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Hysteresis loss and stochastic resonance: A numerical study of a double-well potential
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A Langevin dynamic simulation is carried out in order to understand the phenomena of hysteresis in a
double-well system represented by a Landau (m*) potential, where m is the order parameter, with a
symmetrical sawtooth-type periodic external field. The calculation of a hysteresis loop is based on the
statistics of first-passage time to make a transition from one well to the other across the potential barrier
as the external field (of symmetrical sawtooth type) is swept in time. The basic construction of our model
used to understand hysteresis rules out any dynamical (symmetry breaking) phase transition predicted by
other workers in Ising- and O(N — o )-model systems. Also, we do not find any universal scaling rela-
tionship between the hysteresis loss and the field-sweep “frequency.” Our treatment, however, makes
close contact with a recently observed phenomenon of stochastic resonance: the hysteresis loss shows a
stochastic resonant behavior with respect to the noise strength. We discuss the recent experiment on the
observation of the Kramers rate and stochastic resonance by Simon and Libchaber [Phys. Rev. Lett. 68,

3375 (1992)] in light of our results.
PACS number(s): 02.50.Ey, 42.65.Vh, 75.60.Ej

L. INTRODUCTION

Hysteresis is a kinetic phenomenon. The phenomenon
is a signature of how the system parameters respond to
an external field sweep. The most familiar example of
hysteresis is the curve of magnetization M versus the
external magnetic field H. The nonlinear and delayed
response M to the external field H is characteristic of hys-
teresis in many systems with different measured physical
quantities M and corresponding different fields H. The
simple minded reason for the occurrence of the
phenomenon is that the system spends time in its meta-
stable state (accumulated strain) before it jumps (sudden
relaxation) to the stable state appropriate to the external
field. The process of jumping across the dividing poten-
tial barrier between the metastable and the stable state is
most often accompanied by frictional losses (nonequilibri-
um process) and consequently the irreversibility of the
curve as the field is reversed is natural. The frictional
loss depends on various factors including the rate at
which the external field is being swept. This kinetic as-
pect of the hysteresis phenomenon, however, was not
given due attention till recently, even though the concept
of hysteresis formally originated more than a century ago
[1]. The present work is directed toward supplementing
the understanding (which is far from complete) of hys-
teresis as a kinetic phenomenon and of its relation to the
recently discovered phenomenon of stochastic resonance
(to be explained below).

There have been many attempts to understand the hys-
teresis phenomenon theoretically and numerically [2-12]
and also experimentally [13]. Rao, Krishnamurthy, and
Pandit have studied hysteresis extensively [3] in an N
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component spin system in d =3. They use the relaxation-
al dynamics of the O(N) model in the N — o limit as first
discussed by Mazenko and Zannetti [14]. They apply a
sinusoidally varying external field H(¢)=H,sinwt and
study the nature of hysteresis loops m (H), where m is the
mean value of the spin component parallel to the direc-
tion of applied field H. Their numerical calculation
yields the following two important results. (1) As o —0
the hysteresis loop area A scales as H~H§oP, with
a=0.66x0.05 and $=0.331+0.03 and as w— 0, 4 -0
asymptotically and (2) as o is increased from zero, there
is a symmetry breaking at a critical frequency o =w_(H,)
where the average of the magnetization m(H) over one
cycle of H acquires a nonzero value

