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We consider the statistical properties of random pulse trains generated by noisy signals imposed on a
threshold device —a simple model for the information processing of a single neuron. It is shown that
Markovian noise generates self-similar bursts characterized by algebraic decaying correlations and

power spectra. It is further shown that the role of noise is ambiguous. For subthreshold signals, noise

can enhance the performance of the threshold device, whereas above threshold noise always degrades a
signal.

PACS number(s): 05.40.+j

I. I¹.RODUc:j..ION

The human brain, the most powerful signal processing
tool we know, operates via firing pulses between neurons,
triggered by external or internal stimuli. Although the
dynamics of a neuron is far too complex to be described
by a few dynamical equations it is hoped that some
characteristic features can be captured in tractable mod-
els. The most common model to simulate the spiking
behavior of a simple neutron has been put forward by
Hodgkin and Huxley, Fitzhugh, and Nagumo (HHFN}
and others [1]. It is in its simplest form a two-
dimensional dynamical system. In view of applications to
the statistical mechanics of neural networks with a large
number of neurons, one wishes to have more simple mod-
els for the single neuron than HHFN. McCulloch and
Pitts [2] have introduced an extremely simple model
which allows the model neuron to be in two states, a
nonactivated quiescent state and a firing state. When the
voltage across the membrane of the neuron is below
threshold, the model neuron is in the quiescent state (Q).
When the membrane voltage crosses threshold, the model
neuron switches to the firing state (F), i.e., it fires a pulse,
and is subsequently reset within a certain refractory
period to its nonactivated quiescent state. Within this
model, the output of the neuron can be described as a
binary sequence of states (Q) and (F), or equivalently as a
binary pulse train. Many neurons (depending on the
function of the neuro-group they belong to} are intrinsi-
cally very noisy, thus showing spontaneous firing activity,
even without an external stimulus. The outgoing pulse
train is to be considered a random pulse train even in the
presence of a stimulus. Both the external stimulus and
the noise trigger the pulse train (the output of the neuron)
in a possibly cooperative fashion. In a recent experiment
with periodically stimulated mechanoreceptor cells of
crayfishes [3],the spectral properties of the pulse trains of
real neurons have been studied. Synergetic efFects of
noise and stimulus have been observed for the signal
transfer. It is actually improved by a certain amount of
noise in the neuron. Similar observations in non-
neuronal systems have been made in [4].

These remarkable results have stimulated the research

presented in this paper. In a recent paper [5] by Bulsara
and Lowen, the escape time distribution of a linear
integrate-and-fire model with white noise and periodic
perturbation has been studied. Every escape event
prompts a sharp pulse and the spectral density of the gen-
erated pulse train has been evaluated. It is important to
note in the context of the results in the present paper that
in [5] an explicit dephasing has been used, i.e., the phase
of the periodic perturbation has been reset at every es-
cape event. This destroys the long-time coherence one
would observe otherwise, but allows one to use the well
established mathematical apparatus for renewal processes
(see, e.g., in [6]). The goal of this paper, complementary
to [5], is to study the pulse trains, generated by threshold
crossing events without resetting phases and therefore
without neglecting correlations between different pulses.
Similar work, but for difFerent pulse shapes, is in progress
by Gingl, Kiss, and Moss [7]. Although barrier crossing
and first passage time distributions have been studied in-
tensively in the past and are understood well (for a re-
view, see [8]), the theory of noise induced threshold cross
ing is developed only fragmentarily.

The preceding paragraph already roughly outlines this
paper. Although the motivation for this work is neural
dynamics, we address here the problems of threshold
crossing, pulse generation, and spectral properties of
pulse trains from a more general viewpoint based on
models which are not always close to the neural reality.
In Sec. II we introduce two noise sources which are
different with respect to their smoothness, an important
issue for threshold-crossing statistics and for the spectral
properties of the pulse train. We are using a single low-
pass filtered white noise (SL) and a double low-pass
filtered white noise (DL) as sources for fluctuations. The
latter is non-Markovian while the former is Markovian
with an unbound variation of the derivative. Results in
this paper show that the number of derivatives with
bounded variation actually provides the classification
scheme for the smoothness with respect to the spectral
properties of the generated pulse train. We briefly de-
scribe concepts for threshold-crossing rates in the pres-
ence of noise only (see, for instance, [9,10]). In Sec. III
we will turn to spectral properties of pulse trains, gen-

