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Decoherence produces coherent states: An explicit proof for harmonic chains
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We study the behavior of infinite systems of coupled harmonic oscillators as the time t ~ ~, and gen-
eralize the central limit theorem (CLT) to show that their reduced %'igner distributions become Gauss-
ian under quite general conditions. This shows that generalized coherent states tend to be produced nat-

urally. A sufficient condition for this to happen is shown to be that the spectral function is analytic and
nonlinear. For a chain of coupled oscillators, the nonlinearity requirement means that waves must be

dispersive, so that localized wave packets become suppressed. Virtually all harmonic heat-bath models
in the literature satisfy this constraint, and we have good reason to believe that coherent states and their
generalizations are not merely a useful analytical tool, but that nature is indeed full of them. Standard
proofs of the CLT rely heavily on the fact that probability densities are non-negative. Although the
CLT is generally not applicable if the densities are allowed to take negative values, we show that a CLT
does indeed hold for a special class of such functions. We find that, intriguingly, nature has arranged
things so that all Wigner functions belong to this class.

PACS number(s): 05.30.Ch, 02.50.—r, 03.65.—w

I. INTRODUCTION

The phenomenon of decoherence and the useful quan-
tum states known as coherent states have been extensive-

ly studied quite separately, both being interesting in their
own right, and the linguistic similarity of the names may
be no more than a coincidence. Yet, it is becoming in-

creasingly clear that the link between decoherence and
coherent states is quite a close one —see [1] (Zurek, Ha-
bib, and Paz, 1993, hereafter ZHP) and references
therein. ZHP give an excellent and up-to-date discussion
of this link, and indicate that decoherence may indeed
produce coherent states, since it is shown that the latter
tend to be the most robust states when subjected to in-

teractions with other systems. This link appears to have
been first pointed out by Kubler and Zeh [2]. In this pa-
per, we will in a sense complete this justification of the
use of coherent states and their generalizations, by explic-
itly proving that they are created under quite generic cir-
cumstances.

A. Decoherence

Decoherence refers to some of the changes in a system
that are due to its interaction with its environment. Such
effects may include suppression of off-diagonal elements
in the spatial density matrix (which makes the system ap-
pear more "classical" ) and increase in entropy. Decoher-
ence is now widely recognized as a key to the relationship
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between the quantum and classical realms of physics {see
Ref. [3] and references therein). Sources of decoherence
discussed in the literature include scattering ([4—7] and
others) and quantum gravity (for instance, Refs. [8,9]),
but most of the literature has focused on systems with

quadratic Hamiltonians, typically coupled harmonic os-
cillators in a chain or some other simple configuration.
One reason for this is that systems with quadratic Hamil-
tonians are just about the only quantum systems whose
time evolution can be found analytically. Hence they
have provided useful and tractable models. This is why
harmonic chains will be the model of choice in the
present paper as well.

Before the interest in decoherence, the main motiva-
tion for studying harmonic chains was the pursuit of a
dynamical basis for equilibrium statistical mechanics. An
excellent summary of the early developments in this area
is given in Ref. [10]. A recent summary of subsequent
work is given in Ref. [11](Tegmark and Yeh, 1994, here-
after TY), and Ref. [12] gives a more comprehensive re-

view. In decoherence applications, the basic calculation-
al procedure is identical to that in the statistical mechan-
ics applications mentioned above: the idea is to study the
time evolution of some small subset of the oscillators,
called the system, by taking a partial trace over the rest of
the oscillators, called the heat bath or the environment.
In statistical mechanics applications, the goal is to inves-

tigate whether the system exhibits standard thermo-
dynamic features such as Brownian motion and an ap-
proach to thermal equilibrium. In decoherence applica-
tions, the emphasis is on the behavior of the reduced den-

sity matrix of the system and on the extent to which cer-
tain quantum phase correlations are destroyed.
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B. Generalized coherent states

For historical reasons, states whose Wigner functions
[13—15] are Gaussian have been given many different
names. The single-oscillator ground state is a Gaussian
centered on the origin. When translated in the q and p
directions in phase space, it is usually called a coherent
state. When rescaled so that it is shortened in the q
direction and elongated in the p direction (or vice versa),
it is known as a squeezed state. %hen subjected to the
most general linear canonical transformation (translated,
squeezed, and rotated), it is sometimes known as a tilted-
ly squeezed state. When expanded, it is called a thermal
state, and is no longer pure. The translated ground state
of a many-oscillator system is sometimes called a mul-
timode coherent state, and so on. Thus the most general
state with a Gaussian Wigner function might be termed a
multimode tiltedly squeezed mixed state. %e will simply
refer to all these states as generalized coherent states, or
Gaussian states for short.

As is indicated by the profusion of names for them,
Gaussian states have been intensely studied in many areas
of physics, from quantum optics to statistical mechanics.
One reason for this is (just as with harmonic chains) ana-
lytic tractability: if a state is Gaussian at some given
time, it will always remain Gaussian if the Hamiltonian
of the system is quadratic, so it is sufficient to compute
the time evolution of the mean and the covariance ma-
trix, which specify the Gaussian uniquely. Another
reason for their popularity is that coherent states, invent-
ed by Schrodinger in 1926 [16] and further developed by
Glauber [17], have been seen as a clue to understanding
the classical limit of quantum mechanics. This is because
they, as opposed to, for instance, energy eigenstates, ex-
hibit fairly "classical" behavior.

