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The ordering dynamics of the Higgs field is studied, using techniques inspired by the study of phase
ordering in condensed matter physics, as a step to understanding the evolution of cosmic structure
through the formation of topological defects in the early universe. The common feature of these
difFerent physical processes is scaling. A fully analytical approximate scheme —the linear-Gaussian

approach —is proposed to evaluate one-point, two-point, etc., scaling functions for the ordering dynam-
ics of the O(n)-symmetric Higgs-field models.
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I. INTRODUCI ION

When a system is rapidly quenched from a disordered
phase of high symmetry to a multiphase region of lower
symmetry, it undergoes a spontaneous symmetry break-
ing (SSB)phase transition. During this transition the sys-
tem develops a spatial structure of randomly distributed
domains which grow with time. This phase ordering pro-
cess has been extensively studied in the context of con-
densed matter systems [1], especially those with a non-
conserved order parameter (model A} [2], described by
the time-dependent Ginzburg-Landau (TDGL) equation.
There is much evidence that in the late stages of growth
these systems enter a scaling regime [3], in which the
two-point correlation function has the scaling form

C(r, t„t2)—:(P(x, t, ) P(x+r, t~))

L (ti)
L(t, )

' L(t, )

where P is the vector order parameter field, L(t) is the
characteristic length scale at time t after the quench, f is
a scaling function, and angular brackets indicate an aver-
age over initial conditions (and thermal noise, if present).

A similar kind of phase ordering phenomenon is be-
lieved to have occurred in the early universe. While the
big-bang theory has been widely verified by observations
(confirming that the universe began in a very hot, dense
state and has expanded and cooled down ever since [4]),
the origin of cosmic structure remains unexplained. Ac-
cording to the isotropy of the microwave background ra-
diation (left over from the early matter-radiation decou-
pling transition) the early matter distribution was very
uniform. How did the universe evolve from its primordi-
al smooth state to its present state of lumpiness, where
matter concentrates in galaxies and galaxy clusters [5]
forming a very-large-scale structure? It is believed that
tiny large-scale density Auctuations, present at decou-
pling, could, if strong enough, have resisted the overall
expansion and grown under gravitational collapse.
Matter in the overly dense regions of space would have
clumped together to produce general structure. What

was the origin of these small fluctuations, however, and
how could they have generated the kind of large-scale
structure we see today? Based on a process central to
unified theories of particle physics —that as the early
universe cooled down a hypothetical field, the Higgs field,
underwent a SSB transition —it has been suggested [6]
that the consequent field ordering and defect formation
could have provided the mechanism to generate struc-
ture. Field defects would form unavoidably, because
"vacuum" configurations above the horizon scale are un-
correlated. Since the defects carry energy they could pro-
vide the fluctuations around which rnatter woold aggre-
gate [5,7,8].

The purpose of this paper is to use some of the tech-
niques developed in the framework of "model A" dynam-
ics (i.e., the TDGL equation) to study the Higgs model
ordering kinetics. This problem is technically more
difficult than model A because the equation of motion de-
scribes a damped wave propagation rather than a purely
dissipative process. However, these nonconserved field
ordering processes are likely to exhibit similarities at late
times, where a scaling regitne is expected to occur [9-11].
A difference, though, is that here the characteristic
length scale grows linearly with time, L(t}-t, while
L(t)—~t for model A.

While domain growth phenomena, governed by the
kinetics of topological defects, have been fairly well un-
derstood within model A dynamics, a first principles cal-
culation of the scaling functions has proved to be a most
difficult task, and various closed-approximation schemes
to evaluate the scaling function f (x,q) of Eq. (1) have
been proposed in the past few years [12,14]. The key
technique, exploited by several authors [12—16], is to in-
troduce a mapping P(r, t)=P(m(r, t)) between the order
parameter field and an auxiliary field m(r, t) which has,
near a defect, the physical interpretation of a position
vector relative to the defect. With this new variable, the
problem of describing the field at each instant of time is
transformed into a problem of describing the evolution
and statistics of the defect network. This approach en-
ables the use of a physically plausible and mathematically
convenient Gaussian distribution for m. Such a distribu-
tion is unacceptable for the order parameter itself, since

1063-651X/94/50(4)/2523(15)/$06. 00 50 2523 1994 The American Physical Society



2524 J. A. N. FILIPE AND A. J. BRAY 50

this is effectively discontinuous at the domain size scale.
The application of this sort of approach to the scalar-field
model A has recently received a critical review by Yeung,
Oono, and Shinozaki [17]. Methods based on a descrip-
tion of the wall dynamics lead to an approximate linear
equation for m(r, t), or for its correlator
(m(x, t, )m(x+r, ti)}. A different and promising ap-
proach, due to Mazenko [14], aims at deriving a closed
nonlinear equation for C(r, ti, ti), built on the equation
of motion for the scalar-field model 3, and the assump-
tion that the field m is Gaussian distributed at all times.
It has the virtue of yielding results with a nontrivial
dependence on the spatial dimension d and it is also easi-
ly extendable to O(n)-component systems. Despite the
uncontrolled nature of the Gaussian assumption these ap-
proaches have been shown to give good results, display-
ing most of the expected physical features [14,16]. For
the nonconserved dissipative dynamics of model A, it has
been argued that the Gaussian approximation becomes
exact in the limit of large spatial dimension d, while for
fixed d it provides the starting point for a systematic
treatment [18]. It is also correct for any d in the limit of
large n. For the Higgs-field model considered here, the
Gaussian approximation is again exact for large n, but
the large-d limit does not seem to be simple. Neverthe-
less, by incorporating topological defects in a natural
way, the Gaussian field approach provides the simplest
nontrivial approximation scheme for the dynamics of
phase ordering.

In Sec. III we attempt to apply the Mazenko approach
to the O(n)-field Higgs model. The late-time pair correla-
tion function is then given by the Bray-Puri-Toyoki
(BPT) function (20) below [15], a function C(y, n) of the
normalized correlator of m, y(r, t„t2},which obeys an

approximate nonlinear equation. The BPT function em-
bodies the asymptotic defect structure, while y(r, t, , t2)
describes the dynamical dependence of C(r, t, , t2 ). The
mapping used by Mazenko [14,16], however, restricts the
field to evolve within the bound

~ P~
& 1, which is incom-

patible with the oscillatory bulk relaxation of the Higgs
field, and leads to an inconsistent approach. The
diSculties with this approach, however, motivate our
next attempt to tackle the problem. In Sec. IV we con-
sistently eliminate the field bulk oscillations by restricting
the asymptotic field dynamics to the "vacuum manifold. "
Extending Mazenko's Gaussian approach to the non-
linear o model (NLSM), using the unit vector mapping
P=m/~m~, the pair correlation function is still given by
the BPT function, but now y obeys a different approxi-
mate equation. Rather then solving this equation for y
numerically, which is rather complicated, in Sec. V we
propose a fully analytical approximate scheme to evalu-
ate C. This amounts to replacing y by its large-n limit in
the argument of the BPT function, but keeping the
remaining n-dependence unchanged. As n ~ Oo the equa-
tion for y becomes linear and exactly solvable [9], so we

may call this scheme the linear-Gaussian (LG) approach.
Although we cannot use the NLSM for a scalar field, the
approach sti11 holds for this case if one takes n = 1 in the
BPT function. In Sec. VI the LG approach will be gen-
eralized to evaluate other kinds of scaling functions, such

as the average of the energy density and its correlation
function.

II. THE HIGGS-FIELD MODEL

In this section we briefly review basic notions about the
cosmological background model. The Higgs-field model
is presented and its dynamics are discussed.