1063-651X/94/50(4)/2513(10)/$06. 00 50 2513 1994 The American Physical Society



2514 PETER JUNG

crated by the threshold element by firing a pulse whenev-
er the Suctuation passes a certain threshold. These sorts
of random processes have been termed triggered process-
es. The 8 trigger describes a pulse train which is zero
when the noise level at the input of the threshold element
is below a threshold and one if it is above. We derive ex-
plicit equations for the correlation function and the spec-
tral density. In Sec. IV we use the groundwork, laid out
in Sec. III to extend our considerations to threshold ele-
ments driven by noise and external periodic signals. We
will discuss the correlation of the random pulse trains
with the stimulus as a measure for the signal-processing
performance of the threshold element. We do not restrict
ourselves to small signals, small frequencies of the
stimulus, or to correlation-free events.

II.THRESHOLD-CROSSING RATES
OF STATIONARY RANDOM PROCESSES

In this section we brie6y review threshold-crossing
rates for smooth random processes. The precise meaning
of smooth is developed in this section. For nonsmooth
processes a threshold-crossing rate, strictly spoken, does
not exist. Nevertheless some concepts can be generalized
to yield answers also for Markovian systems.

A. Smooth random processes

Consider a stationary random process x (t}, described
by the probability density pz(x, x), where x is the time
derivative of x(t). Assuming the derivative x being a
random process of finite variation within the interval
(t, t +dt), the probability that the random variable
crosses the threshold b in the interval (t, t +dt) is then
given by d W=pz(b, x }dx x dt The m. ean threshold-
crossing rate for crossing from below threshold to above
threshold is thus given by [10,9]

a= f pz(b, x)x dh . (1)
0

For a Gaussian process with the stationary probability
density

1a=
2m

f S(co}co dao

f S (co}dco
exp

~b

S 6) Qco

E,(t):—(x(t)x(0)) =—exp
D
7 71

and

2DS, (to)=
1+co 7)

respectively. The stationary correlation function and
spectral density of DL are given by

D72
&,(t) =—(y(t)y(0) ) = exp

The smoothness condition can now be specified more pre-
cisely: the spectral density has to decay for large frequen-
cies proportional to co " with ~~4. In particular, for
Markovian processes where the spectral densities decay
proportional to to, the threshold-crossing rate is
infinite.

In this paper, we make use of two random processes
for generating pulse trains, a single low-pass filtered
white noise process x (t) (SL), described by

v'D
x(t) = ——x+ g(t), «)

1 71

with P t) being Gaussian white noise with zero mean and
(g(t)g(t')) =25(t t'), and —a double low-pass filtered
white noise process y(t) (DL), generated by

1 1y= ——y+ —x,
72 72

1 &D
x = ——x+ g(t) .

7J 7

The stationary correlation function and the spectral den-
sity of SL are given by

1
p~(x, x ) = 2n+o„„o„

X
exp

20 xx 2H . .

(2)
exp

'1
(1O)

t', &x(t)x(0) & ~, ,—= —IC "(O),

and tr„„beingthe variance (x ), the threshold-crossing
rate (1) is given by [10]

and

S&(to)= 2D

(~,~~to 1) +(~,+—r~) co

1a=
2m

E"(0)
K(0}

$2

2' (0)

S(to)=f K(t)exp( i cot )dt, — (4)

we obtain the following expression for the threshold-
crossing rate [9]:

Expressing the stationary correlation function
X(t)= (x(t}x(0)) by the spectral density S(to) by using
Wiener-Khintchines theorem, i.e.,

1

2m+~, ~,
exp

Q2

2D
(~, +xi)

Taking the limit 72~0, i.e., approaching a Markovian
process, the threshold-crossing rate diverges as expected
from the more general considerations above.

respectively. In the limit 72~0, the spectral density
Sz(co) of DL approaches that of SL. With
Xz'(0)/Ez(0)= —1/(~, rz), the threshold-crossing rate
(3) is then obtained as
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p—2(y, y, t)=a
Bt

B. 1 1 B. 1 8y+ —+— .y+
By 'T] 'T2

L

It is interesting to note that the key equation (1) can be
obtained in the particular situation of a two-dimensional
pair process, such as (7), by analyzing the mean probabili-

ty flux across y =b. The Fokker-Planck equation for the
joint probability distribution function p2(y, y, t ), given by

'T

1 X
p, (x)= exp

2S'0' 20'
(16)

At time t =to, we cut our system into two subsystems
(U, ) and (U~),

U& if x(b
U2 if x)b .