fon(t)dt=0 for w <w.(H,)
and

fOTm(t)dzséo for 0> w,(H,) ,

where T =27 /w is the time period of one cycle of the
external field. They term the result (2) a dynamic phase
transition at o =w_ (H,). However, Dhar and Thomas
[4] pointed out that Rao, Krishnamurthy, and Pandit ig-
nored the possibility of a nonzero transverse magnetiza-
tion in the steady state solution. They argue that the
direction in which spins align need not necessarily be
parallel to the external field for large w. Dhar and Tho-
mas take this possibility of nonzero transverse magnetiza-
tion into account by taking a 8-function spin-spin auto-
correlation of the transverse components in g space at
q=0. They thereby show that there is no symmetry
breaking result (2) of Rao, Krishnamurthy, and Pandit.
However, for large o > w,(H,), the transverse spin com-
ponents acquire finite nonzero (squared) average values.
This result they call a dynamic phase transition in the
O(N — « ) model at w=w_(H,). Dhar and Thomas fur-
ther show that as @ —0, the hysteresis loop area scales as
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in the case of Rao, Krishnamurthy, and Pandit but with
a=f=1 with some logarithmic corrections. Also, as @
increases, for example, between ©~0.02 and 0.2, they
find a=0.66 and f=0.34. It appears that these ex-
ponents vary continuously as w varies and in the limit
®—0 they each equal 1.

Rao, Krishnamurthy, and Pandit also do a Monte Car-
lo (MC) simulation [3] for the Ising ferromagnet with
nearest neighbor interaction in d =2. This MC work was
extended by Lo and Pelcovits [5] to a larger system size.
Lo and Pelcovits find a dynamical phase transition as ob-
served by Rao, Krishnamurthy, and Pandit. Also, they
find a similar power-law scaling behavior for the hys-
teresis loop area A4, but with exponents a=0.46 and
B=0.36 in their d =2 Ising-model simulation on a
140X 140 lattice. Acharyya and Chakrabarti do a similar
simulation [6] using the standard Metropolis algorithm in
d =2, 3, and 4. They fit the hysteresis loop area for a
wide range of w, H,, and temperature in a functional
scaling form which reduces to the power law as w—0,
giving the values @ =0.37 and 8=0.36 in d =2. They too
observe a dynamical phase transition like Rao, Krish-
namurthy, and Pandit. Sengupta, Marathe, and Puri [8]
find exponents close to those of Lo and Pelcovits in their
cell-dynamical calculation for a d =2 Ising system.
However, Sengupta, Marathe, and Puri do not report a
dynamical phase transition.

Tomé and Oliveira do a mean-field calculation for the
kinetic (ferromagnetic) Ising model [7], where the system
is allowed to obey Glauber stochastic dynamics. They
too find a dynamic phase transition similar to that of
Rao, Krishnamurthy, and Pandit. Further, a determinis-
tic one parameter dynamical calculation was done by
Jung, Gray, and Roy in a Landau m* potential, where m
is the order parameter, for a sinusoidally varying external
field [9]. Their mean-field calculation yields a power-law
scaling relation with a=p=2.

From the above one concludes that in the ferromagnet-
ic Ising system, when driven by a sinusoidally varying
external field, the resulting hysteresis loops show the fol-
lowing behavior. (1) The hysteresis loop area shows
power-law scaling behavior as w—0, and (2) the loops
undergo a dynamic phase transition of the type reported
by either Rao, Krishnamurthy, and Pandit or Dhar and
Thomas. However, in all these systems, O(N — o ) mod-
el included, the hysteresis loop area increases initially
with @ and decreases at large w: 4 —0 as ®— . Thus
the hysteresis loss shows a peak at intermediate .

Quite apart and different from the treatments described
above to understand hysteresis, Agarwal and Shenoy [10],
following Skripov and Skripov [11] and Gilmore [12],
based their work on the idea of competition among vari-
ous time rates. Though the idea is quite general and
could be applied to many component order parameter
systems, they study hysteresis, considering only a one
component uniform order parameter m with a linearly
varying external field h(t)=hy+ht, h=const. This
simplification, though it neglects order parameter fluctua-
tions, clearly brings out the essence of rate-competition
ideas to explain hysteresis using the first-passage time
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(FPT) formalism [15]. They consider hysteresis to appear
in the process of order parameter transition between two
states separated by an energy barrier. The transition is
aided by stochastic fluctuations and the relative stability
of the two states is controlled by a linearly varying exter-
nal field A (¢) given that the other parameters are fixed.
The two other time scales apart from the constant 4 ~'
are (1) the relaxation time T, of the state the system oc-
cupies and (2) its decay time 7,,, to the other state. If
the free energy is represented by the double-well Landau
potential,

o(m)=—2m*+Lmt—niom ()