As in usual practice, we shall consider a flat expanding
universe as the model for the bulk cosmological back-
ground [4,5]. In this case the local curvature is zero and
the metric is space independent, given by

ds =c dt [a(t—)] dr =[a(q)] (c'drj dr'—),
where t and r are comoving coordinates (i.e., the refer-
ence frame is moving with the cosmic fiow); a (r), or
a(g}, is the space expansion factor; g, the conformal
time, defined by

d 7)
=d t /—a ( t),

plays the role of "real time'* in a static universe: the hor-
izon of an "event" after a time t —its maximum range of
influence after time t —is given by

h(t)= f dr= f cdt/a(t)=c f dq=cq(t) .
0 0 0

In a flat universe, the function

dlna(g)
d in'

varies slowly with time from a=2 (radiation era) to a=4
(matter era). Away from the matter-radiation decoupling
transition a can be regarded as a constant and the expan-
sion factor is given by a power law a —t

[5,9].
In the early radiation dominated era the energy was

dominated by relativistic particles (with equation of state
p=p/3), yielding a —t' -g and p-a —t . Here p
and p are the uniform background pressure and energy
density. Once the universe cooled down and matter
decoupled from radiation this became the dominant
source of gravitation (with negligible pressure p &&p),
yielding a-t -q and p-a -t in the rnatter
dominated era. As matter became transparent to radia-
tion, the matter perturbations started to grow.

A siinple class of SSB theories is provided by the (real)
n-component Higgs-field models, where a "global" O(n)
symmetry is broken [5,9,11]. These theories include
several cases where topological defects form: domain
walls (n =1), global strings (n =2), global monopoles
{n =3), and global textures (n =4), which are of potential
interest as a mechanism to generate cosmic structure.

The dynamics of the Higgs field f(r, t ) —= (P', . . . , P")
in an expanding universe is derived from the Lagrangian
density [5]

where 7 is with respect to comoving coordinates, and
V(P) is a generalized "double-well" potential with an
O(n)-symmetric "vacuum manifold" where P = 1.
Minimizing the action
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B P ~ a Bf p2y [ ( )]p BV
rt Bg BP

(6)

a wave equation with a damped "friction force"
(a/rt)(BQ/Bq), which mimics expansion in the comoving
frame (and destroys the Lorentz invariance), and a non-
hnear force BV/BP which drives the field to the "vacuum
manifold. " The initial conditions —corresponding to a
disordered state before the SSB phase transition —will be
discussed in the Appendix, where we present the solution
of (6) in the limit n ~()0. The price for using conformal
time is to have an effective potential in Eq. (6) with a
time-dependent amplitude. The particular form of the
potential, however, should not affect in any essential way
the late-tine dynamics and scaling properties. We ex-
pect, for instance, the main effect of [a(rt)] to be a de-
crease by a factor 1/a in the comoving size of the defect
core, which simply speeds up the system entry into the
scaling regime. To simplify the subsequent discussion we
shall from now on discard the a factor in the equation of
motion (6}. We will not really need that for computation-
al purposes, as we shall be using the NLSM.

Taking conformal time on the same footing as real
time, Eq. (6) can be viewed as a "general-relativistic ana-
log" of the TDGL equation, describing the dynamics of
nonconserved systems. The Higgs Hamiltonian density
corresponding to (5},

%(r,t)=, [ —,'(BP/Bi)) +—,'(VP) + V(P)],
1

a(t)'

is (apart from 1/a ) similar to that of a static (Min-
kowski) universe, and compared to the TDGL model has
an extra "kinetic" term (BPIBrl) . For a vector field in
the "vacuum manifold" it leads to an energy density
which decays (due to expansion and dissipation) like the
background, p-1/t . Therefore, the Higgs field yields
density fiuctuations of constant amplitude
5p/P=(p —p)/P-const which, through Einstein s equa-
tions, provide a source for perturbations in the matter
distribution.

Assuming the existence of a late-time scaling regime
(which has been confirmed by numerical simulations
[9—11]),the dimensional analysis of (6) leads to a charac-
teristic scale growing with the horizon

L(7))-crt,

implying that the field defects move with relativistic
speed. We therefore expect the pair correlation function
(1) to take the asymptotic scaling form
C(r, gati, qz)=f (x,q), with scaling variables x =rig, and
q =rt2/g„where r= ~r, —

rz~ is the distance between the
two points.

Causality constrains the field correlations after the SSB
transition. Two field configurations at times g& and g2
can only be causally correlated if their distance r is below

S=fdt J d r[a(t)] X(r, t)

(where dtd r[a(t)] is the covariant four-volume ele-
inent) with respect to variations of P, and using confor-
mal time, yields the equation of motion

the sum of their horizons cubi and cr12 (i.e., if the horizons
intersect). Therefore, the condition for C(r, rt„g~)%0 is
(taking c = 1)

r (g)+g2 . (9)

III. GAUSSIAN THEORY FOR A "SOFT"FIELD

In this section we apply to the Higgs model the Gauss-
ian approach proposed by Mazenko [14] for the TDGL
dynamics. Although the approach, which is based on an
unphysical mapping for the Higgs dynamics, leads to an
inconsistent theory, it wi11 motivate the implementation
of a Gaussian approach for a unit vector field in Sec. IV.

To derive an equation for the pair correlation function
(1), we multiply the equation of motion (6), evaluated at
point (1)—=(r„il, ), by $(2)=p(r2, ilz) and average over
the ensemble of initial conditions, yielding the exact
equation

C(1,2)+ C(1,2)=V C(1,2)+V(1,2),
91

where the driving force, or nonlinear (NL) term, is

P(1,2)= —{()(2) ),
and

C(1,2)=BC(1,2)/Bq, ={()(1)P(2)),

(12)

etc. To transform (11) into a closed equation we need to
write the NL term as some approximate nonlinear func-
tion of C(1,2}. A key idea, exploited by several authors
within the TDGL dynamics [12,14,16], is to employ a
nonlinear mapping between the order parameter ()()(r,g)
and an auxiliary "smooth" field m(r, g). This new vari-
able describes the late-time defect network structure,
which will have formed at the late stages of field order-

If one of the horizons contains the other configuration
(il, or ilz) r) the correlations are "direct." Otherwise,
"indirect" correlations can occur through common
causal correlations with intermediate points in the region
of intersection of the horizons.

Unlike purely relaxing systems, the wave nature of the
Higgs dynamics forces the late-time saturating field not
to satisfy ~(t}~ (1 even if its initial condition does. To see
how the field tends to its "vacuum manifold" we linearize
Eq. (6) as P approaches a given "vacuum" state $0. Con-
sidering a single-domain region where P can be taken as
uniform, and noticing that the only restoring force is
parallel to $0 (normal to the manifold) due to the symme-
try of the "vacuum, "we find, at late times,

p(rt) $0-1— jc,(a)cos( 2 il)+c2(a)sin( A rl)],1

a (il)

(10}

where g 2= [B2V/B($2)2]„and c,(a) and c2(a) are arbi-
trary constants. For a scalar field p(rt) $0 is replaced by
~p(rl)~. We conclude that the Higgs field saturates with
damped oscillations.
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ing, and allows for the approximation to be implemented.
The most obvious way to define the function P(m) is to
follow Mazenko's suggestion [14]of using the equilibrium
profile equation of an isolated defect (in a comoving
frame},

where P is a parameter to be determined .Thus, within a
Gaussian approach, the only variable in the problem is
the function y(1,2), which accounts for the particular
dynamics of P.