C. The connection

Another Gaussian distribution, the Maxwell-
Boltzmann velocity distribution, is well known to arise
dynamically from the interactions of many independent
particles, along the lines of the central limit theorem
(CLT}. Thus, in the spirit of ZHP, a natural question to
ask is whether generalized coherent states also tend to be
produced dynamically, from interactions within many-
body systems. In this paper, we will address this question
in a case where much of the necessary mathematical
machinery is already in place: the case where the many-
body system is a harmonic chain.

The paper is organized as follows: In Sec. II, we re-
view some basic results about classical and quantum har-
monic chains and establish some notation. In Sec. III, we
prove the main result of the paper for the classical case.
In Sec. IV, we show that the same result is true for the
quantum-mechanical case as well. Finally, in Sec. V, we
give a more heuristic and qualitative discussion of what
happens for finite systems and for chains lacking transla-
tional invariance. Some necessary mathematical results
are proven in the Appendices: In Appendix 8 we place a
constraint on the dispersion relationship, and in Appen-
dix C we prove a generalization of the central limit

theorem for the case where the "probability density" can
take negative values.

II. THE GENERAL HARMONIC CHAIN

qz A )
P

(2)

we can write the Hamiltonian as

A TA+ OP 7gPNf CO

pp 2 q q~ (3)

where the time-independent matrix A is symmetric and
positive definite. Throughout this paper, we wi11 use
units where m=coo=%=1. The number of oscillators
can be either finite or infinite, but we will limit ourselves
to the infinite case except in Sec. V.

At any given time, we will specify the (pure or mixed)
state of the system by its Wigner function W(z). It is
well known that since the Hamiltonian is quadratic, the
equation of motion for the %'igner function is identical to
that of the Liouville function in classical statistical
mechanics and has the solution

W, (z)= Wo([U(t)] 'z),
where the time-evolution matrix U is given by

X r cosA'
U(r)= Z X —g' sing' t

A ' sinA ' t

cosA ' t

Here and throughout this paper, the action of a func-
tion on a symmetric matrix is defined as the correspond-
ing real-valued function acting on its eigenvalues: Since
a11 symmetric matrices A can be diagonalized as

A =RAR

where R is orthogonal and A=diag{d; } is diagonal and
real, we can extend any mapping f on the real line to
symmetric matrices by defining

f(R diag {d,. ]R )=R diag {f(d, }]R (6)

It is easy to see that this definition is consistent with
power series expansions whenever the latter converge.
For example,

cos(A' )=g, A" .( —1)"
(2n )!

In this section, we establish some notation and review
some basic results about classical and quantum harmonic
chains and cyclic matrices.

As our quantum system, let us take 2N+1 coupled
harmonic osci11ators of equal mass, labeled
—N, . . . , —1,0, 1, . . . , ¹ Denoting a point in the
2(2N+ 1)-dimensional phase space by

z — q (1)
.P.

and the corresponding operators by
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By a Gaussian state in n dimensions (we will often have
n & 2N+ 1 further on, when dealing with reduced Wigner
functions), we will mean a state whose Wigner function is
Gaussian, i.e., is of the form

8'(z)=(2~) "(detC) ' exp[ —
—,'(z —p) C '(z —p)) .

Here the mean vector p and the covariance matrix C
satisfy

(~7) )(~~ T+r~ T)
2

(AA r+P& 7 ) (PW 7 )w pp

(8)

(The symmetric ordering is necessary since q and p do
not commute. ) The Wigner function being Gaussian is
equivalent to the density matrix being Gaussian in the
position (or momentum) representation.

By a time-independent state, me mill mean a state with
a time-independent Wigner function (or, equivalently,
with a time-independent density matrix}. In TY it is
shown that a necessary but not sufficient condition for a
state to be time independent is that

@=0,
D 0
0 AD

f(A)~„=QR~kR„kf(dk) .

where D is some constant, symmetric, positive definite
matrix that commutes with A. If the state is Gaussian,
then this is evidently also a sufficient condition, since the
%igner function is completely specified by p and C. %e-
will assume that all states have p=O. This in no way
reduces the generality of our treatment, as the time evo-
lution of p and the time evolution of the shape of the
Wigner function (about its center p, ) are totally indepen-
dent (see TY). Thus assuming p=0 is much like assum-
ing that the center of mass is at rest at the origin when
studying the motion of a blob of jello in the absence of
external forces.

As is conventional, we mill assume that the harmonic
chain is translationally invariant. This is equivalent to
the potential matrix A being cyclic (such matrices are
often called circulant in the mathematics literature [18]),
i.e., that each row is a cyclic permutation of the rom
above it: A, +, .+, =A;, understood (mod n} for an
n Xn matrix. Since A is also symmetric, this means that
we can write A;-=a~; -~ and interpret the system as a
chain of harmonic oscillators where the coupling between
any two oscillators depends only on the separation be-
tween them. (If X is finite, we can interpret the system as
oscillators arranged in a ring rather than a line. ) Using
(6), we can write any function of a (cyclic or noncyelic)
matrix A as

commute. This is because they can all be diagonalized by
the same matrix 8, the discrete Fourier matrix. Physical-
ly, this means that plane waves form a complete set of
solutions. If A is symmetric, positive-definite, cyclic, and
infinite-dimensional, then Eq. (10) reduces to [19]

f ( A ) „= J d8 f [A, (8)]cos[(m n)—8], (1 1)2' ~T

where the spectral function A. (8) is the function whose
Fourier coefficients are row zero of A. The spectral func-
tion can be interpreted as a dispersion relationship, A, be-
ing the frequency of a wave with wave number 8. Note
that f(A ) is cyclic as well, i e , .it.s components depend
only on the distance to the diagonal.