2 4

where a and b are positive constants, as adopted by
Agarwal and Shenoy [10], Mahato and Shenoy [16], and
the present work, T, is related to the curvature at the
minimum m =, (Fig. 1) of the well representing the
state the system occupies, and 7, is identified [12] with
the mean first-passage time (MFPT) T, ={(7) of passage
to m=m, (Fig. 1). Agarwal and Shenoy [10(a)] and
Shenoy and Agarwal [10(b)] improve upon the physically
intuitive “hysteresis criteria,”
T, '>h

r

and (2)

S —1
h —Tdecay ’

as stated by Gilmore [12] and also by Skripov and Skri-
pov [11]. The improved criteria [10(b)]

aln(ﬁ,) .
T',.—l T >h
and (3)
-1
5> 5“;;”1 [Tg‘(h)—T;,‘(h) :
¢ $ ¢
!.ﬁ1 62
m
h .o h o h._o.
Fc' 0.5 he 0.0 he 05

FIG. 1. Plot of m*Landau potential Eq. (1) with a=2.0,
b =1.0 for three values of h =0.5h,, 0, and —0.5h,. The posi-
tions of the minima 7, and 7, and the peak 7, of the barrier
are indicated on the m axis.
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where | and T denote passage from 77, to /i, and vice
versa, respectively, take into account the variation of
®(m) with A (2).

Mahato and Shenoy [16] solve the overdamped
Langevin equation

om _ _ 8®(m)
at Sm

for the time evolution of order parameter m. F(2) is the
Gaussian white noise with the following statistics:

(f))y=o0,

+f(), @)

and (5)

(Ffirf)y=2D8(t —1t"),

where the average ( ) is taken over the distribution of
the noise and D is the noise strength representing the
diffusion constant. Mahato and Shenoy [16] find the dis-
tribution p(7) of the FPT, 7, which directly gives the
jump distribution p(h;) in terms of the field value
h;=h(7). They calculate the hysteresis loop from the
jump distribution and hence the hysteresis loop area as a
function of h and D. Apart from verifying the hysteresis
criteria of Agarwal and Shenoy [10(a), 10(b)] they obtain
the following results. The hysteresis loop area A does
not follow any universal power-law scaling with 4 (analo-
gous to  in the sinusoidal case). However, the slopes of
the log-log plot of A4 versus h depend on the values of D.
The work of Mahato and Shenoy, however, failed to see
the intuitively correct behavior of having a peak in the
hysteresis area curve as A varies from 0 to . This is be-
cause Mahato and Shenoy let h(z) vary linearly and con-
tinued the variation till a “jump” occurred without al-
lowing for a change of sign of the slope h. As a result,
the hysteresis loop area increases monotonically with A.
In the present work we rectify these shortcomings by
considering a symmetrical sawtooth field sweep [Fig. 2(a)]

h()=(—1)""hy+(—1)"ht", 6

where t=(n —1)/T +t' (0<t' <T/2), T=4hy/h is the
period of variation of h(t), and n=1,2,... is the half-
period index. We expect this choice of the field sweep,
apart from satisfying the spirit of the rate-competition
ideas, to be closer to the sinusoidally varying field sweep
used by other workers. .