The driving force (12) in Eq. (11) is then given, as a
nonlinear function of C(1,2), by Mazenko's result [14,16]

with boundary conditions $(0)=0 and P(m) ~m/jmj as
jmj-", and where V is the gradient with respect to
m. Close enough to a defect (i.e., for jmj «L (g), where
the field is unaffected by neighboring defects) m(r, g) can
be identified as the comoving position vector of point r
from the (nearest part of the) defect. This picture re-
quires, of course, that n & d. With (13) the magnitude of
P(m) is a monotonically increasing function of the mag-
nitude of jmj, approaching for large jmj the "attractor"
value 1 imposed by the potential. For a scalar field, the
function P(m) has a typical sigmoid form.

The mapping (13} restricts the field magnitude to be
jdj &1. This is appropriate for diffusion fields evolving
from a disordered state, but is physically incorrect for the
Higgs-field dynamics where the system self-organizes os-
cillating about the "vacuum" states, as shown by (10).
While we can prove that the use of (13) leads to an incon-
sistent theory [19], it seems unlikely that an adequate
one-to-one mapping could be defined for this problem In
Sec. IV we shall overcome this technical difficulty by re-
stricting the field dynamics to the vacuum manifold, "
P =1. Meanwhile, for completeness we will pursue this
approach a little further using (13) to derive a closed
equation for C(1,2).

Following Mazenko [14], we now assume that m(r, ri)
is a Gaussian random field (with zero mean) at all times,
described by the pair distribution function

BC(y) P yc, (y }

BSO(1) 2

where C~ =(BC/By) and we have used (17). Note that,
by use of the mapping (13), there is no longer any explicit
dependence on the potential V(P) in (18), though the re-
lation between P and m depends on V. At late times the
field will be saturated almost everywhere except at the de-
fect cores (whose size is much smaller than the domain
scale), and we may, for simplicity, evaluate the Gaussian
averages by replacing the profile mapping (13) by its
discontinuous asymptotic form (|t(m) =m/jmj for a vec-
tor field, or P(m)=sgn(m) for a scalar field. At late
times, therefore, the detailed form of the potential is not
important [although it must, of course, have the "Mexi-
can hat" form in order to support nontrivial solutions of
(13)]. This is in accord with the expected "universal" na-
ture of the late-stage scaling behavior.

Evaluating the pair correlation function C(1,2), using
(14) and the mapping above, yields the explicit relation
C= C(y, n), which we will call the "BPT function" [15],

)
m(1) m(2)
jm(1)', jm(2}j

n [8((n+1)/2, —,')]
=y(1,2)

2

P(m(1), m(2})
r

=N "exp
2(1—

y )

[m(1)] [m(2)]
So(1) So(2)

%=[2~+(1—y )So(1)SO(2)]

2ym(1) m(2)

+SO(1)SO(2)

S (1}=([m(1)]'), C (1,2)=(m(1)rn(2)),
Co(1,2)

y(1,2)=
+SO(1)SO(2)

where

(14)

(15)

(16)

XF —,—;;[y(1,2)]
1 1 n+2
2'2' 2

where 8(x,y) is the beta function and F(a,b;c;z) is the
hypergeometric function. The substitution of (18) and
C(y, n) into Eq. (11) yields the approximate closed equa-
tion for y(1,2), which for a vector field must be regarded
as the independent variable. In the limit n ~~ the BPT
function reduces to C(y, 0D ) =y, yielding V(1,2}=C(1,2) /So(1), and (11)becomes a linear equation.

We now focus on the pair correlation function at equal
times (pi =i12=g), which is of interest by itself and also
yields the initial condition to solve the general equation
[16]. Equation (11) then reads

and m(1) and m(2) are the same (arbitrary) component
of m(1) and m(2). All the averages over the ensemble of
initial P configurations are replaced by Gaussian averages
on m, and can be evaluated as functions of the second
moments So(1), So(2), and y(1,2). However, from (8)
and the mapping (13}, according to which m can be
identified as a position vector, we anticipate the asymp-
totic scaling form

25's,(q)= " -[L,(~)]',

—C(1,2) —C(1,2}+——C(1,2) =7 C(1,2)+9'(l, 2),
2

' '
2

where C(1,2)=BC/Bg, etc. The unknown quantity
C(1,2) may be eliminated to get a third order equation in
C. Then, replacing V(1,2) by its approximate form (18),
using (17), and looking for an isotropic scaling solution
C(r, g)=f(x}, which implies y(r, q}=y(x), with
x = r jq, , leads to the following equation for y(x):
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x 4—x
2 rr rrr{y"'+3y'y"D +y' D ]+ x +2(d+1 —a) [y"+y' Drr[2

—(a —2)(2a —3)+—(a—1)(d —1) y'= —Pt(1 —a)y+x(1+yD }y'], (22)
x 2
2 x rr

where y'=dy/dx, etc. D„(y)=Crr/Cz, D (y)=Crier/Cr, and Cr = dC/dy—, etc. The NL functions Dz (y) a d
D (y) are obtained from (20) and embody all the n dependence of (22). The boundary conditions for Eq. (22) arerrr
y(0)=1, from definition (15), y'(0)=0, from y(x)=1 —0(x ) as x~O, and y(2)=0 from C(y)-y as y~O and the
casual condition f (x)=0 for x & 2. We notice that the boundary points are both singular, which makes the numerical
solution of (22) difficult.

For a scalar field the BPT function (20) can be inverted to give y =sin(n C/2), yielding a NL term

P(1,2)= [2/ISO(1)]tan(n C(1,2)/2) .

Hence we can express (22) as an explicit nonlinear equation for the scaling function C (r, g) =f (x):

x(4—x }f'"(x)+ x 2 3(a—2) +2(d+ 1 —a) f"(x) —(a ——2)(2a —3)+—(a —1)(d—1) f'(x)X 2
2 2 2 x

= —p —(1—a)tan —f(x) +x sec f (x) f—' . (23)
2 7r 2 7T

7r 2 2
~ rI

To perform a small-x expansion of (23), we recall that
with the mapping P=sgn(m), used to evaluate C(y), the
condition f(0)= (P ) = 1 has been built into the theory
(although in an inconsistent manner). We find that f (x)
admits a series in odd powers of x (implying that all
derivatives at x =0 are determined without recursion),
giving the linear behavior, or Porod's regime [21],

' 1/2

f (x) (2—x)~+~~ i~~2 (x~2) (26)

Although we are not looking to solve Eq. (23), we de-
scribe how one in principle could do it. From (24) and
(9), the boundary conditions are f (0)= 1,

I

find that f„(x)-(2—x) +' as x~2, for d=3. There-
fore, for any value of n, and at least for short-ranged ini-
tial conditions, we expect the leading power-law decay

1 2 af (x)=l ——
(a —1)(d —1)

x+0(x ) (x ~0), f'(0) = —(1/m )&2Pa/(a —1)(d —1),

(24)

which is a physical consequence of having "sharp" walls
at late times. To find the small-(2 —x} asymptotic form
of f(x), we notice that as f (x)~0 Eq. (23) becomes
linear and has three independent solutions. Since the
singularity at x =2 is regular we try a Frobenius power
series solution [20],

f (x)—Ao" (2—x) +' " [1+O(2—x)]

+AD '(2 —x)[1+O(2—x)] . (25}

Since the BPT function (20) has the same behavior
C(y, n) y(and D-,D„~O) as y~O or n~ao, to
linear order in the regime x ~2 and f-y Eq. (22} is n in-
dependent and identical to its large-n limit. In the Ap-
pendix we discuss the large nlimit of the -NLSM (28) and

