterate these results for the same
parameter values except that k is increased to 3.0, which
makes the dynamics more chaotic. Figure 4 shows excel-
lent quantum-classical correspondence for 20 kicks with
an exponential stage of three kicks, saturation at four
kicks, and discernible differences beginning at kick 8 or 9.
Figure 5 for the uniform classical disk, but not satisfying:
the left-hand side of Eq. (57) equals 1/j, and shows a lack
of correspondence from the start, while Fig. 6 shows
better correspondence, because the left-hand side of Eq.
(57) equal to 1/j is imposed on the disk size, with small
differences arising at kick 4.

In each of the preceding cases, the generalized

coherent state parameter 8 was taken to be ~/2. This
means that the sin (8) in the P distribution of Eq. (53) is
simply 1. This is the reason that the initial classical en-
semble may be approximated as a circle as has been done
by Nakamura and co-workers [10] and Haake, Kus, and
Scharf [11]. One motivation for this choice is to choose a
region of phase space well outside the islands of regular
motion. However, if 8 is taken to be ~/4, say, then the
Gaussian distribution in Eq. (53) no longer has a circular
cross section (it is now an ellipse), and one is still outside
the islands of regular motion. We believe this observa-
tion previously has been missed. Figure 7 shows that our
Gaussian distribution continues to work extremely well
for this case too. Figure 8 shows that a uniform circular
disk with the left-hand side of Eq. (57) equal to 1/j im-
posed works less well, and Fig. 9 shows that a uniform el-
liptical disk is much better than Fig. 8, but still not as
good as Fig. 7. Figure 10 shows what happens if you use
our Gaussian distribution but leave out the sin (8) factor.
In this example, we have also taken P =m /4 and
k =1.865. There is an interesting anomaly at the third
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FIG. 14. Same as Fig. 12 for kick 2. FIG. 16. Same as Fig. 12 for kick 4.
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FIG. 17. Same as Fig. 13 for kick 4. FIG. 19. Same as Fig. 13 for kick 7.

kick in Fig. 7. If it were not there, the first four kicks
would exhibit a nearly perfect exponential growth stage
satisfying the saturation condition Eq. (58). What is hap-
pening can be seen by looking at a plot of the classical
distributions as they evolve. With each kick the distribu-
tion grows and shifts its location in phase space by jumps.
In this case, by chance, the distribution after the third
kick is almost exactly half on the positive J» side and half
on the negative J„side of the phase space. Thus the
mean J„value is anomalously small for the third kick and
this creates the anomalous enhancement of the total vari-
ance. The quantum distributions behave the same way.

When the initial wave packet and the corresponding
initial ensemble are sufficiently sharply peaked, there is
always very good quantitative agreement between the
quantum and classical growth of the variances. By mak-
ing the initial variances as small as possible, it is possible
to increase the number of kicks that occur during the ini-
tial exponential growth stage [4]. To do this for the clas-
sical ensemble requires no special numerical techniques,
but to do it for the quantum wave packet is prohibitive

for large j. Already for j of the order of 10, the compu-
tation of the Jacobi polynomials overwhelms our comput-
er. Since we know [9] both the quantum and classical
behaviors are initially the same, we can perform a classi-
cal calculation for large j to represent the quantum-
classical correspondence. In Fig. 11 we show the results
for the parameters used in Fig. 1 but with j=10. Now
we see 14 kicks during the exponential stage, as is con-
sistent with the expectations implied by Eq. (58).

It is instructive to view the evolving shapes of the
quantum and classical distributions. In Figs. 12-23, we
show the J, distributions for the case of Fig. 1. Figures
12 and 13 show the quantum and classical initial distribu-
tions respectively. Since j =500, each J, axis is divided
into 1001 bins (for 2j+ 1 m states) and the absolute prob-
abilities are shown. Figures 14 and 15 show kick 2. Fig-
ures 16 and 17 show kick 4. Figures 18 and 19 show kick
7. Since kick 7 is well past saturation, in Fig. 18 we see
the quantum interference effects that began with kick 5
and which are impossible for the classical distribution.
Figures 20 and 21 show kick 15. One sees a partial re-
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FIG. 18. Same as Fig. 12 for kick 7. FIG 20 Same as Fig 12 for kick 15
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FIG. 21. Same as Fig. 13 for kick 15. FIG. 23. Same as Fig. 13 for kick 20.