In the present work we vary hg, h, and D independent-
ly of one another. For small A, h —0, and for given 4,
and D the jump distribution is expected to be confined
within ¢ =0 and ¢t =T /2; hence we do not expect the re-
sults to be any different from the results obtained by
Mahato and Shenoy for # —0. Therefore the hysteresis
loop area is not expected to follow any universal power-
law behavior as A —0 even for a symmetrical sawtooth
field sweep (6). For given h, and D as h is increased, the
FPT distribution p(7) spreads beyond t =T /2 and subse-
quently even beyond ¢ =T and thus shows more than one
peak, as shown in Fig. 2(b). The normalized distribution
p(7) contains all the information needed to obtain the
hysteresis loop that confines itself within —h, and h,,.
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To obtain the hysteresis loop, p(7) is folded into p(h;(7))
as shown in Fig. 2(c). It should, however, be noted that
the definition of hysteresis loop becomes different from
earlier ones [3-8]. In the case of O(N + ) model [3,4]
or ferromagnetic Ising model simulations [5-8] the mag-
netization continuously changes as the field is varied.
However, in our case of FPT formalism a change in the
order parameter m (and hence magnetization) is not con-
sidered unless a jump 7, to 7, has occurred. For a
jump to occur, however, the field sweep may have to un-
dergo many (cyclic) periods. Thus the hysteresis loop ob-
tained in our case differs from that of others at the level
of the definition itself, and the occurrence of a dynamic
phase transition is thus ruled out in our analysis.

As is clear from the above, we basically calculate the
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FIG. 2. (a) The field variation A (z), (b) the FPT distribution
p(7), and (c) the corresponding jump-field distribution p(A;) are
plotted for ho=0.9h,, |h|=0.15h,, and D =0.6. p(7) extends
up to 26 cycles of the field A (¢). For convenience 4 (¢) and p(7)
are plotted only up to eight cycles of h(¢). The cyclic periods
T=4h,/h are also indicated along the p(7)=0 and h(¢)=0
axes.
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FPTs and their distribution p(7) numerically in a system
subjected to an external periodic field and a stochastic
noise. From Fig. 2(b) we see that p(7) could spread over
many periods and does peak periodically, though the
peaks gradually reduce in magnitude as time becomes
large. The periodic nature of p(7) led us to examine the
recently discovered phenomenon of stochastic resonance.
Benzi, Sutera, and Vulpiani [17] coin this term as they ex-
amine the possibility of a cooperative effect between the
internal mechanism (stochastic noise included) and the
external periodic forcing, and a consequent marked in-
crease in response to the periodic forcing at certain sto-
chastic noise strengths in a given dynamic system. They
use the phenomenon of stochastic resonance to explain
the periodic occurrence of ice ages on earth. This
phenomenon has been observed in the hysteretic Schmitt
electronic trigger circuit by Fauve and Heslot [18] and
more importantly in a two-mode (dye) ring laser experi-
mentally by McNamara, Wiesenfeld, and Roy [19]. Sub-
sequently there have been many efforts to explain the
phenomenon theoretically [20-22] and also many at-
tempts to observe it in analog and numerical simulation
experiments [23,24]. The sharpness and position of p(7)
peaks in our numerical experiment are reflected in the
hysteresis loop area. We find the variation of the hys-
teresis loop area, for given field-sweep rates h, with the
noise strength D. We find the hysteresis loop area A4 to
peak as D is increased from small D ~O0 to large D. The
result is a signature of the occurrence of stochastic reso-
nance as remarked by Gage and Mandel [13]. It should
be recalled that p(7) represents the response (signal) to
the external periodic field h () at a given noise strength.
Further, as will be explained in detail below, p(7) [and
equivalently p(h;)] determines the nature of the hys-
teresis loop; the hysteresis loss (area of the loops) there-
fore plays the role of signal-to-noise ratio in the study of
stochastic resonance. QOur results can be verified by a
very important and recently developed technique of
Simon and Libchaber [25] to be discussed further in Sec.
IV.

The main results that we obtain are thus that (1) the
hysteresis loop area shows a peak as h increases (A4 —0
as h —0 and also as & — o ) without showing any dynam-
ic phase transition and (2) for a given h, and A, 4 shows
a peak as D is increased from D ~0 to D large. As will be
explained in Sec. III, this happens because, as the system
is driven by a periodic field, the probability of passage
over the potential barrier gets enhanced [with sharp and
periodic but damped p(7)] only at a suitable noise
strength. With stochastic noise strength below or above
that particular value, the sharpness of p(7), respectively,
gets reduced or fuzzy. In Sec. II we briefly explain our
numerical method. The results will be presented in Sec.
III in detail and subsequently we discuss our results in
the last section.