Ao(2 —x V[1+ g ak(2 —x)"],
Jc =1

and find that the equation admits a leading power decay
f(x)-(2—x) as x~2, where p can assume any of the
values p =0, 1, or a+(d —1)/2. p =0 must be excluded
as being incompatible with the boundary conditions (it
would imply AD=0), and thus the solution has the gen-
eral asymptotic form as x ~2

and f (2)=0. The parameter p is numerically determined
by requiring the coefBcient of the dominant solution in
(25) to vanish, Ao '(p)=0. In the large-n limit, where
Eq. (11) becomes linear and the Gaussian approach is ex-
act, P can be found analytically. Comparing (11)with the
linear equation (36), which amounts to comparing the
limit of (18}, P„(1,2) =p„y(1,2)/2gi, with ( T(1))
given by (37), yields

p„=2T0=3(2a+1)/2 . (27)

IV. GAUSSIAN THEORY FOR THE
NONLINEAR cr MODEL

In this section we study the dynamics of a vector Higgs
field within the NLSM. By constraining the field to lie on
the vacuum manifold, this model automatically avoids
the technical difBculties associated with the asymptotic

In conclusion, although the mapping (13) discards the
field oscillations (10}and leads to an inconsistent theory
[19], Eqs. (22) and (23), despite their intrinsic incorrect-
ness bear no obvious signs of inconsistency. A Porod's
regime (24) is obtained as a consequence of the "sharp"
wall constraint P(m)=sgn(m) used to evaluate C(y, n)
We have shown that the manner in which f (x) vanishes
at x =2, given by (26), is independent of n and exact.
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a'~ a a~
2

+— =V p+ T(r, rI)p,
Br} 7I B7]

where T ( r, r}) is the free Lagrangian density in (5),

(28)

T(r, ri) = B'4 2 2—V O' P=(VP)—
. an'

(29)

As another advantage of using the NLSM, the ordering
dynamics becomes independent of the details of the po-
tential V(P) and, in particular, the factor [a(it)] in (6) is
suppressed.

The exact equation for the pair correlation function
C(1,2) is still given by (11),

C(1,2}+ C(1,2) =V C(1,2)+ V(1,2),
91

(30)

bulk oscillations noted in Sec. II. We develop a Gaussian
approach, analogous to that of Sec. III, and derive an ap-
proxiinate equation for C(1,2).

Long after the SSB phase transition the driving poten-
tial V closely confines the Higgs field to the vacuum
manifold" almost everywhere (except at the field defect
cores). We have shown, however, that the wave nature of
the dynamics leads to a Geld bulk saturation accompanied
by slowly decaying oscillations about the vacuum state, "
preventing us from defining an adequate one-to-one map-
ping between P and an auxiliary field m. The mapping
(13), for instance, forces the field to obey lPl (1 at all
times and yields an inconsistent approach. To overcome
this technical problem, we notice that the oscillations (10)
are unlikely to have a major effect on the late-time dy-
namics of the field defect network (and thus on the scal-
ing properties), and may thus be consistently discarded
by restricting the O(n) field dynamics to the vacuum
manifold. Replacing the vanishing driving force BV/BP
in (6) by a non-linear coupling term which constrains the
length of the field, the field evolution is now described by
the nonlinear o model equation [9],

where, from (28) and (29), the NL term is now given by

V(1,2) =
& T( i)y( 1).y(2) ),

which must be replaced by some approximate nonlinear
function of C(1,2) in order to transform (11) into a
closed equation. Following the strategy of Sec. III, we in-
troduce a nonlinear mapping between the order parame-
ter P(r, i}),which is now not well defined near the defects,
and an auxiliary "smooth" field m(r, rj ). We can no
longer define P =P(m) using the equilibrium profile equa-
tion of an isolated defect [14], which yields a trivial rela-
tion everywhere except at the defect cores where it is
singular. The natural way to define the relation between
the unit vector $(r, rl) and m(r, i}) amounts to replacing
(13) by its discontinuous asymptotic form [22]

P{m)=
lml

This mapping only determines m(r, g) up to a factor
(which, e.g., may be a function of time), and there is now
no obvious physical interpretation for the new variable.
Up to a factor, however, we may still regard m(r, il) as a
position vector (close enough to a defect) as in Sec. III.

For mathematical convenience we assume that m(r, i})
is a Gaussian random field (with zero mean) at all times,
described by the pair distribution function (14) and (15).
All the averages over the ensemble of initial
configurations are replaced by Gaussian averages on m,
and can be evaluated as functions of n, So(1), So(2), and

y(r, i}), the normalized m correlator, which contains all
the dynamic dependence.

In the same spirit which led to expression (18) in Sec.
III, using the mapping (32) and the Gaussian property of
m, we can shown [23] that the NL term (31) is then given,
as an approximate nonlinear function of C(1,2), by

9'(1,2)=[([m(1)] ) —([Vm(1)] )]2 +[So(1)]—
2BSO 1 3 BSO(1)2

+ [[Co(1,2)] —[VC()(1,2)] ]—
3 BCO(1,2)

3 —1 BS,(1)BC,(1,2)

g„(1,2) =« —3)(.—1)&(lm(1) I'lm(2) I)-').

So( 1 )+SO(1)SO(2)

{n—1)[8((n —1)/2, —,
' }] 1 3——.—.y(1 2)

277 2 2 2
}

Using (15), (16), and (20), the NL term (33) can be fully
expressed in terms of y and So. For example, the corre-
lators ( m (1) ) =Co(1,2)2, and

([Vm(1}] ) = —V C (1,2}

the derivative BC/BSO(1) = —C y/2SO(1), where

Cr(y) =BC'/By, and similarly for the other derivatives

of C(1,2). Substituting the NL term and the BPT func-
tion (20) into (30}we get the equation for y(1, 2 },which is
the independent variable. Specializing to equal times

(g, =gz=i}), and looking for an isotropic scaling solution

y ( r, ri) =y (x ), we then obtain an approximate closed
equation for y(x), the NLSM version of (22), the bound-
ary conditions for which have been given in Sec. III.
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Even if we take So to be time independent, this equation
will still be much more complicated than (22}.

If m in the NLSM is set to have the same interpreta-
tion as in Sec. III, and thus to obey (17), we may compare
the NL terms (33} and (18}. The NLSM Gaussian ap-
proach generates the "soft" field result, as long as
((Vm } ) =1, plus additional terms following from the
consistent use of the mapping (32). These differences in-
dicate that the Gaussian approach is not quantitatively
accurate, since (6) and (28) should yield equivalent
asymptotic dynamics.

0.8

0.6

0.4

V. LINEAR-GAUSSIAN APPROXIMATION

Rather then solving the extremely complicated approx-
imate nonlinear equation for y(1,2), we propose a fully
analytical scheme —the linear-Gaussian approach —to
evaluate C(1,2), which combines a Gaussian mapping for
a unit vector (]} with the large nexac-t solution.

We notice that the relation C =C(y, n ), defined by (19}
and given by the BPT function (20} for a Gaussian m, ac-
counts effectively for the presence of the field defects
(through the orientation of (]1=m/~ m~ ), and also for their
topological nature (through the n dependence), and so it
already describes fairly well the late-time defect struc-
ture. Hence the particular form of the function y(1,2),
which contains the dynamical dependence of C(1,2),
should not be so relevant and may be approximated rath-
er crudely. For simplicity, we replace y by y „,the exact
solution in the large-n limit [25]. The scaling function
fL&=C(1,2)io with n= 1, . . . , 4, oo and a=2 and 4
obtained using this procedure is plotted in Figs. 1 and 2
with fixed values of q=r)z/g, and abscissa x, =2r/(ri,
+g2), and in Figs. 3 and 4 with fixed values of x, and

abscissa q. More details are given in Sec. VII and in the
figure captions.