IV. CONCLUDING REMARKS

The results presented in this paper for the kicked top
extend our earlier work on chaos and quantum-classical
correspondence [4,5,9]. The classical concepts of phase
space and Lyapunov exponents are captured quantum
mechanically by smoothed Wigner distributions and the
initial, exponential rate of growth of quantum variances.
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FIG. 22. Same as Fig. 12 for kick 20.

currence of the initial distribution which reflects the
damped oscillation seen in Fig. 1, and similarly seen more
dramatically for more chaotic parameter values in Fig. 4.
Figures 22 and 23 show kick 20. Thus the strong quanti-
tative quantum-classical correspondence seen during the
exponential growth stage is followed by different behavior
after saturation. Nevertheless, by coarse graining the
quantum interference patterns, one obtains a distribution
very similar to the classical distribution. For kick 7,
coarse graining makes the quantum distribution virtually
identical with the classical, but for kicks 15 and 20, even
after coarse graining, there remain difFerences in the re-
gion of the abscissa between +0. 1 and +0.25.

Originally [9], it was shown that the classical Jacobi ma-
trix provides the link between classical chaos and the rate
of growth of quantum variances. This realization grew
out of studies concerned with the growth of intrinsic fluc-
tuations in classical macroscopic systems [17—20]. Con-
sequently, we approached the chaos and quantum-
classical correspondence problem from a general perspec-
tive rather than from the behavior of some particular
model system, such as the kicked pendulum, the cat map,
or the kicked top. This explains why we have been able
to obtain results for these particular models that had not
been seen previously.

Smoothing of the Wigner distribution creates the
Husimi-OConnell-Wigner distribution which is a true
probability distribution. For the kicked pendulum, we
used harmonic oscillator coherent states [4], as was sug-
gested by earlier work by Chang and Shi [7]. In fact, we
simply evolved Gaussian wave packets that were con-
structed to be equivalent with the Husimi-O' Connell-
Wigner di.stributions created by smoothing with an ordi-
nary coherent state. For the cat map [5], we simply used
a Gaussian wave packet directly. However, one could
view the wave packet as equivalent to a corresponding
smoothed Wig ner distribution. For the kicked top
presented here, we used generalized coherent state
smoothing of a generalized coherent state, which is again
equivalent to smoothing a Wigner distribution and leads
to a Gaussian wave packet. The generality of this ap-
proach is manifest.

Vr'hat we see in each case is that for a suf5ciently
sharply peaked initial wave packet there corresponds a
classical ensemble, and for both the evolution of corre-
sponding variances is initially exponential. The exponen-
tial rate of growth is the local, transient, classical expan-
sion rate, that is determined by the evolving Jacobi ma-
trix. Normally, this property is not a uniform property
of phase space and as a consequence the local expansion
rate is not identical with the global Lyapunov exponent.
However, for the cat map the expansion rate is uniform
and we showed [5] that a quantum measurement actually
yields the largest classical Lyapunov exponent with great
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accuracy in that case.
In this paper, we have presented a properly normalized

Gaussian ensemble correspondent for a SU(2) generalized
coherent state. This provides a quantitative improve-
ment over previously published uniform ensembles that
merely approximate the Gaussian ensemble. Even for
finite values of j, for which the quantum Hilbert space is
finite, the generalized coherent states behave just like the
corresponding classical ensembles during the initial ex-
ponential growth stage of the variances, provided the ini-
tial state is suf6ciently sharply peaked. Thus quantum-
classical correspondence for a chaotic classical dynamics
does not require notions involving infinite time, and the

quantum description is actually only quasiperiodic. This
underscores the advantage of viewing chaos and
quantum-classical correspondence from the perspective
of quantum wave packets and associated classical ensem-
bles.
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