D 8+ . 2 p2(y, y t}
ritz @'

L2p2—(V~V, t), (13)

Both subsystems are connected due to the forward and
backward flux S+ and S across x =b, respectively. To
find S+, we separate the subsystems from each other and
calculate the momentary flux out of U, , i.e.,

(14)

B. Markovian processes

yields for the total, stationary outgoing flux across y =b

S,"'=I "yp, (y,y)dy,

in agreement with the threshold-crossing rate (1).

S+ (x, t = to ) = — B(—b —x )p, (x)x
1

TJ

B(b -x)p, (x)
D

Bx

5(b ——x }p,(b)
D

The threshold-crossing rate of a Markovian process
diverges as shown in the preceding section. This is due to
the unbound variation of the derivative of a Markovian
process. In other words, there are an infinite number of
crossings within any interval of time (t, t +dt) It ca.n be
shown, however [10], that the density of crossings is not
homogeneous, but rather shows well separated clusters of
crossings. It has been argued in [10) that the mean time
interval between two consecutive clusters is given for
weak noise by the mean first passage time TMF to reach
the threshold. In particular, for our single low-pass
filtered white noise process (6), one obtains for weak
noise, i.e., D «r&b [10],

' 1/2
1 b b2

a, =— (15)
'7) 27TCT 2'

J

exp

Closer to the notation of threshold crossing is the con-
cept of flux across a threshold. In the case of the double
low-pass filtered white noise process, this concept yields
the same answer as the one by Rice and Stratonovich
presented above. Important for the flux-over-threshold
concept to apply is the existence of a steady-state current,
which requires nonpotential conditions. The single low-
pass filtered white noise, as a Markovian one-dimensional
process, has no nonvanishing stationary current —the
forward and the backward flux balance each other —and
the flux-over-threshold method is not applicable immedi-
ately. Nevertheless, by adopting the cutting principle of
classical mechanics, we are able to find the forward and
the backward flux separately. Consider the single low-
pass filtered white noise; the stationary probability densi-
ty is given by

with tJ=Dir, . The same expression up to a factor of 2
holds for the escape rate of an overdamped particle over
a cusp-shaped barrier [11]. To obtain (15) one has to
evaluate the steady-state nonequilibrium solution of the
Fokker-Planck equation with an absorbing boundary at
x =b and a reinjection after x has crossed the threshold
b.

1 0
T] 2K

1/2
b2

exp — 5(b —x) . (18)2'

III. TRIGGERED PROCESSES

The type of triggered process we consider in this paper
is a sequence of pulses at times where a continuous ran-
dom process y (t) crosses a certain threshold. The pulse
train takes on the values s(t)=sp if the random process

y (t) is larger than the threshold b and is otherwise zero,
i.e.,

0 for y(t} & b
s (t) =s B(y(t) b) }= '

f
—

( )
(19)

We are interested in the probability density, correlation
functions, and spectral densities of the generated random
pulse trains.

A. The probability density

The pulse generating processes we consider are the sin-
gle low-pass filtered white noise process x (t), (6), and the
double low-pass filtered process y (t), (7). It is described
by the Fokker-Planck equation (13) with the stationary
density

1
p~(y, y }=

2m Qcr„o,,
exp 2' - 2'

yy

The fiux S (x, t =to) is obtained in the same way and is
just the negative of S+(x,t =to) In con.trast to the
cluster-repetition rate (15), the forward flux (18) has a
difi'erent prefactor and is valid for all values of the noise
variances 0. It is also important to note that the forward
current S+ for the Markovian system (SL) as well as the
threshold-crossing rate a of the double low-pass filtered
white noise are monotonous increasing functions of the
respective variances.
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with

D
0 ++

D
0

'r&'r2('ri+r2)

(21)

1 2b
P1 SO +2~o„

B. Correlation functions and spectral densities

The stationary mean value of the random pulse train is

given by

&s, ) =.,f" dy f" dy e(y —b)p, (y,y)