As n ~ oo, ~m~ =(g;m; )'/ ~+nSO, and it is easy to
find the limit of the functions Q„and C(y), either from
their definitions (34) and (19) or from their Gaussian
averages (35) and (20). The BPT function reduces to
C(y, n)~y „=C„and

g„(1,2)~1/So(1)VSO(1)Sc(2)

Equations (30) and (31) yield the self-consistent linear
equation

0.2

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

FIG. 1. Field pair correlation scaling function

C(1,2) =f(x,q) in the LG approach for the radiation dominat-

ed era [see (38) and (20)]. Abscissa: x, =2r/(g, + g2}. Each set
of lines (crossing at x=0) is a collapse of the plots for
n = 1, 2, 3, 4, 00 field components with a fixed ratio

q =g2/q& = 1, 1.5,2.0,2.5,3.0 (bottom). Normalization:

f(x, l) =1 for q=l, and f(x,q}/y„(x,q}~1 as x~0 for all

q%1 and n, i.e., we have replaced (20) by C(y „(x,q) )
=y „(x,q)F(a, a;c;y „(x,q} )/F(a, a;c;y„(0,q)2) [a =—', c
=(n+1)/2]. This time-dependent condition assures that the

point where each curve cuts the origin is the same for all n. In
all plots f(x,q)=0 for r&g, +g2 (causality). The modified
Porod's regime for n =1,f (x, 1)=1+0(xln(x)) as x-+0, is an

artifact of using the large-n solution.

0.8

y (1,2)+ y„(1,2)=V y(1,2) +(T(1)) y(1,2),
91

(36)

0.6

0.4

(37}

where the scaling form (37} follows from a dimensional
analysis of (36) or (29) (and from translational invari-
ance), and the constant To is to be found self-consistently
[see (A3) in the Appendix]. The linear term
9'„(1,2)=(T'(gi))y (1,2) is the limit of the previous
NL term: the Gaussian expression (33), or the definition
(31) and (29), where P~m/QnSo.

Instead of determining y (1,2) by solving the linear
equation (36) at equal times, which [like (21)] is third or-

0.2

0 0.25 0.5 0.75 1 145 1.5 1.75 2

FIG. 2. As in Fig. 1 but for the matter dominated era. We
find the usual Porod's regime for n =1:f(x,1)=1+0(x) as
x ~0 [see (43)].



2530 J. A. N. FILIPE AND A. J. BRAY 50

0.&

NLSM in momentum space and determined the structure
factor corresponding to a random initial 6eld. In the Ap-
pendix we present and Fourier-transform their result to
three-dimensional real space, yielding the scaling func-
tion

0.6
f„(x,q}=—C„{r,q„g2)=y (r, q„qz}

6((1+q —x)
x,q)= 1

a+ 1/2

8
X ds s(1 —s )'

)( [
2

( s)2](a+ ( (/2

'1 2 3 4 5 6 7 S where

FIG. 3. Field pair correlation scaling function
C(1,2) =f (x,q) in the LG approach for the radiation dominat-
ed era [see (38) and {20)j. Abscissa: q =g, /g(. Each set of lines
(merging as q~ ~ ) is a collapse of the plots for n =1,2, 3,4, ~
with a fixed x, =0.0, 0.3, 0.6, 0.9, 1.2 (bottom). The top curve
gives the time decay at x =0 in Fig. 1. All curves fall off like
1/q'/ as q~ (N [see (46)], and are (by symmetry) invariant un-
der the change q~1/q. The apparent singularity and correla-
tion increase with q between q =1 and 2 is an artifact of the
time-dependent normalization used in Figs. 1 and 2. Using a
time-independent normalization, which is then n dependent, we
find that all curves are monotonically decreasing as q departs
from 1, but curves with different values of x, and n are difficult
to distinguish.

der, it is easier to calculate the correlation function of the
exact large-n solution of the NLSM Eq. (28), which is

second order. Equation (36) for y„=C„can be derived
from the large-n limit of (28) [just as (30) was derived
from (28)], so the two procedures to obtain y „are
equivalent. Turok and Spergel [9] have solved the large-n

x =r/rl» q =g2/g»

(x+q, x —q), x ~ 1 —q,
(B,A)= (1 x —q), ll —ql~x ~1+q

(1,—1), x ~q —1,
(40)

and X=
5 Q3

for a =2,4. At equal times,

f (x 1)= —I ds s(1 —s2)'
x

)2](a+ 1 (/2 (41)

1 ——'In(1/x)x +
8f (x 1)=' » z
16

&x=4 .

The small-x behavior of f„(x,1) can be obtained either
from the large-n limit of the Gaussian equation for y,
e.g., (23), or by expanding (41) as x ~0. Both procedures
yields the leading behavior as x ~0

0.&

Expanding the BPT function (20) as y~ 1 and using (42)
yields the small-x expansion for the equal-times pair
correlation function within the LG approach. For a sca-
lar field we have

{}.4

1
1 ——&5 ln(1/x)x +

T)fLG(x, 1 )
=

l ——&27/2x +

and for a vector field

0.2
1 —A (x)x +

1

'+
2 a=4, n &1, (44)

1 2 3 4
(

5 6 7 &

FIG. 4. As in Fig. 3 but for the rnatter dominated era.

where A, (x)=—', [ln(1/x)] and A2= —", ln(1/x) for n =2,
and A, (x)= —,'ln(1/x) and A~= —", for n =3. Performing
a small-(1+q —x) expansion of (38} we find the leading
power-law decay
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f(x,q) =f„(x,q}

B((a+1)/2, —') [(q+ I)/2)a+1
(2—x)'+

4(a+1)8(a, —,') q

m, expanding the Gaussian average into a sum of pair
contractions, expressing the averages containing V P as
the limit 2~1 of derivatives of C(1,2) with respect to
the Gaussian moments, and treating m in the limit
n ~ ao, yields

(x ~q+1} . (45)

In the limit of very different times (2},&(2}2), we obtain
the leading time decay

~ 2

& j'&=C,(1,1)
0

2
50
2S0

=C,(1,1)&j'&„,

8((a+1)/2, —', )
f(x,q) =f„(x,q) = ,~2-, +0(1/q'~2)

(q~~) . (46)

By the same arguments discussed in Sec. III, the asymp-
totic forms (46) and (45) [the different-times generaliza-
tion of (26)] are exact and the same for all n In .fact, as
x ~1+q or q —+ 0() and y ~0 Eq. (30}becomes the linear
equation (36), from which the same powers, but not the
amplitudes, can be obtained.

(49)

2

&(Vy)'& =C,(1,2) =C,(i, i)&(Vy)'& „, (50)
0

where

C (1,1)= [BC(1,2)/By(1, 2))2 &
=(n —1)/(n —2)

for n &3, C„(1,1)=ln(L/w) to leading order for n =2
(where w is the string core size, introduced as a short-
distance cutom, and

VI. OTHER SCALING FUNCTIONS
IN THE LG APPROACH

&y'& „=y„(1,2), , =—y„(1,1)=

& (Vp)'& „=[V,V2y „(1,2)]2
(51)

p(n)=, 0'+(()4)'j+(&(0)),
2a(g)2

p(vl)=, (V —
—,'(V())'j —( V(())),

2a (2}}

(47)

(48)

and scale as 1/t, like the background p and p. To evalu-
ate p and p within the LG approach, we first consider a
vector field. In this case, the potential term is negligible
(and identically zero in the NLSM) and can be ignored.
Writing the derivatives of P in terms of the derivatives of

The LG method, implemented in Sec. V to evaluate the
pair correlation function, can be extended to other scal-
ing functions. In this section we evaluate the pressure,
the average energy density, and the energy density corre-
lation function.