A cyclic potential frequently discussed in the literature
is the nearest neighbor potential, the case where each
mass is coupled only to a fixed spring and to its nearest
neighbor:

oc 2

[ ,'Pk+ ,' q-k+ -(4+ i
—

q; }']

i.e., Akt, =l+2y, Ak k+, = —y and all other elements
of A vanish. For this special case, the spectral function is

A, (8)= 1+4y sin —.e

2
'

III. THE FINITE CLASSICAL CHAIN

In this section, we will investigate the circumstances
under which states become Gaussian in classical statisti-
cal mechanics. Here the positions and momenta at time t
are specified by z(t), which is a vector of random vari-
ables. These random variables are given by the initial
random variables as

z(t) = U(t )z(0),

and we wish to study the circumstances under which the
probability distribution of z(t) becomes a multivariate
Gaussian as t ~ oo.

According to Eq. (5), the position of oscillator m at
time t is given by the initial data as

where we have defined the random variables

g „(r)—=X „q„(0)+Y „p„(0) .

(The above expression is to be understood without any
summation. ) Using the Liapunov version of the central
limit theorem (e.g., Ref. [20]), we see that the distribu-
tion of q (t) becomes Gaussian as t ~ ao if the Liapunov
condition

M" ]

~0 as t~~

is satisfied, where we have defined

Cyclic matrices have the great advantage that they a11



50 DBCOHERENCE PRODUCES COHERENT STATES: AN. . . 2541

If we make the physically reasonable assumption about
the second and third moments of the initial data that
(zk(0) )' &o and (Izk(0)I }'~3(a. for some positive
constants o and sc, then the Liapunov condition reduces
to the requirement that

I /3

y Ix..l'+IY..I'
and

(. . .,q(0) i,p(0), ,q(0),p(0) )

(q(0)„,p(0)„,q(0)„+„p(0)„+i,. . . )

teger M. More precisely [21,22], it is sufficient that there
exists an M such that n —m &M implies that the two
inSnite sets

n= —oo

X „+Y „
$/Q +0 as 2~ ao e

are independent. Finally, our proof can readily be gen-
eralized by using the multivariate CLT [23,24] to show
that all Snite multivariate distributions become Gaussian.

(For the quantum case to be treated in the next section,
the assumption of a minimum standard deviation follows
directly from the Heisenberg uncertainty principle, if we
simply assume that the standard deviations are bounded
from above. }

If A is cychc, then (5) and (11)yield

X „= Jt cos[A(8)t]cos[(m n)8]d8, —

Y „= f [A(8}] 'sin[A(8)t ]cos[(m n)8]—d 8 .2'
Now Parseval's theorem gives

X „+Y2„= f (cos [A,(8)t]2' —n.

+[A(8)] sin [A(8)t ])d8, (20)

which approaches some positive constant c as taboo.
Thus, the Liapunov condition is satisfied if and only if the
numerator of Eq (18) a. pproaches zero as t ~ 00. But

lx..I'+
I Y..I'

supIX „I+IY „I
i

Xi„+Y „, (21}
.'n= —oo

so it suffices to show that this supremum approaches
zero. This is not merely a suScient condition but also a
necessary condition for q (t} to become Gaussian, since
a nonzero supremum means that there is some g „ that
makes a Rnite contribution to the sum (14). This would
imply that the distribution of q~(t} depends on the de-
tails of the distribution of g „and thus cannot in general
be Gaussian. In Appendix A, we show that this
supremum does indeed approach zero under quite general
conditions, namely, for any spectral function A, that is an-
alytic on. the entire interval [—~,n] and in addition is
nonlinear.

In conclusion, we have shown that the probability dis-
tribution of q (t) becomes Gaussian as t ~ oo if the spec-
tral function A, is nonlinear and analytic on [ n, n ] and-
if the initial probability distributions of all positions and
momenta are independent and have bounded second and
third moments. The proof that p (t) becomes Gaussian
is completely analogous.

The assumption that all random variables are indepen-
dent can be relaxed to assuming that no dependence ex-
ists at oscillator separations larger than some 5xed in-

g;(z)=)(I s([U(t)] z), (24)

where U denotes the transpose of U.
I,et us Srst assume that the oscillators are not entan-

gled initially, so that the %igner function for the initial
state is completely separable, i.e., of the form

W (q,p)=Q W ™(q„,p„)

for some set of reduced %igner functions 8'z"'. Substi-

IV. THE INFINITE QUANTUM CHAIN

In this section we wi11 see that all the results of the pre-
vious section can be generalized to the quantum-
mechanical case. Much of the mathematics remains the
same, but the interpretation changes. The big mathemat-
ical difference is that a %igner function can take negative
values, whereas a classical probability distribution can-
not. A generalization of the central limit theorem for
%igner distributions is proved in Appendix C.

By analogy with reduced density matrices, all expecta-
tion values of the nth oscB1ator can be calculated from
the nth single oscillator reduced Wigner function [14,15]

8'"'(q„,p„)=—f W(q, p), (22)
(n)

where the integral is to be taken over all variables except
x„and p„. This is analogous to the way the marginal
probability distribution for (x„,p„) is calculated in classi-
cal statistical mechanics. The only difFerence is that the
%igner function can take negative values and cannot be
interpreted as a probability distribution. In Sec. III, we
gave necessary and sufficient conditions for when various
marginal distributions become Gaussian as t~ m. Here
we will pursue the quantum analog and give conditions
for when various reduced Wigner functions become
Gaussian.