50 b=—erfc +2o„
with erfc(x) being the complementary error function.
The stationary probability density of the random pulse
train is nonzero only for s =0 and s0, i.e.,

(22)

p„(s)=pp5(s)+p, 5(s —so),
where

(23)

20'yy
P1 SO

bm

1/2
6

exp
2cT

yy

{25)

whereas for large variances, i.e., O.
yy

&&b, the probability
saturates,

pp= 1 (se),
(24)

p)=&se) .
It is interesting to note here that the probability for the
state s =s0 is not of Boltzmann type as it is usually as-
sumed in the statistical mechanics of neuronal networks
(see, for instance, [12]). The canonical distribution in
those theories is based on the analogy of a statistical spin
system with the two-state neuron and the assumption of
thermodynamic equilibrium In ou.r stochastic model, the
pulse generating fiuctuations are equilibrium fluctuations.
This, however, does not imply that the pulse equilibrates
in time, since the pulse cannot dissipate into a heat bath.

For small variances i.e., o «b, the probability p, (t)
is given by

The spectral properties of the random pulse train are
contained in its autocorrelation function, given by

C(t) = (s (t)s (0) ) —&s )'-

=s'f dy f dy'f dy f dy'p {y' y'}

XP(y,y, t iy', y', 0)—(se )

where p (y,y, t ~y', y', 0) is the transition probability densi-

ty and p&(y, y) the stationary joint probability density.
For t =0, the correlation function is given by

C(t =0)=so f dy f dy pz(y, y) —(se )
b 00

=so &se &
—(se &', (28)

whereas for large times t we find

C(t~~)=so f "dy f dy p2(y y) (se &'

(29}

For further calculations we consider SL and DL separate-
ly.

1. Correlation fanction and spectral density of SL

The transition probability density is given by

1 [x —x 'exp( t Ir, )]-
P(x, t ~x', 0)= exp

&2mo (t) 2o{t)

with

o(t)= —[1—exp( 2t/~, )] . —D
(31)

T1

The correlation function of the pulse train can then be
written as a single integral

b —x exp( t/rt)—
erfc

v 2o(t)
—&se)',

C (t):(s (t)s (0)& ——&s

= f "dx f "dx'P(x, t~x', 0)p, (x') (se)'—
b b

So 1 X
dx exp

v'2m tr 20'

1 1
CsL(t) =CsL(0) ——

2 27TO

x —b
Xerfc 7 1 ~

4Dt

with o =—o(ao). In order to evaluate the integral (32)
asymptotically for small times, we use
erfc( —x)=2—erfc(x) and substitute xexp( —tie&) and
o (t) by x' and 2Dt/H„respectively, yielding

1/2

f "dx exp
b 2'

Within a saddle point approximation, the integral in (33)
is evaluated in leading order of t as

b2
CsL(t) =CsL(0) —exp~V'2 2cr

The correlation function thus decays algebraically for
small times. In Fig. 1 we show the numerically evaluated
correlation function (32). For small times, one can actual-
ly observe the turnover from algebraic decay for small
times to exponential decay for large times.
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0.15

0.10

short-time correlation function describes the self-

correlation within one pulse, i.e., when the random pro-
cess x(t) has not yet recrossed to x &b T. he large time
correlation function describes the correlation between
two different pulses. Accordingly, the occurrence of a
pulse at time t is not independent of the prehistory as is
usually assumed for shot noise processes. The assumption
of a Poisson statistics is only justified when the pair-
correlation function is small. By virtue of (36) this limit
can be identified at the weak noise limit.

Algebraic decay of correlation functions for small
times affects the spectral density at large frequencies.
The analytic continuation of the small time approxima-
tion (34), i.e.,

0.05

0.00
0.1
t

0.2

Cs„(t)=Cs„(0)(1 &pt—)=Cs„(0)exp(—v pt ),
with

1 exp( b /o—)

2n r, Cst (0)

(37)

FIG. 1. The correlation function Csz(t) is shown for b =1,
d =0.5, and r&=1. The long-dashed line represents the short-
time approximation (34) and the dotted line shows the long-time
approach (36). The solid lines show the numerical integration
of (32).