II. THE NUMERICAL METHOD
OF LANGEVIN DYNAMICS

As mentioned earlier this work is an extension of the
work of Mahato and Shenoy [16] and the details of the
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numerical procedure are described in Ref. [16(b)]. In this
work we take a symmetrical sawtooth field sweep as given
by Eq. (6) and shown in Fig. 2(a), instead of a monotoni-
cally varying linear sweep. Of course, the magmtude of
the slope || is the same in both cases of increasing as
well as decreasing h (7). |k| is kept constant for simplici-
ty and convenience, as we are interested in rate-
competition ideas. We begin the field sweep at t =0 with
h(0)=hy (>0) and the initial state is represented by the
lowest minimum m =7, (¢ =0) of the potential well (1).
The Langevin equation (4) is solved usmg a fourth order
Runge-Kutta method with adaptive step size [26]. Floyis
obtained from a Gaussian distribution of random num-
bers, called after every ¢t =t,=nA (n=0,1,2,...) and
kept fixed between ¢, and ¢, . ;. A is chosen to be 0.001
(Appendix of Ref. [16(b)]). The numerical integration is
continued till m =#,(7), the minimum of the other well
of the potential, is reached for the first time. m(t) is a
stochastic process and consequently the FPT, 7, is sto-
chastic. We obtain the distribution p(7) of = by repeating
the above procedure N (=500 typically, but taken suit-
ably depending on h, D, and hy) times, beginning each
time with a different seed value for the random numbers.
To obtain sensible results we restrict to |hy| <h, the criti-
cal field where one of the two wells of the potential (1)
disappears. Throughout our calculation we have taken
a=2.0 and b=1.0 for convenience. The distribution
p(7) is then folded up to transform into p(h;),h;=h(7);
hy is restricted to —hy<h; <h, [Fig. 2(c)]. From p(h;)
the “magnetization” is obtained as

M(h, *1——f

where the saturation magnetization is taken to be +1 (in
units of h,). Equation (7) gives the upper branch of the
hysteresis loop and the lower branch is obtained by sym-
metry. It follows that the hysteresis loop area has an
upper bound of 4hyh.. Further, since p(h;) is obtained
from p(7) which may spread over many periods of h (¢),
the hysteresis loop area

A= Mh;)dh, 8)

pthy)dh; , @)

cannot be interpreted as hysteresis loss over one cycle of
the field sweep. A is the hysteresis loss over the entire
process of passage from one state to the other of a large
ensemble of systems (Sec. IV) and the process is complet-
ed over many cycles of this field sweep.

Numerical errors in evaluating the hysteresis loop area
come at various stages of calculation right from the in-
tegration of the Langevin equation to obtain the FPT 7.
There are two main sources of error in evaluating 7: (1)
the time discretization procedure and (2) the integration
of Eq. (4) with constant f(z). We have used standard
routines and the function to be integrated is very well
behaved; thus the error (2) is quite small. The error (1) is
kept within only a few percent (Appendix of Ref. [16(b)])
by taking A=0.001, over which f(t) remains constant.
Another source of error that could crop up in our calcu-
lation is in the averaging of the stochastic quantities.
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FIG. 3. Standard deviation oy of the mean FPT with the
number of runs N for Fig. 2 is plotted. For comparison the
mean FPT with N =1000 is 40.6.

This error is minimized by taking a large number of runs
and checking the standard deviation of the mean FPT.
The plot of standard deviation o 5 with N number of runs
is shown in Fig. 3. Asis evident oy gets stabilized (fluc-
tuations are confined to a sensible limit) and is of the or-
der of the mean FPT, as it should be. With careful nu-
merical evaluation we are confident of our results being
qualitatively correct if not quantitatively exact. We
present our results in the following section.