As long as we replace ()(} by its saturation form m/~m~
(or P by m/~m ~, for a scalar field}, the scaling functions
will have built in the late-time defect structure. Treating
m as a Gaussian field, the dynamical dependence of the
scaling functions is again embodied by y(r, rj„2}2). In the
same spirit as in Sec. V, we replace y by its large-n limit.
In short, we keep in the n dependence of the scaling prop-
erties through the Gaussian averages over the m vectors,
and treat the Gaussian moments of m in the large-n limit.
As mentioned in Sec. IV, the mapping (32) only deter-
mines m up to a factor (which may be time dependent),
and thus there is some freedom to fix the form of the
second moment SD —= & m &. Although the choice
So =const would greatly simplify the algebra (e.g., reduc-
ing the number of pair contractions of Gaussian averages
containing P}, we find it physically more convenient to
regard ~m~ as a length (close to a defect), and thus to keep
the scaling form (17), i.e., So=22} /P. When written in
terms of y, though, the results are independent of the
choice made.

The Higgs-field energy density [see (7)] and isotropical-
ly averaged pressure are given by [5]

—:—V'y „(1,1)= (a —1)& P'& „,
where we used (A17) and C„=y „. Hence, from
(47)—(50), the I.G approach gives

p(g) = p„(2}), p(2})= p„(2}), n & 2,

(52)

In the radiation dominated era, where a=2, y„(1,1) and
—V y „(1,1) (and p„and p „)have a leading order loga-
rithmic divergence. Their difFerence, though, is finite and
gives & T &

=To/rg [see A17] (and also p „Ip„=—,
' ). The

relevant case, however, is the matter dominated era
(a=4), when matter perturbations started to grow, yield-
ing p(2})=0 with n & 2 and

p(2})= 6 75+ ', n &2 .6.75 1

a g
(55}

Although a consistent implementation of the LG
method requires the use of the NLSM, and thus a vector
field, the approach can be extrapolated for a scalar field
in an elegant manner. This was already done in Sec. V,
where we simply extended the resu1ts for the scalar-field
correlation function taking n = 1 in the BPT function [see
(43)], rather then deriving an equation for C(1,2). The
difFerence for a scalar field is that the wall width w plays
a role in the dynamics, making the scaling functions

p(2})=ln(L /w)p„(2}), p(2})=ln(L Iw)p „(2}), n =2,
(53)

with

aTO 1 (4—a)TO
p. (n) =

2(a —2) a22}2
' " 6(a —2) a22}2

(54)
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(which contain time-dependent prefactors} differ from
their dimensional analysis form. Moreover, the potential
term in (47) and (48) has now a relevant contribution
( V& = ((VP) &/2a . A convenient definition for the
noncomoving wall width (which is constant in time for
sharp domain walls) is w=2/o, where cr is the non-
comoving (or physical) surface tension given by

which are the analogs of (49) and (50}. Since o embodies
the extra physical feature of the scalar field, we can treat
the remaining factors in the large-n limit. Taking
So= 2} /To [which follows from (17) and (27)],
y(1, 1)~($ & and —V y(1, 1)~((VQ) &„, which are
then given by (A17), we get, from (48) and (47),

a(2})o= f dx(dg ldx) (56)
cT 20,'1

P(2}}= a7tP„(i)},
Zm To

where here P (x) represents a single planar domain wall,
and x is a comoving coordinate normal to the wall. The
value of o depends, through P (x), on the explicit form
of the driving potential. In the spirit of the LG approach
we exploit the asymptotic mapping P(m ) =sgn(m } to per-
form the Gaussian averages, and treat the m correlations
in the large-n limit. To evaluate p and p, we write the
derivatives of P in terms of the derivatives of m and ex-
pand the Gaussian average into a sum of pair contrac-
tions. Noting that dP/dm =P' is sharply peaked at
m =0 and that

~
Vm

~

o= 1, we get

(P' &= f dm P(m)P' =oP(0),
2—m /250

where P(m)=e '/QZirSO is the one-point proba-
bility distribution for m. Using ((}' =ao 5(m) [which fol-
lows from (56)] and integrating by parts, we get

((P' )"
& =ao (5"(m) &=aoP"(0) .

Therefore (P & =aa+SOIZiry(1, 1) and

((VP) & =acr+So/Zir[ —V y(1, 1)],

o 7 —4n
p(2})= ai)p„(2) },

27r To

for n = l. In the radiation dominated era p and p have
again a leading logarithmic divergence. In the matter
dominated era, we obtain

o 7i/6. 75 1

v'p~ 4 ai)

cr 3v'6. 75 1P(2}}=—
v'Zir 4 a q

for n = l.
%e now look to evaluate the correlations between the

energy density terms of the Higgs field, i.e., P and (VP) .
For simplicity we shall restrict ourselves to the case of a
scalar field. Writing the derivatives of P in terms of the
derivatives of m, expanding the Gaussian average into a
sum of pair contractions, replacing (t

'
by o 5(m), doing

some Gaussian integrals by parts, using (14) and (15), and
treating the m correlators in the large-n limit, we obtain
(with (XY&,=(XY&—(X&(Y&)

&[4(1)]'[4(Z)]'&,+ Ar»r22 / [1 (rll rl)(r22 y2}
( 1 y2)5/2

+3 [(1 ll 2} ~y1]3 22]+2(~y12 y3 I Y2)

&[ v(((1]')[ v((}(2]')&, + A~ r~ y=, „, '1 (~ir r', )(~—2r r', }+—y'(y', f'~ir—~2r }
( 1 2)5/2

Zry'„]
+2(l r„+rr, }'+,

j

where VII. SUMMARY AND DISCUSSION

A —=o a (2), )rl, a(r12}r}2/(Zm. To)

I =—(1—y ), and y=y„(1,2), y, =y„(1,2},
y, 2=y (1,2), y, =By /Br, y„„=By„/Br, and

(1,1), Air= —V y (1,1), are given by (A15)
and (A17) We have checked that, as expected, the results
are independent of whether we take So to be constant or
given by (17). The scaling functions corresponding to
(59) and (60}, normalized in the form (XY&,l(X &( Y &,

have been plotted in Figs. 5 and 6, respectively, for the
matter era. Details and comments are given in the next
section and in the figure captions.

Two distinct Gaussian approaches for the O(n} Higgs-
field dynamics, in a flat expanding universe, were pro-
posed to evaluate the pair correlation function, and other
scaling functions. Both theories are based on a nonlinear
mapping between the order parameter $(r, il) and an aux-
iliary field m(r, i}), which varies smoothly in the vicinity
of the field defects. For simplicity and mathematical con-
venience, m(r, q) is assumed to be a Gaussian random
field, yielding an approximate closed scheme to evaluate
the scaling functions. The field P itself, which is
effectively discontinuous near the defects, is not suitable
to be treated as Gaussian.

In the "soft" field theory of Sec. III, based on the equa-
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FIG. 5. Source-source (energy density) pair correlation scal-
ing function (P (1)P (2)),/(P (1))(P (2)) in the LG ap-
proach, given by (59), for a scalar field in the matter dominated
era. Abscissa: x, =2r/(g&+g2). Each plot is for a different
fixed ratio q =g2/g&, from q = 1.0 (top) to q =2.0 (bottom), with
steps 5=0.05. There is interesting evidence of domain walls
dynamics: the correlation peak (for fixed q) moves along the
"distance" axis as time separation between the two points in-
creases (i.e, as q departs from 1). The displacement should be
proportional to the typical distance traveled by a wall during
time ~F12

—g~~. The peak amplitude decreases due to statistical
incoherence as the points move apart. The equal-time (q=1)
divergence at the origin is an artifact from the assumption of
"infinitely sharp" walls ( w ~0).