1— Cst (t)= — exp
t sz.

b 2 exp( t lr, )—
Q 1 —exp( 2t /r, )—

b2 [1—exp( —t/r, )]
Xexp — . (35)

2tr 1 —exp( —2t /~, )

For small times we reobtain the algebraic decay (34),
whereas for large times we identify exponential decay,
i.e.,

1 b
Csz (t), „= exp — exp( t /~, ) . —

2% 0'
(36}

Note that the Arrhenius factor in the large time limit
differs from that in the small time limit by a factor of 2.
The difFerent behavior of the correlation function for
large times and for small times implies a splitting in two
different correlation functions, a short-time correlation
function and a large time correlation function. The

The large time behavior can be obtained by inserting
the spectral representation of the transition probability
density into (32) (see the Appendix}. For the derivative of
the correlation function, we can actually find a closed
form, i.e.,

g„(to-+oo ) =
2co %

(39)

i.e., it shows algebraic decay.
Algebraic decay of a correlation indicates the lack of a

time scale which is an important ingredient for self-
similarity. Noise which shows such correlation has been
termed fractal noise [6]. This can be interpreted in the
following way: A Markovian process has an infinite fine
structure which cannot be resolved, e.g., with a comput-
er. On a certain resolution, we would observe a pulse
train with 8 pulses (p, ) of finite width. Increasing the
resolution, i.e., looking at smaller time scales, we would
find another sequence of 8 pulses (p2), where the pulses
have a smaller width. Stretching the time scale, however,
reveals a pulse train being in the same sample space as

(p, }. The pulse trains on both time scales are statistically
self-similar. This process can be continued ad infinitum,

giving rise to bursts which lack a time scale, manifest by
algebraic decay of correlations.

2. Correlation functions and spectral density ofDL

For the double low-pass filtered process, the transition
probability density is given by (see, for instance, [14])

can be Fourier transformed, yielding an expression con-
taining Fresnel functions. Expanding the Fresnel func-
tions [13]for large frequencies to, the asymptotic spectral
density is then obtained as

' 1/2

P(y, y, t ~y', y', 0)= exp
1

2m det(Lr }

[y —y, (y',y') ]'
2o .„.(t}/det(o )

[y —y, (y' y') l'
2o „~(t)/det(cr )

[y —y, (y',y') ][y —A(y', y') ]

tr, (t)/det(cr )

(40}

arith
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y, (y,y ) = 3 (y,y )exp( —t lr, )+B(y,y )exp( t—/~2),

2
A(y, y)= y+-

+1 +2 ~2

T1+2 y+-
T1 Tz T

and

D 4~1'
oyer(t)=,

r, +r2+JV
( )2 'T1 + 'Tz

exp
1 1+

1 2

t —1 —~,exp
2

'

2——t —~zexp ——t
+I

D 1 1 4 1 1 1 2 1 2
Cr (t)=. .

2
—+—+ exp

— —+—t —1 ——exp ——t ——exp ——t
(7 )

—1r2) 7r) 72 7 ]+V 2 'r( 72 1
&

'r& 7r2 7rq

D 1 1
o . (t}= exp — t ——exp — t—

H' (& & )2 V1 'Tz

det(o }=cr~~(t)cr . . (t) a (t)—. .

Inserting (40) into (32), the integrations in (32) can be carried through up to a double integral, i.e.,

CDt. (t)= (se(t)se(0) ) —(se )

Sz
oo Qo

=CDL(o) — f "dy f" dy exp
4~+g o . . & —~ 2o&& 2(T . .

PP yy yy

erfc ~

+2o ~~(t)
(43)

In leading order in time t, y, can be substituted by y +yt
and the integrations can be carried through within saddle
point approximation, yielding

1
CDL(t)=CDt (0)—

21T 7 ]'r2

=CDL(0) —at,

exp
20

yy

(44)

with the threshold-crossing rate a (12). The decay of the
correlation is in contrast to the case with the single low-

pass filtered white noise process, not algebraic. The addi-

tional low-pass filtering with the time constant ~z has des-

troyed the fractal property of the pulse train. As a conse-

quence, the self-similar bursting of the pulse train has

disappeared (see Fig. 2). The spectral density for large

frequencies decays accordingly proportional to ~ . Fur-

thermore, it is a remarkable result that the derivative of
the pulse-correlation function is given by the negative
threshold-crossing rate. In the limit of the single low-

pass filtered white noise, the threshold-crossing rate as

well as the slope of the correlation function are infinite.