IIT. NUMERICAL RESULTS

A. Variation of hysteresis loop area
with field sweep rate and amplitude

In order to investigate the variation of the hysteresis
loop area with the field sweep rate & we keep h, and D
fixed. For small 4 p(7) remains confined to the first half
cycle of the field sweep h(¢) and the hysteresis loops
show saturation (Fig. 4). It is to be noted, however, that
the lower branch of the hysteresis loop is obtained by
symmetry. As h is increased p(7) spreads up to and then
beyond 7=T/2, where T=4h, /h is the period of one cy-
cle of the h(z) sweep. The saturation effect shown in Fig.
4 thus disappears as jump values of h; continue till
h(t)=—h,. On further increase of A, p(r) spreads to
more than one period. p(7), however, peaks close to
t=(2n —1)T /2, where n =1,2,. .. is the half-cycle in-
dex of h(t), and more and more jumps take place close to
h=—h,. Figures 5 and 6 show p(7) and the correspond-
ing hysteres1s loops at two values of 4. Beyond a certain
value of h, however, the p(7) peaks gradually start
becoming broader and broader and therefore the jumps
take place almost all over between —h, and A, thereby
reducing the hysteresis loop area (Fig. 7).
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The nature of the distribution p(7) can be explained
thus. When 4 is small, the system had enough time to de-
cay from m =m(0) to m =m,(r) before t =T /2 [Fig.
4(a)). However, as h is increased, that is, T=4h, /h de-
creased, the system cannot decay completely before
t=T/2 and it continues to decay even beyond ¢t =T /2.
p(7) remains broad. When h is increased still further,
since the barrier height becomes smallest at
t =(2n —1)T /2, passages take place around these values
of ¢. If the system fails to cross over the barrier, say,
around t=(2n —1)T /2, it waits for its next chance
around ¢ =(2n +1)T /2. However, as p(7) spreads to
many cycles initially the peaks around ¢t =(2n +1)T/2
gradually become narrower, that is, jumps cluster around
h =—hy, and the hysteresis loop area becomes larger.
When 4 is made still larger, the number of p(7) peaks in-
creases but the peaks begin to widen (Fig. 7). This is be-
cause after the system crosses the peak of the potential
barrier it takes some time to roll down to m =7i,, but by
that time h(z) moves away from —h,. In the extreme
case the peaks overlap and the area 4 —0. This situa-
tion comes at large 7 depending on the values of D and
hg.

P(T)

0.000 nol T T
t/7

4 (b)
0-8-

-1-2 T T T 1
-1.0 -0.5 0.0 0.5 1.0
hy/he
FIG. 4. (a) The FPT distribution p(7) and (b) the correspond-
ing hysteresis loop are plotted for ho=0.9h., |h|=0.005h,
D =0.4 in 500 runs. The positions of the half cyclic periods
T/2 are indicated along the time axis. Notice that p(7) is
confined within ¢t =T /2.
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A typical plot of hysteresis loop area versus # is shown
in Fig. 8. The qualitative nature of this plot is similar to
what others find [3-8]. However, as noted earlier, except
for small A, to obtain a hysteresis loop we need to cycle
the field many times and that is how hysteresis is defined
here. This is very much in contrast to the hysteresis loop
obtained for each cycle of the field sweep in the case of
other workers.