Fourier transforming Eq. (22) with respect to all vari-
ables yields

4'"'(q„,p„)=k(0, . . . , O, q„,O, . . . , O,p„,O, . . . , 0),
(23)

i e , the . F. ourier transformed Wigner function (also
known as the characteristic function) with all variables
except q„and p„set equal to zero. This expression is
often more useful than (22), as it contains no integrals.
Fourier transforming Eq. (4) and using the fact that
detU=1 yields
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tuting Eq. (25) into Eqs. (23) and (24) yields

W,
' '(q, p )=g Wo"'(X „q +Z „p,Y „p +X „p ),

(26)

where the matrices L, F, and Z are those defined in Eq.
(5), and no summation is implied. Thus the reduced
Wigner function is obtained by Fourier transforming the
initial reduced Wigner functions, multiplying them to-
gether, rescaling their arguments appropriately, and per-
forming an inverse Fourier transform on the result. This
is exactly how we would compute the probability density
for a weighted sum of independent two-dimensional ran-
dom variables, which is the classical case that we investi-
gated in the previous section. The standard versions of
the CLT all make heavy use of the assumption that prob-
ability densities are non-negative. Thus in order to show
that the reduced Wigner function becomes Gaussian, we
need a Liapunov type CLT for "random variables" whose
' probability densities" are allowed negative values, a sub-
ject which to our knowledge has not been previously
studied. We leave the full mathematical details of such a
study for a future paper, but prove such a generalized
CLT in Appendix C for the special case where all the
"random variables" are identically distributed. It ap-
pears highly plausible that the standard Liapunov proof
can be appropriately generalized employing similar tech-
niques.

In conclusion, this would show that any one-particle
reduced Wigner function 0 "'(q„,p„) becomes Gaussian
as t ~ Do if the spectral function A. is nonlinear and ana-
lytic on [ —n, ir] and if the initial states of all oscillators
satisfy the condition that certain expectation values be
bounded as described in Sec. III. Specifically, the expec-
tation values of all linear, quadratic and cubic combina-
tions ofP„and g„should be bounded from above by some
constant independent of n. Then as shown in theorem III
in Appendix C, the other moment constraints will be au-
tomatically satisfied because of the Heisenberg uncertain-
ty relationship.

Just as in the classical case, the assumption that no ini-
tial correlations exist between di8'erent oscillators can be
relaxed to assuming that the joint Wigner functions are
separable for oscillator separations larger than some fixed
integer M. The generalization to the reduced Wigner
function for more than one particle is also completely
analogous.

Our result shows that virtually all harmonic chains
treated in the literature wi11 produce Gaussian states as
t ~ 00, since they tend to have spectral functions that are
both analytic and nonlinear. Some well-known examples
of such harmonic chains are the above-mentioned nearest
neighbor model [25,10) and the Ford, Kac, and Mazur
(FKM) model [19]. Since the FKM model has been
shown to be equivalent to the independent-oscillator heat
bath model [12], the latter will also produce Gaussian
states under quite general conditions.

An interesting mathematical problem is to generalize
our results to arbitrary quadratic systems, by giving con-
ditions for when they produce Gaussian states. It is our

belief that Gaussian states mill be seen to be produced un-
der quite generic circumstances, and thus are ubiquitous
whenever there is interaction between a very large num-
ber of systems.

In TY, it is shown that if a harmonic chain starts out
with an arbitrary cyclic covariance matrix

Q *

6
then

D 0C~
Q QD as (27)

where

If the spectral function is nonlinear and analytic as dis-
cussed above, the convergence will not merely be point-
wise as shown in the TY, but indeed uniform. Since a
Gaussian is uniquely specified by its mean vector p and
its covariance matrix C, we thus know not only that the
harmonic chain approaches a Gaussian state, but also ex-
actly which Gaussian state. As we would expect, the
only information that is preserved about the initial data is
the second moments, i.e., the covariance matrix, whereas
all fine details of the Wigner function and all information
about higher moments are lost. Note that the initial data
enter only in the combination E+ A F, so all informa-
tion about G (initial position-momentum correlations) is
lost as well.

Without loss of generality, we assumed that the mean
vector p=0 in the above treatment. The effect of relax-
ing this assumption is discussed in TY. It is seen that
whereas the covariance matrix still converges to the value
given above (and from what we have shown, all higher
central moments converge to the values required by
Gaussianity), the mean vector p does not converge to-
wards a constant, but keeps oscillating forever.

V. DISCUSSIGN

In this paper, we have shown that any part of a generic
harmonic chain will evolve into a Gaussian state as
t ~~. Given that the spectral function is mathematical-

ly well-behaved (analytic on the interval [—m, m]), "gen-
eric" is to be interpreted as forbidding two special cases:

(1) The spectral function is linear.
(2) Fine-tuned long-range correlations exist in the ini-

tial data.
We will now attempt to give a more intuitive and phys-

ical interpretation of these two conditions (which apply
for infinite chains), as well as qualitatively discuss what

happens if X is large but finite.
The gist of the CLT as we have used it is that a weight-

ed average of infinitely many independent random vari-
ables approaches Gaussianity as t ~~ if all weights be-

come infinitesimal. Very loosely speaking, a sum of
infinitely many infinitesimally small independent random
contributions is Gaussian. In terms of our harmonic
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chains, information about the initial data must be mixed,
and mixed so thoroughly that the state of any subsystem
of the chain at t =0 will have only an infinitesimal impact
on the state of any subsystem of the chain as t~cc.
Physically, what can go wrong In the extreme case
A ~I, which corresponds to the oscillators being com-
pletely uncoupled, there is no mixing of information
whatsoever and the CLT fails miserably. Now one might
think that as long as an oscillator is coupled to at least
one other oscillator (and thus indirectly to an infinite
number of oscillators through it, by translational invari-
ance), the CLT should always apply, and Gaussians
should be obtained for any cyclic potential matrix except
3 ~ I. This is false. If the spectral function is linear (or,
dropping the analyticity requirement, if it is linear on any
finite interval), then a wave-packet composed only of
wave numbers in this interval will simply travel down the
chain without dispersing, retaining its initial shape forev-
er. Thus the initial data at one point will have a non-
infinitesimal impact on the state somewhere else, even at
arbitrarily late times. This is reflected as U „~0 as
t~~ for any fixed m and n as shown in TY, while
sup „~U „~ remains bounded away from zero, as ele-
ments of order unity merely propagate further and fur-
ther away from the diagonal, at a linear rate. In sum-
mary, the key is that the propagation of waves must be
dispersive, i.e., the dispersion relationship must be non-
linear. This will ensure that all localized wave packets
gradually get destroyed.

The second constraint, that on the initial data, is close-
ly related to the second law of thermodynamics: al-
though for most initial data, the entropy of isolated gas in
a container will not decrease, there is a small set of rather
contrived initial data for which it will, and time will ap-
pear to run backwards for a while. The easiest way to ob-
tain such initial data is to let a low-entropy state evolve
into a high-entropy state and then reverse all velocities.
The situation with our harmonic chains is completely
analogous: If an uncorrelated state is allowed to evolve,
the entropy of the subsystems will increase as each oscil-
lator becomes increasingly correlated with ever more dis-
tance neighbors. If we now replace W(q, p) by exactly
W(tI, —p} (approximately will not suffice), the system will
evolve back into the uncorrelated (and perhaps non-
Gaussian) system we started with. Apparent time rever-
sal is always caused by such long-range correlations, and
since we used a version of the CLT that bans such corre-
lations, such troubles are avoided altogether. Of course,
after the uncorrelated initial state has been obtained, new
correlations begin to arise again, and the subsystems
eventually approach Gaussianity. An interesting prob-
lem is to investigate whether, in this vein, our result can
be proven to hold for any cyclic initial conditions whatso-
ever.

The result that subsystems become Gaussian as t~ Oo

holds strictly only for infinite chains. So what happens
when N is finite but very large? If the waves are dispc;r-
sive, then the discussion of finite X in TY can readily be
extended to show that max „U „will evolve as follows
when X is large.

(i) During an initial transitiori period whose duration is

of the order of the dynamical time scale coo ', it decays
from its initial value of order unity to a value of order
~—1/2

(ii) After that, it oscillates around this value with an os-
cillation amplitude of the same order.

(iii) Since the time evolution of U „ is almost periodic,
some components must return to values of order unity an
infinite number of times. This happens approximately
once every Poincare recurrence time. However, as shown
by Ref. [26], the Poincare time scale is generally enor-
mous compared to the dynamical time scale, since it
tends to grow exponentially with 1V for systems of this
type.

In a discussion of density matrices [27], Feynman
writes the following: "When we solve a quantum-
mechanical problem, what we really do is divide the
universe into two parts —the system in which we are in-
terested and the rest of the universe. We then usually act
as if the system in which we are interested comprised the
entire universe. " In this spirit we summarize our har-
monic chain result: The e6ect of "the rest of the
universe" is to make our subsystem approach a general-
ized coherent state. Since most systems in the real world
are coupled to their environment, this gives us even more
reason to believe that nature is indeed full of generalized
coherent states.
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APPENDIX A

In this appendix we give a condition for when

sup „~U(t) „~~0 as t~~. This rests on theorem (I),
which is proved in Appendix B. Since according to Eqs.
(5) and (11),

X „= f cos[k(8)t]cos[(m n)8]d8, —

Y~„= f sin[A (8}t]cos[(m n) 8][A (8)] '—d 8,

Z „= f sin[A(8)t]cos[(m n) ]8(i()8 d8, —

we wish to show that

f ik(8)te —&keg(8)d8 0
k 7r

where k=+(m n) is any —integer, g(8)=[A(8)], and
v=0, v= —1, and v= 1, respectively. Setting
f(8)=A(8), theorem I shows that sup „~X(t) „~~0 as
t~ (x) if A, is a nonlinear analytic function on the entire
interval [ n, n] The —same h.olds for Z(t) „, i.e., the
v= 1 case. Since A is positive definite, A, is bounded from
below by some positive constant, so A,

' is also analytic
and sup „~Y(t) „~—+0 as t~ ao follows under the
same conditions. In summary, sup „~U(t) „~~0
as t~~ for any bounded nonlinear analytic spectral
function A,.

It is noteworthy that the nonlinearity requirement is
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crucial to ensure that the convergence to zero is uniform,
independent of m and n. By simply changing variables
and using Riemann-Lebesgue*s Lemma, it is readily seen
that U(t) „will approach zero as t ~ 00 for any fixed m
and n, even if A, is linear. However, as was discussed in
Sec. V, this alone is not sufficient for producing Gaussian
states.

APPENDIX 8

In this Appendix, which is purely mathematical, we
prove the basic convergence theorem upon which the
conclusion of the paper rests. The theorem is of course a
version of "Van der Corput's Lemma" [28] in the theory
of oscillatory integrals, but the uniformity with respect to
k (which we believe is new) requires quite delicate han-
dling.