For large times, the correlation function can be evalu-

ated by using the spectral representation of the transition
probability density in terms of the eigenfunctions and ei-

genvalues of the Fokker-Planck operator in (13). The ei-

genvalues of Lz,

WIO(y y) =y+r2y .

The normalization determines the constant a,

&i«i+&2}'
+1+1 1 +1+2

2m.D 2nD

(48)

(49)

At large times, the transition probability density is dom-
inated by the spectral contribution of the smallest non-
vanishing eigenvalue, i.e. [14],

P(y, y, t ly', y', 0)=S 2(y y )+4io(y y 4'io(y' y' o)

1Xexp ——t

1 1=n —+m-mn
71 Tz

whereas the eigenfunctions have to be constructed itera-
tively. Assuming v.

z &&~„the eigenvalue A, ,o determines
the long-time relaxation of the correlation function. The
corresponding eigenfunction (see, e.g. , in [14]}reads

g»(y, y ) =a (x —
~2y )exp — — „(47)3' 3'

20 . 20'
yy

whereas the corresponding eigenfunction of the Hermi-
tian adjoint operator reads

~24mn ~mn 4mn

are given by

(45)
This in turn determines the long-time behavior of the
correlation function (see, e.g., [14])
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0.12

0.10

p, (x, t) = 1

27TO

1/2
[x —A sin(Qt+y)]

exp 2'
(52)

0.08—

0.06-

0.04-

0.02-

0.00

\

\

\

o

\

\

\

I

0.2 0.4 0.6
I

0.8 1.0

1
p2(y~y~ r )

2rr+a„,cr„.„.
[y —A Q cos(Qt +y) ]Xexp 20' ~ .

yy

[y —A sin(Qt + y) ]exp 2'
yy

where the variances cr and o . . are given in (21).
yy

A. Probability density

(53)

where the variance o is given by o =D/r, .
For the double low-pass filtered process y(t}, the

asymptotic steady-state distribution function for y and y
is given by [15]

FIG. 2. The correlation function CD&(t) is shown for
r&=0.9, ~2=0. 1, d =0.2, and b =0.5. The dashed line shows
the short-time approximation (44). The squares show the nu-

merical integration of (43).

1Cn„(t)= exp
2m'

b2 1
exp ——t

Tf
(51)

i.e., a purely exponential decay. Note also here the
difFerent Arrhenius factors in the long-time behavior (51}
and the short-time decay (44), which are similar to those
in the single low-pass filtered process.

IV. TRIGGERED PROCESSES
AND EXTERNAL SIGNALS

In this section, we consider a noisy threshold element
driven by a periodic input signal. In terms of neuro-
language, we add a periodic stimulus to the noisy neuron.
For small external signals, i.e., smaller than the thresh-
old, there would be no threshold crossing in the absence
of noise. In the presence of noise, there wi11 be noise in-
duced threshold crossing, but at preferred instants of
time, i.e., when the signal is larger. Although this mech-
anism looks similar to the synchronization of hopping in
a bistable potential due to stochastic resonance, there are
some significant difFerences. In symmetric bistable sys-
tems, driven by a weak periodic signal plus noise, there is
a maximum of the response to the periodic signal when
the period of the signal approximately matches twice the
mean first passage time, leaving a basin of attraction.
This matching condition implies a strong dependence of
the optimal value of the noise on the driving frequency,
i.e., the optimal value shifts towards zero for decreasing
driving frequencies. In the presently discussed
threshold-crossing dynamics, this optimal value of the
noise strength does not depend on the driving frequency.

The stimulus A sin(Qt+qr) is taken into account in the
SL and DL models by adding it to the noise. The corre-
sponding probability density approaches for larger times
the steady-state periodic function [15]

1 [y —A sin(Qt+qr)]pi(t)= exp
2m&r b 2~yy

1 b —A sin(Qt+y)=—erfc
20'rr

(54)

The time dependence reflects the pacemaker function of
the periodic stimulus for the noise induced threshold
crossing. The probabilities are again not of Boltzmann
type. For the SL model, oyy has to be substituted by
cr =D lr, .