As mentioned in Sec. II the hysteresis loop area has an
upper bound of 4hyh.. Therefore for larger h, it is
reasonable to expect the possibility of finding a larger
hysteresis loop area for any fixed value of #. We repeated
our calculation with different #,. The curve with (0)
points in Fig. 8 is the hysteresis loop area versus Ak for
hoy=0.5h_. It is to be noticed that, as expected, the peak
of area A versus h shifts to a lower value of 4 for smaller
ho. This is because, for small h, the period T =4h,/h
for a given A is scaled down compared to that for larger
hy and hence p(7) peaks start broadening at smaller
values of A than is the case for larger h,. Again, as ex-
pected for a given 4 and D the hysteresis loop area in-
creases monotonically with &, as shown in Fig. 9.

b (a)

PIUT)

T
0-0 05 1.0
t/7

Z 0-01

-0-4—

I T
-0.5 0.0 0.5 1.0
hy/he

FIG. 5. Same as in Fig. 4 but with [k|=0.01h,. p(1) extends
beyond t =T /2.
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B. Variation of hysteresis loop area versus D
and the phenomenon of stochastic resonance

The diffusion constant D is defined in Eq. (3). D deter-
mines the sharpness of the Gaussian distribution of the
noise f (¢) about zero; in other words, it determines and is
proportional to the thermal fluctuation of the system.
Therefore a larger D will correspond to a larger system
“temperature.” One would, therefore, expect that the
hysteresis loop area 4 will be small for larger D values
for given h and h, because it will be easier for the system
to cross over the potential barrier. A plot of A versus h
for various values of D =0.3, 0.4, 0.6, and 1.0 and fixed
h,=0.9h, is shown in Fig. 10. It is to be noticed that the
above mentioned behavior is followed for small A. How-
ever, for large h the area A shows just the reverse
behavior, namely, A4 increases with D. Further, the
peaks of the curves shift to larger values of 4 as D is in-
creased. Therefore for intermediate h values the area
shows a crossover behavior as D is changed, that is, 4 in-
creases in the beginning and then starts decreasing as D is
increased further. This is therefore investigated in more

(a)
0-06+

0-04—

pP(T)

0-024

0-00 -
0.0 10 2.0 3.0 4.0 50
t/T

29 (b)

12 T T T L
-1.0 -0-5 0-0 0.5 1.0
hy/he
FIG. 6. Same as in Fig. 4 but with (| =0.05h,. p(7) spreads
to five cycles (=5T).
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detail by keeping 4 and A, fixed and varying D.

Figure 11 shows the plots of the hysteresis loop area A
versus the diffusion constant D. Each of these plots is
analogous to Fig. 3 of Ref. [19]. This is surely an exam-
ple of stochastic resonance. This behavior can be ex-
plained by carefully examining the nature of the corre-
sponding p(7). We present in Fig. 12 p(7) for h =0.2h,
and hy=0.9h, and three values of D =0.3, 1.0, and 2.0,
corresponding, respectively, to where A is smaller than,
close to, and again smaller than the peak of the A versus
D curve. These distributions are similar to the ones re-
ported by Zhou, Moss, and Jung [21]. p(7) results from
the competition between the D dependent passage time
and the field-sweep rate A~'. For small values of
D =0.3, p(r) spreads over many field-sweep cycles (we
reach up to a maximum of 28 cycles in 500 runs). The
p(71) peaks are sharp but are shifted to the right from
t=(12n—1)T/2, n=1,2,... [Fig. 12(a)]. This happens
because, even after the system crosses over the peak of

(a)
0-06

0-04

p(T)

0-02

J
0-00 J

00 1-0 20 3.0 4.0 5.0

1.2+

0-8-

0-4

= 0-04

T T 1
-1.0 -0-5 0-0 05 1.0

hy/he

FIG. 7. Same as in Fig. 4 but with |#|=0.2h, and the data
are for 1000 runs. p(7) extends to ¢t =28T. p(r) peaks are
broader than in Fig. 6(a) and also they are shifted to the right
from (2n —1)T /2, n =1,2,.... Only ten periods are shown in
the figure.
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2.0
L~ ¢ -
1.0
0.0 T T T T T 1
0-00 0-05 0.10 0.15

ﬁ/hc

FIG. 8. Hysteresis loop area A (in units of h2) versus k /h,
for ho=0.9h. (@) and hy=0.5h_. (O) and D =0.4.