Theorem I: Let f be a function analytic on a neighbor-
hood of the closed bounded interval Iof the real axis, and
real valued on I Assum. e f is not a polynomial of degree
& 1. Then, for any g C C'(I), we have

Proof of theorem: We must estimate the integral

f elf(x)&e —~'k~g(x)dx —f e~+~~~tg(x)dx
I I

where F(x)=f(x)—ux, and u =k It is a real parameter.
By Lemma (Bl), the number of complex zeroes z to
f'(z) u=—0 in D is bounded by an integer 1 independent
of u. Denote the distinct zeroes by z, =z~.(u );

j= 1, . . . , s, with corresponding multiplicities
m„. . . , m, and g' im &I N.ow, fix s)0 and let 6,
denote an open disk of radius c, centered at z . Then,
IQ 0 )6J consists of a union of r « 1+1 pairwise dis-g=l J
joint closed intervals J;, on each of which F is strictly
monotone. Moreover we have the estimate

IF'(x)l C, e' (B3)

for all x in these intervals. We will show this after com-
pletion of the argument. By (B2) we have for small e

J,

C3e,F~"~g(x)dx &

e if (x)te —ikx~ & d& ~0
km'

(BI) Summing over i, and noting that IgUJ; has length
& 2lc, , we get

f g(x)dx
J 5~t

(B2)

where 5 denotes the smaller of 1 and min lF'(x)
l

for x FJ.
Here C, is a constant depending only on g and the nurn-
ber max l

F"(x ) l:x EJ.
Proof: This is a standard estimate of "Van der Corput

type" (see, for instance, Ref. [28]). This is a rather primi-
tive version, the proof being a straightforward variable
change y=F(x) followed by partial integration. With
stronger hypotheses one can get 5 rather than 5 in the
denominator, but this is not required for our purposes.

In the following, a number of constants whose precise
values are not essential will arise. Constants denoted
C„C2, . . . , will all be independent of k (later u), de-
pending only on the functions f and g and the geometric
entities I, D.

Actually, as the proof will show, the left-hand side is
0(ltl ) for some o )0.

In the proof, we may restrict attention to t )0, as the
other case then follows if we replace f by f. By hy-—

pothesis, there is an open simply connected domain D
containing I such that f is analytic on a neighborhood of
the closure D of D.

Lemma (Bl):There is an integer 1 such that, for every
m FC, f'(z) —

tU =0 has at most 1 roots (counting multi-
plicities) in D.

Proof: This is a simple exercise in complex analysis.
Lemma (B2): If F is of class C (J) and real valued for

some closed bounded interval JC R, g EC'(J), and F is
strictly monotone on J, then for t & 0 we have

e' '""g(x)dx C [s+(s 't) ']
I

For fixed (large) t, choose here s=t '~' '+" and we see
that the left-hand term in (B4) is bounded by
C5t ' ' '+". This concludes the proof of the theorem.

We now supply the proof for the estimate (B3). Let us
define the polynomial

S

P(z)=P(z, u)—:g [z —z (u)] ' .

It is clear that there is some constant C6 such that
P(z, u ) & C6 for all z ED and for all u. Now, consider the
function P(z, u )/(f'(x) —u ). It is analytic in D. More-
over, for some constant C7,

lP(x, u ) f (85)
xEI x u

[We will return to the proof of (B5) shortly. ] Thus, for
x&I,

If'«) —ul~C 'IP(x, »l~c, e'

for some constant Cz when x HI g (Ub, , ). Thus all that
remains in order to prove (B3) is to show that (B5) holds.
This can be done as follows. Let I „I2, . . . , I &+, be
pairwise disjoint simple closed curves in D, each of which
encloses I.

Lemma (B3):There is a positive constant Cs such that
for any u,

min lf '(z) —u
l

& C,
zGI .

holds for at least one value ofj.
Proof: Let us define y~(u):—mini f '(z) —u l:z EI, . It is
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easy to see that y. is continuous. Hence, so is

y(u )—= max qadi(u ) .
1&j+1+1

Moreover, gr(u) &0, because if q&(u) =0 for some u, then
all qrj(u ) are zero, so f'(z}—u vanishes at least once on
each I - and thus has at least I+1 zeroes, a contradic-
tion. Since y(u) is continuous, positive and obviously
—+ ao as

I
u I

—+ ~, it attains a positive minimum value Cs.
We thus have that for every u, there is at least one
j=j(u) such that q& (u ) & Cs, which proves the Lemma.

By the maximum modulus theorem, for any u E:C,

Ip(z, u)I IZ(z, u)I
re~i If'(z )—u I scr,.

If'(z) —u
I

where we choose j=j(u) as in Lemma (B3). Thus on the
right-hand side, the numerator is bounded from above by
C6 and the denominator is bounded from below by C8, so
the entire expression is &C7:—C6/Cs. This completes
the proof.

APPENDIX C

In this Appendix, we prove a generalized version of the
central limit theorem (CLT) that holds for Wigner distri-
butions. Although the CLT cannot be generalized to ar-
bitrary quasiprobability densities that are allowed to take
negative values, we show that repeated convolutions do
indeed lead to Gaussianity for a special class of such den-
sities. We find that, for some reason, nature has arranged
things so that all Wigner functions belong to this class.