B. Correlation of the random pulse mth the signal

We now consider the correlation of the random pulse
train with the external signal A sin(Qt) in time,

x= ((se(t)sin(Qt ) )),

f""drf" dy f "dy p, (y,y, t)sin(Qt) .

(55)

To further evaluate the integrals, we expand the exponen-
tials in p2(y, y, t ) in a Fourier series according to

exp(c cos28)=IO(c)+2 g Ik(c)cos2k8,

(56}

exp(c sin8}=IO(c)+2 g ( —1}I2k+&(c}sin(2k+1)8
k=0

+2 g ( —1 }"I~k (c)cos2k 8,
k=1

where I„(c}denote Bessel functions with complex valued
arguments [13]. Inserting this expansion into (55), we
find the expression

The steady-state probability density of the random
pulse, given in (19), is obtained by taking the averages
(22) with the asymptotic probability density (53},yielding
for the DL model

p, (&)=1—p&(&),
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erties. The reliability of such devices is still not sui5cient
in order that they could be used for building devices for
computing. Other concepts, such as highly redundant
neuronal computing strategies, are currently under inves-
tigation. Within this concept, the role of fluctuations with
respect to subthreshold signal processing as a useful tool
might be viewed from a different perspective.

The quality of a signal corrupted by noise is described
in the engineering community by a signal-over-noise ratio
(SNR). In this paper, we consider the SNR for small
external signals as the square of the correlation coefficient
K and the spectral density of the unstimulated pulse train
at the frequency of the external signal. This definition is
completely equivalent to taking the ratio of the weight of
the 5 spike in the power spectrum and the noise back-
ground at the same frequency (for a discussion, see [15])
as long as the external signal is small. Although in our
theory there is no restriction to small driving frequencies,
we have computed the SNR in this regime. Since the sig-
nal part shows in leading order a trivial dependence on
A, we further have divided the SNR (Rs~ ) by this quan-
tity, yielding

K(&s~)=
A S(co=0)

K

Csi.(Dr. ) &

0

(60)

0.8

0.6—

0.5-

In Fig. 5, the signal-over-noise ratio for the single low-
pass filtered case is shown for T1= 1 and b =0.5 as a func-
tion of the variance. The curve also shows a peak, which
is shifted towards smaller values of the variance in com-
parison to the peak in the correlation z. In Ref. [5], the
SNR in contrast does not show a peak, indicating a loss
of coherence due to dephasing at every event. The static
condition for the maximum cryy =b does not hold, an
indication that the more natural quantity describing this
efFect is rather the correlation coefficient tt. It is interest-

ing to note that while the noise decreases with increasing
frequency, the signal does not depend on it.

V. CONCLUSIONS

We have discussed the statistical properties of random
pulse trains generated by a noisy threshold-crossing
element —a simple model for the firing of neurons. The
correlation function of the random pulse train shows
algebraic decay for small times, indicating the lack of a
time scale. The power spectrum accordingly shows also
algebraic decay at large frequencies. The algebraic decay
of correlations in the case of a Markovian noise source is
a manifestation of the fractal properties of the generated
random pulse train. Additional low-pass filtering
smoothens the process on short time scales, thereby des-
troying the statistical self-similarity.

We have further studied the impact of noise on the
response of the threshold device on periodic signals. The
role of noise for the signal transfer is ambiguous. In the
absence of noise, the threshold device does not respond
for signals less than the threshold. Above threshold, the
device starts to respond and eventually saturates for large
signal strength A. Below threshold, noise triggers signal
transmission to the output. Starting at zero noise, the
transmitted amplitude first increases with increasing
noise strength until it reaches a maximum and then de-
creases again. Above threshold noise always decreases
the transmitted signal amplitude. Recent experiments
with mechanoreceptor cells of crayfishes [3] yield
response curves as a function of the noise with a rising
part for small noise, a maximum, and a decaying part for
large noise. The theory presented in [3] accounts very
well for the rising part and the maximum, but yields a too
fast decay for large noise. A possible reason for the
disagreement is the neglect of correlations between cross-
ing events in [3]. Since crossings are more frequent for
large Buctuations, one expects correlations to be impor-
tant for large fluctuations. The analysis presented in this
paper does not assume an underlying Poisson statistics
and thus does not neglect correlations between
threshold-crossing events. Although other phenomena
such as refractory periods have been neglected here and
in [3], the large noise decay of our results agrees better
with the one observed in the experiments.
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FIG. 5. The signal-over-noise ratio (60) is shown for SL as a
function of the variance cr =D/v

&
at b =0.5.