48

O~ 1.5
I

O

0.5

-0.5—

-1—
0

FIG. 6. Source-source pair correlation scaling function in the
LO approach ( [Vg(1)]~[V/(2) ]~),/( [VP(1)]2)(Vp(2) ]2),
given by (60), with the same specifications as in Fig. 5. In this
case the correlation peak, while decreasing in amplitude,
remains at the origin. Below x =0.5 its form seems to be dictat-
ed by its singular prefactor, shown in Fig. 7.

tion of motion (6), we have followed Mazenko's Gaussian
approach [14,16] for model A dynamics, where the map-

ping is defined by the equilibrium profile equation
V Q=BV/BP. In this case, m(r, rI) is identified as a posi-
tion vector relative to the nearest field defect. The map-
ping (13), however, is incompatible with the late-time
field oscillations in the bulk (10) (which are absent in
purely relaxational systems). By studying the linear dy-
namics of the Gaussian moment Cc(1,2), given by Eq.
(15), we can prove that this theory is inconsistent, and
therefore we have not looked to solve numerically the
rather complicated equations (22) or (23). The fact that,
despite this intrinsic inconsistency, the pair correlation
function displays correct physical features, such as (24)
and (26), is not, however, a merit of the approximation
used. The small-x Porod's regime for a scalar field fol-
lows from the use of the BPT function (20}, which has
built in the late-time defect structure, and the asymptotic
power decay, which occurs in the linear [small-f (x)) re-
gime, is universal for all O(n) "soft" and "hard" field
models.

In Sec. IV, we have developed a more consistent
theory, based on the NLSM, or "hard" field, dynamics
(28). We do not expect the field bulk oscillations (10) to
have a relevant effect on the scaling properties, so we
consistently fix the field magnitude to eliminate the previ-
ous mapping incompatibility. Also, since the field now
evolves on the vacuum manifold, the dynamics are in-
dependent of the driving potential. The auxiliary field is
now defined by P(m) =m/~m~. Although it can still have
the same interpretation as in Sec. III, I is only deter-
mined up to a factor and we are free to choose (m ).
The relation C(y, n) between the pair correlation func-
tion and the normalized m correlator is given by the BPT
function (20} for a Gaussian m, and y obeys an approxi-
mate equation, deriable from (30)—(33).

Rather then solving this complicated equation for y, in
Sec. V we propose a fully analytical scheme to evaluate
C(1,2). Recognizing that the BPT function captures the
essential late-time defect structure, we approximate the
asymptotic field dynamics even further, replacing y by
y„, the exact solution for the limit n~ao. The pair
correlation function is then given (in a symbolic notation}
by C(1,2)to=FspT[y„(1,2),n]. Although the NLSM
only holds for vector fields, the LG approach can be ex-
tended to n =1, since it only depends on the large-n dy-
namics, which is the same for both Eqs. (6) and (28}. In
this case the scaling properties are evaluated using the
mapping P(m)=sgn(m) and the Gaussian assumption.
The pair correlation function, for instance, is again given
by the BPT function, with n = 1, and by the same argu-
ment we replace y by y„. The scaling form fLG(x, q),
for n = 1, . . . , 4, 00 and in the radiation and matter dom-
inated eras, is plotted in Figs. 1 and 2, respectively, with
different fixed values of q and abscissa
x, =2r/(g&+g2)=2x/(1+q}, and in Figs. 3 and 4, re-
spectively, with different fixed values of x, and abscissa q.
The normalization is as follows: f (0, 1)=1 for q =1; for
q+1 we used the time-dependent condition
f(x,q)/y (x,q)~1 as x~0, such that curves with
different n cut the origin at the same point.
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The LG approach for the Higgs model is the analog of
the Ohta-Jasnow-Kawasaki approximate scheme in mod-
el A dynamics [12]. In that case, f„(x,1)
=exp( —x /8). The greater complexity of (38)—(41) is
due to the causal condition (9) which these obey. The
main physical features are preserved in this approach: the
threshold power-law behavior (45) (imposed by causality}
is exact, and for n =1 a linear Porod's regime (43) is ob-
tained for a=4. For a=2, however, we obtain a loga-
rithmic modified Porod's regime, f(x, 1)=1+0(xlnx)
(slightly apparent in Fig. 1},which is probably an artifact
of the LG approach and has no physical meaning. This
logarithmic correction is absent in the small-x expansion
(24) of Sec. III.

We have seen in Sec. V that all the exact and the
Gaussian expressions have the same limit as n ~ 00. In
fact, the Gaussian approach becomes exact (for random
Gaussian initial conditions) in this limit since the equa-
tion for m becomes linear. This equation is derived from
the linearized equation for P (replacing P by m/QnSO),
and its form depends on the choice made for So ~ Also,
the two Gaussian approaches, for the "soft" field and for
the NLSM, become equivalent (and exact} as n ~ m and
the LG approach could be implemented equally well us-

ing either. We find, however, that the NLSM provides a
more systematic and self-consistent framework for this
purpose, while the "soft" field model yields the physical
motivation to employ the NLSM (and proves useful in
the LG calculation of other scaling functions with n = 1).

In Sec. VI we have extended the LG approach to
evaluate other scaling properties of the Higgs field. For
these cases we do not know how to build closed approxi-
mate equations like those of Secs. III and IV, and the
method proves especially useful. If we restricted our-
selves to the Gaussian approach we could express other
scaling functions in terms of y and its derivatives, but we
could not solve for these derivatives numerically. For a
scalar field we can still use the asymptotic mapping
P(m )=m /~ m ~, but we have to account for the nontrivial
role of the wall width m, which is inversely proportional
to cr, the surface tension (56). The LG results (52), (53),
and (57), give the average field energy density (47) and
pressure (48) as being proportional to p„, the energy den-

sity in the limit n ~ Do. The factor of proportionality is n

dependent, and is also time dependent for n =2 and 1.
Since p„and p„, given by (54), have a leading logarith-
mic divergence at a =2, we have discarded the radiation
dominated era, which is a less relevant case in the forma-
tion of cosmic structure, and next summarize the LG re-
sults in the matter era (a=4). With n )2, (55) gives

p=6.75[1+1/(n —2)]/a g

which, is coinpared with the fit to simulation results [11];
6.75[1+—", /(n —2)]/a vP shows a fair agreement up to a
factor -2 in the correction term. With n =1, (58) gives

p =0. const/a q, yielding energy density fluctuations
growing linearly with time t, rather than having a con-
stant value as in the vector case. This well-known result

[5] means that walls, if present, would rapidly dominate
the energy of the universe. With n ~2 we obtain zero

pressure, as expected. With n =1 we get a negative pres-
sure p = —3p/7, yielding a source term Jo+3p &0, which
can be regarded as indicating an effective domain wall

repulsion [5] in the scaling regime, and is a refiection of
domain growth. We recall that for an isolated equilibri-
um domain wall perpendicular to the x direction (for
which P =0=8//By=Op/Bz), the field pressure com-
ponents along each axis are p„=O and p» =p, = —

p [5].
The pole of (52) at n =2 is built in the approach through
the use of a unit vector (i.e., the defect core size m~O)
since, in fact, the "sharpness*' of the string cores leads to
a logarithmic cutofF given in (53) [26].