Given a function f on R, its zeroth, first, and second
moments are defined as

M(o) ff(x)d x

M,."'=—ff(x)x,d"x

M,'z'= ff(x)x;xjd x

if the moments exist, i.e., if these integrals are convergent
in the Lebesgue sense. In probability theory, the second
central moment matrix V,"=M ' —M;"'M'" is usually
called the covariance matrix. Let us define a quasiproba-
bility density on I as a real-valued function f having the
following properties:

(i}M' '=1.
(ii) The first moments M;"' exist.
(iii) The second moments exist and the covariance ma-

trix is strictly positive definite.
(iv} For reasons that will become clear later, we will

also make the technical assumption that f is an L func-
tion, i.e., square integrable.

Iff has the additional property that it is non-negative,
i.e., that it is a probability density, then the basic version
of the CLT states that if we define f„ to be f convolved
with itself n times and translated and rescaled so as to
have the same first and second moments as f, then f„ap-
proaches a Gaussian g as n~00. The convergence is
usually shown to bc in the weak topology of measures,
which in our context means that integral of f„ times any
bounded test function tends to the corresponding integral

for g. We wish to investigate under which circumstances
f„approaches a Gaussian if we drop the assumption of
non-negativity.

Without loss of generality, we may assume that
M;"'=0 and that V;- =5;-, the identity matrix, as the gen-
eral case can be obtained from this by a simple change of
variables. By Fourier transforming and using the convo-
lution theorem, one then obtains the standard expression

f„(k)=[f(n 'i k)7" . (C 1)

Yet Eq. (Cl) clearly shows that the part of the curve that
exceeds unity will grow ever larger as n increases. Point-
wise convergence is obtained merely because the growing

If„I & 1 hump keeps shifting out to higher and higher fre-
quencies k. Thus as n grows large, f„may look quite
Gaussian on the interval Ik I «n '~ k„but there will be
exponentially growing bumps of height f(k, }" at
k =En ' k, . Inverse Fourier transforming, this means
f„will behave like a sum of a Gaussian and violent noise,
whose frequency and amplitude increase without bounds
as n~ao.

We will refer to a quasiprobability density as proper if
the absolute value of its Fourier transform takes its max-
imum only at the origin. Thus f is proper if If(k)I 1,
with equality only for k=0. If a quasiprobability density
never takes negative values (and hence is a probability
density in the conventional sense), then it is easy to show
that it will automatically be proper. The "ultraviolet ca-
tastrophe" described above shows that a necessary condi-
tion for a CLT to hold is that If I never exceeds unity.
Thus being proper is a necessary condition, except
perhaps for the borderline case where If(k }I

& 1 but actu-
ally equals unity for some k%1. In what follows, we will
show that being proper is also a sufhcient condition. We
will also see that, interestingly, all Wigner quasiprobabili-
ty densities are proper.

In what follows, the function g will always denote the
d-dimensional Gaussian

Our problem decomposes into two parts. —k ~/2
(A) To give conditions for when f„(k)~g(k)=e

as n~00.
(B) To show that this convergence to Gaussianity on

the Fourier side really implies that f„~g in some mean-

ingful sense.
It is important to note that (B ) is not merely an unphysi-

cal mathematical detail. This is illustrated by the follow-

ing counterexample: Take d =1 and chose f(k) to be
any smooth, symmetric I. function such that f(0)=1,
f'(0)=0, f"(0)= —1, and f(k, ) & 1 for some constant

k, )0. An example of such a function is

f(k)=(1+k )e " . It is easy to see that its inverse
Fourier transform f will have all the properties of a
quasiprobability density. It is also easy to show that
f„(k)~g(k) as n ~ &x pointwise, for any fixed k, since
f(k)=1—k !2+0(k ) follows from our assumptions,
and

'n
k1— as n —+00
2n
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—x /2g(x)= z 2e
(2n }

Unless otherwise indicated, all integrals below are to be
taken over all space. II II2 will denote the L norm in I,
de5ned by

llf lip
=— f If(x)l'd'x

Lemma (CI): Iff is a proper quasiprobability density,
then for any s & 0, there exists a 5 & 0 such that
If(k)l 1 —5 for all lkl &s.

Proof: If f is integrable, then f(k)~0 as lkl~ ~ by
Riemann-Lebesgue's Lemma, so the continuous function
If(k)l attains some maximum value M, on the set
[k:Ikl &s]. M, &1 since f is proper, so we can choose
5=1—M, . Alternatively, if we do not wish to assume
that f is integrable, it is straightforward to show that
f(k )~0 as Ik I

~~ iff is any Wigner function.
Lemma (C2): The norms IIf„llz are bounded by a con-

stant independent of n.
Proof: For small k, f has the asymptotic behavior

f(k) = 1 —k /2+0(k ). Thus it is easy to see that given
any constant p & 1, there exists an c such that

for all Ikl ~ sz. For all other k, we have

If(k) I'& (1-5,)'
for some 5 &0 by Lemma (Cl). Combining these two
bounds, we obtain

Ilf. II22= f If.(k}l'd'k

~f e ~" dk
) k )

~ 't/ n c
P

+(1—5 )
~ If(n k)l d k .

(k]) &n c

Extending both integrals to all of space and changing
variables in the second one, we get

llf II'-lie '" "ll'+n""(I —5 )"" "Ilfll'

Since the last term ~0 as n ~ ao, the left hand side is
bounded by a constant independent of n.

Lemma (C3):f„(k)-+i(k}pointwise as n ~ ao.

Proof: This step is identical to that in proofs of the
classical CLT (see, for instance, Ref. [20]), so we omit it.