The transition probability density P(x, t~x', 0) is ex-
panded into the complete set of eigenfunctions g„(x)of
the Fokker-Planck operator,
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1 0 DL =— +-
rz ax2 '

generating the stochastic process (6), i.e.,

(A 1)
we 5nd for the correlation function

H„&(b/&2o )

g exp
n=]

X
exp

20
(A2}

where o =D/~, . The corresponding eigenvalues are given

by

1
A.„=n—,n =0, 1,2, . . . .

T]
(A3)

The stationary correlation function C(t) is then written
in terms of the eigenfunctions and eigenvalues

For large times, the main contribution stems from the
smallest nonvanishing eigenvalue k;„=1/~, , yielding

1C(t) = exp2'
b2

20' 7 )

Taking the derivative of the correlation function with
respect to time, rearranging the sum, and using Mehler's
formula, i.e.,

C(t)=(s (t)s (0))—(s )

= g exp( —
A,„t)J g„(x)dxf dx'P„(x')go(x'),

n=1

(A4)

where lb„(x'}are the eigenfunctions of the Hermitian ad-

joint operator LFP, given by

1
exp —m —H (x).=0 2

[1—exp( t lr, —}]'
exp x 1—

1 —exp( —2t /~, }

+1—exp( 2t /r, )—
we arrive at the closed expression for the derivative of the
correlation function,

g„(x')=
2"n! 2cr

Using the relation [13]

(A5}
C(t)=— 1 t exp( —b /2o)

exp +1—exp( 2t /r, )—

2

I dx H„exp
b 20' 2(7

1=&2oH„, b
2cr

$2
exp

2CT
(A6)

b2 [1—exp( t /~r ]}—
X exp

2cr 1 —exp( 2t /r, )—
Both limits, the limits for small and large times, can be
readily reobtained from (A10).

[1] (a) A. L. Hodgkin and A. F. Huxley, J. Physiol. 117, 500
(1952); (b) R. Fitzhugh, Biophys. J. 1, 445 {1961);(e) S.
Nagumo, S. Arimoto, and S. Yoshizawa, Proc. IRE 50,
2061 (1962).

[2] W. S. McCulloch and W. Pitts, Bull. Math. Biophys. 5,
115 (1943).

[3] K. Wiesenfeld, D. Pierson, E. Pantazelou, C. Dames, and

F. Moss, Phys. Rev. Lett. 72, 2125 (1994).
[4] R. Fax, R. Roy, and G. Vemuri (unpublished).

[5] A. Bulsara and S. Lowen, Phys. Rev. E 49, 4989 (1994).
[6] S. B. Loewen and M. C. Teich, Phys. Rev. E 47, 992

(1993).
[7] Z. Gingl, L. B.Kiss, and F. Moss (unpublished).

[8] P. Hanggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys.
62, 251 (1990).

[9] S. O. Rice, in Noise and Stochastic Processes, edited by N.

%ax (Dover, New York, 1954), p. 133.
[10) R. L. Stratonovich, Theory of Itandom Noise (Gordon and

Breach, New York, 1967), Vol. II.
[11]H. A. Kramers, Physics 7, 284 (1940).
[12]J. Hertz, A. Krogh, and R. G. Palmer, Introduction to The

Theory of Neural Computing, Lecture Nates Vol. 1, Santa
Fe Institute Studies in the Science of Complexity
(Addison-%esley, Reading, MA, 1991).

[13]Handbook of Mathematical Functions, edited by M.
Abramowitz and I. Stegun (Dover, New York, 1964).

[14]H. Risken, The Fokker Planck Equation-, Springer Series
in Synergetics Vol. 18 {Springer-Verlag, Berlin, 1984).

[15]P. Jung, Phys. Rep. 234, 175 (1993).
[16]M. L. Minsky, Computation: Finite and Infinite Machines,

(Prentice-Hall, Englewood Cliffs, NJ, 1967).