Finally, we have done a LG calculation of the correla-
tions between the energy terms P and (VP), which are
the sources for the perturbations in the cosmological
matter distribution. For simplicity we have restricted
ourselves to the case of a scalar field. In contrast to the
vector case, P cannot be regarded as the "centripetal"
energy due to the field wandering around in the vacuum
manifold. " At late times, though, P, or (VP), vanishes

everywhere in the bulk regions and thus probe the pres-
ence of domain walls (where energy is concentrated). Us-

ing (38) and (A17}, we have computed the scaling func-
tion

& [y(1)]'[y(2)]'&,/& [4(1)]')& [y(2}]'&,

given by (59), in the matter era. Figure 5 shows the re-

sults with different fixed values of q =i)z/g, and abscissa

x, —=2x/(1+q). Remarkably, as x increases from zero
there is a dramatic change from large positive values to
negative values. We interpret this set of plots as giving
evidence of domain wall dynamics (in a statistical sense):
the correlation peak (for fixed q) is displaced along the
"distance" axis as the time separation between the two
points increases (i.e., as q departs from 1). Its amplitude
decrease is dictated by statistical incoherence as the
points move apart, and its displacement x, „i, must be
proportional to the typical distance traveled by a wall

during the time ~q,
—

r)z~. The equal-time (q=1) diver-

gence of the peak at the origin (i.e., of & P ) ) is an artifact
of the absence of a short-distance cutofF in y„(x, 1) as r
drops below the wall width m. The scaling function

& [&y(1)]'[&y(2)]'),/& [Vy(1)]'& & [Vy(2)]'&,

given by (60), is plotted in Fig. 6 for the matter era. In
this case the peak remains at the origin, while its ampli-
tude decreases, as q departs from 1. Since both energy
density terms probe the presence of domain walls, it is
not very clear to us why this correlation function is so
different from the previous one shown in Fig. 5. It seems
that its form for x &0.5 is entirely dictated by its singular
prefactor 1/(1 —y„),which is plotted in Fig. 7.

We conclude by discussing some directions for future
work. By linearizing the full equation of motion (11),
with (18) or (33), for the correlation function around the

scaling solution, it should be possible to show that the
scaling solution is a stable attractor of the dynamics. In
particular, the prescaling regime (e.g., corrections to scal-
ing) can be described using the Gaussian closure schemes
of Sec. III or IV. The early-time behavior, however, is
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(A6 .
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f d k
((, k ni} 0-k(n2} &e""/fk 2
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k 91 0 k 91
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yV

2

(A5}

(A6)

Cleaearly, from (A5
it in th econve i tfn orm

sca ing form (x,q), with x =r/=r g& and q=gz j2 gi. To evaluate (Ae 5) we write
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, J„(y)J„(yq)f„(x,q)= f d'y e'""
y'(yq)

2~q'/2 1 d J (y)J (yq)
dy cos(yx)

iY1 x dx y "(yq)'

Using the integral representation of Bessel functions [24], we have

I(x,q) = —— 2 '~r
V+

~ J,,{y)J„{yq)
dy cos(yx)

QC

oof dy f ds f dt(1 —s')" ' (1 t }'—' cos(yx)cos(ys)cos{yqt}~(1+a) —~ 0 o

1 1 q
ds dt(l —s )

+" (q —t }' +" )5(x+s —t)+5(x —s+t)+5{—x+s ~t) {

(1+a)q + 0 o

2 f ds(1 —s )' +"
[q —{x—s) ]

" " g(s+q —x )g(q+x —s)
(1+a)q

f d (1—')' +" '[q' —
(

— )']' +'"- .
(1+a)q +

alternatively, performing the "self-similar" transform s~x —s in (A8),

I(x,q) =— 1 x+1
S[1 (X $)2](a+((/2( 2 2)(a+ li/2g( )g( )

(1+a)q +

g( +q —x) "
d ~

l (
2 (a+1(/2( 2 2 (a~(&/2~ds[i —(x —s) j (q —s )

(1+a)q + {A10)

(x+q, x —q), x ~ 1 —q,
(B,A)= (l,x —q), 1 —

q~ ~x ~1+q,
(1,—1), x ~q —1 .

{A11)

Differentiating I (x,q) with respect to x we get, using some of the possible integral representations for dI /dx,

f ()qdI(x, q)

g(1+q —x)
a+ 1/2

g(1+q —x)
a+ 1/2

g(1+q —x)
a+ 1/2

(1 2)(a —1)/2[ 2
(

)2](a+11/2B

fa, [s(q —I)+x[1—s(x —s)]] 2 (a —li/2r 2 2](a —li/'as
.4 2

{A12)

(A13)

where N=(a+1)B(a, ', ) Expre—ssi.on (A12) follows from
differentiating (A9). The form (A13), which follows from
(A10) and the transformation s~x —s, or from integrat-
ing (A12) by parts, is convenient for further
differentiation with respect to x. Finally, (A14) is the
mean of the previous two, and proves useful at equal
times (q=l) where the factor 1/x gets canceled and
higher derivatives with repsect to x become easier to
evaluate.

By construction I(x,q) must be invariant under inter-
change of times, i.e., I(x,q) =I (x /q, 1/q). Since it is not
explicitly symmetric, a number of integration variable
changes and other transformations may be performed in
I(x,q) and dI(x, q)/dx leading to different equivalent in-

tegral representations for f„.However, the expressions
given, with three different integration limits (Al 1) «-
pending on x and q, admit no further simplification.
Writing the integrand in, say, (A9), as g(x, q;s)' ",it
is easy to see that

g(x, q;s) =(1—s)(1+s)(q+x —s){q—x+s}
is non-negative and bounded only in the regions where
both ~s~ ~1 and x —

q ~s ~x+q, which are precisely
those yield by (All). Hence, since (a+1)/2 is nonin-

teger, the integral (A9) runs over the whole (bounded) re-
gion where the integrand is real. As illustrated by the
small-x expansion (42), I(x,q) is singular for a=2. In
fact, at each integration limit one (or two, if x =0) of the



50 PHASE ORDERING DYNAMICS OF COSMOLOGICAL MODELS 2537

radicals in g(x, q;s) vanishes and high enough derivatives
of the integrand or integration limits will diverge. Up to
fourth order, however, we get finite derivatives of I(x,q),
but since each of the radicals in (A9) can only be
differentiated twice, one has to transform the integral,
e.g., using r s~—s (or integrating by parts} before doing
the third and fourth derivatives. Using these methods we
find, from (38), with 5—=a+ —,',

C„(1,2)=
s f ds F„ i

—5C (1,2)
Xxq

r

C„(1,2)= f ds qF„ i—5C„(1,2)
Nxq

C„(1,2)=
s f ds qF„, z

5'C—„(1,2)
p&pz Nxq~

F,= [q a—(x —s)i](1—s )( +')/i

X[q —(x —s) ]'

F 3= —(a+ 1)s[q —a(x —s) ](1—s )'

X [q2 (» s)2](n 3—)lz

F„,=(a+ 1)(x—s )(1—s )'

[q2 (x s)2](cI ) )Ii

F„z=(a l)q(—x —s)(1—s )' +"

X[q —(x —s) ]'

F„, =(a —1}q(x—s)(1—s )'

X [q2 —(x $)2](a—3)/2

(A16)

—5(riiC „(1,2)+riiC„(1,2) ) We also obtain in the limit 2~1, i.e., r ~0 and gz~q„

()C (1,2)

dr
1 1 adsF,

'g
& Nxq

V'C„(1,2)= i s f dsF 3,
q& Nxq5

where it is implicit that x 1+q, and

C„(1,2)
x

(A15}
C„(1,1)=0, VC„(1,1}=0,

C„(1,1)= = —V C„(1,1)+
~ ~ 1 To To

CX 2 7/1

a —1 To—V C„(1,1)=
cx 2

(A17)
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