Lemma (C4):f„~g in weak L topology as n ~~.
Proof: By a standard result in functional analysis [29],

weak L -convergence (that f„—g integrated against any
L test function approaches zero) follows from the point-
wise convergence [Lemma (C3}] and bounded norms
[Lemma (C2}].

Lemm«C5): IIf.Ilz~llill2 as n ~~.
Proof: Letting pal in Eq. (C2) and invoking Fatou's

Lemma,

»msup llf. 112~ llill2.

But since f„~g in weak L topology, we have

llill2 —»mi« llf. II2

The two preceding inequalities imply lim sup IIf„II z
~ lim infll f„llz. Since the reverse is true always,
»minf=»msup. which implies that limllf„ll2 exists and

equ»s llg II2.
Theorem II: If f is a proper quasiprobability density,

then

f If„(x)—g(x)l'd'x 0 as n

i.e., f„approaches a Gaussian in L norm.
Proof: Because of the Plancherel Theorem (L unitari-

ty of the Fourier transform), this is equivalent to

Ilf. —ill2 o »n
i.e., that f„~g in strong L topology. But by a standard
functional analysis result [29], this follows from weak L
convergence [Lemma (C4)] combined with convergence
of the norm [Lemma (C5)], so the proof is complete.

Thus we have shown that f„approaches Gaussianity
in the strong L sense. Note that in Lemma 1, we used
the technical assumption that f was either integrable or a
signer function. If we wish to make the additional tech-
nical assumption that not only is f (and hence f) in L
but, for some e&0 (however small) If I

Ikl' is also inte-
grable over R", then we can show the following: f„con-
verges not merely in strong L but also in strong L ', and
consequently f„converges uniformly to a Gaussian.
Thus

sup If„(x)—g(x)I~O as n

which rules out a number of physically uninteresting
pathological cases, such as f„(x) converging to the
Gaussian g (x) for all x except for a set of measure zero.

Lemma (C6): If W is a Wigner function, then

k(z) ~ @'(0}= 1, where the inequality is strict if z&0.
Proof: For a normalized wave function g in n dimen-

sions (a pure state), the Fourier transform of the Wigner
function is

k(k, x) =f e '"'~+"'~'W(q, p)d "qd "p

= f e '" q[f(q —x/2)]*/(q+x/2}d "q,

where the integral is to be taken over all space. Thus

f l@(q-x/2)ll@«+x/2) ld "q .

Using the trivial inequality AB ~ ( A +8 }/2 (with

strict inequality unless A =8), we obtain

I@'(k,x) I

~ ,' f l@(q—-x/2) I'd "q+-,' f lg(q+x/2)l'd "q

=f lg(q)l'd "q =I .

The case of a mixed state, where the %igner function is a
weighted average of signer functions of pure states, fol-

lows directly from superposition.
That we have strict inequality for x&0 is seen as fol-

lows: The second inequality above is an equality only if

P(q —x/2) =g(q+x/2) almost everywhere, i.e., if f has
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period x. But since Jg(q)d "tl= 1, hatt
cannot be periodic,

and the only possibility is x=0. Thus setting x=0 in the
first inequality and subtracting unity from both sides
shows that we have equality only if

I [1—cos(k.q)]~1b(q)) d "tI =0 .

Since the integrand is non-negative, it must vanish identi-
cally. Since ((t)'t((z= 1 &0, P cannot vanish almost every-
where, and the only possibility is k=0.

Theorem III: The Gaussian result in Theorem (II) is al-
ways obtained if f is a Wigner function with finite first
and second moments.

Proof: Let f(z) = W(z) = 8'(p, q) be a Wigner function
in n dimensions, i.e., take d=2n W. e only need to check
that all the conditions of Theorem (II) hold, i.e., that all
such signer functions are indeed proper quasi-
probability densities. All Wigner functions integrate to
unity and are square integrable (indeed
)(8')~2 (2M) ", with equality only for pure states
[14]). Lemma (C6) showed that all Wigner functions are
indeed proper. Thus, all that remains to be shown is that
the covariance matrix V=C is strictly positive definite.
This is a well-known fact, basically a corollary to the
multidimensional uncertainty principle, but we give a
brief proof here for completeness.

Without loss of generality, we may assume that the
Wigner function corresponds to a pure state, since the co-
variance matrix of a mixed state is simply the weighted
average of the covariance matrices in the mixture, and
the weighted average of positive definite matrices is al-
ways positive definite. That V is positive semidefinite fol-

lows immediately from the fact that %igner functions are
proper:

~
lV(z) ('=1—

V,„z,z„+O( ~z('),

where j and k are to be summed over from 1 to d, so if V
would have a negative eigenvalue then there must exist a
point near the origin where

~ ~)1, a contradiction.
The multidimensional uncertainty relationship [30,31]
states that

det V~ (tit'l2) "

for all Wigner functions, with equality only for Gaussian
pure states, so none of the eigenvalues of V can vanish,
and V must be positive definite. Thus all %igner func-
tions are proper quasiprobability densities, and the proof
is complete.

Note that in contrast to the case of positive densities,
second moments can vanish not merely in pathological
cases, but also for weB-behaved functions. Such an exam-
ple is

k(z) =e

for which V=O. Also note that the requirement that the
first and second moments be fiaite is necessary for the
classical CLT as well. Finite first and second moments
with respect to momentum is equivalent to the kinetic en-

ergy being finite. Finite first and second spatial q mo-
ments can be interpreted as the system being spatially lo-
calized. Indeed, if the Hamiltonian is quadratic and posi-
tive definite (as it was in all cases treated in this paper),
then all first and second moments must be finite if the to-
tal energy of the system is finite.
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