the potential barrier close to h(t)=—h,, it is unable to
roll down to the bottom at m =7, quickly enough [com-
pared to the change of field h (¢)] because of sluggishness
caused by the small D. Therefore most of the “jumps”
take place away from —h, (to the next half cycle) and
hence the hysteresis loop area is small. At D =1.0, p(7)
does not spread to as many cycles (a maximum of 20 cy-
cles in 180 runs) and the peaks are not as sharp [Fig.
12(b)]. However, even though the peaks are wide, com-
pared to the D =0.3 case, they are very close to
t=(2n —1)T /2, that is, very close to —h,. In other
words, most of the jumps i ,(0)—7,(7) take place
where the potential barrier height is the least (resonant
situation). At large D =2.0, p(7) gets confined to only a
few cycles of h (t) [Fig. 12(c)] and also the peaks seem to

3-04
L (¢}
o
o
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o
g E
o
o}
1.0 ]
e}
[ 3
o
)
[
0'c Ll l T —[ T l L l
0-2 0-4 0-6 0-8 1.0
ho

FIG. 9. Variation of hysteresis loop area 4 (in units of hd
with A for |A|=0.1h, and D =0.8 (@) and 0.5 (O ).
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a 0-05+ )llL
1.0 1
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0-004—¥ D
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FIG. 10. Variation of hysteresis loop area 4 (in units of A7) -
with A /h, for various values of D =0.3(A), 0.4(X), 0.6(00),
and 1.0 (0 ) and ho=0.9%,. 0-00-1 T T 1)
0.0 2.0 40 6-0 8-0 10-0

t/7

FIG. 12. Comparison of the nature of p(7) for hy=0.9h,,

|h|=0.2h,, and three values of D =(a) 0.3, (b) 1.0, and (c) 2.0.

occur close to t =(2n —1)T /2. However, the peaks are  p(r) for D =0.3 extends to 53 cycles of k(¢) but for convenience
very broad and tend to overlap and even merge together.  and better comparison only up to t =107 is shown. T =4h, /h
Therefore the probability of jump values away from  is the period of A(¢). Att=nT (n=1,2,...) marks are put on

h =—h, is considerable, thus reducing the hysteresis the time axis.
loop area. The corresponding hysteresis loops are shown
in Fig. 13.
(a) 1
- W
(b) 1
] /‘://7
s 0
< L/V
a
1.0 (c) /“'/7
0
0.0 T T T T T T —r ] T T T T T T T T T rrr o
0.0 1.0 2:0 3.0 4.0 -1.0 0.0 1.0
0 hy/he
FIG. 11. Variation of hysteresis loop area A (in units of 42) FIG. 13. Hysteresis loops for the FPT distributions p(7)

with D for ho=0.9h, and two values of |h|=0.075h, (@) and shown in Fig. 12 are shown for (a) D =0.3, (b) D =1.0, and (c)
0.2h, (O). D =2.0 (M is plotted in units of 4.).
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IV. DISCUSSION

The qualitative nature of the variation of the hysteresis
loop area A with h is similar to that obtained by many
authors [3-8] including Gage and Mandel [13], who mea-
sured hysteresis loop areas in a two-mode (dye) ring laser.
In brief, the procedure for calculating the hysteresis loop
area in our case is as follows. We take an ensémble of
noninteracting systems each in the same state 77, in the
corresponding potential well, at # =0. This situation is
equivalent to a collection of identical noninteracting
magnetic grains with their spins aligned in the direction
of a uniform magnetic field. Then we observe the ensem-
ble as the field is swept in a triangular fashion, record the
time 7 when a system reaches #i,(7) for the first time,
and remove the particular system from the ensemble. We
continue observation till the last surviving system of the
ensemble reaches 7, of its potential well (the last grain of
the magnetic system switching its direction for the first
time). This gives p(7) and completes the upper branch of
the hysteresis loop; the lower branch is obtained by sym-
metry. This procedure, except for small 4, may require
observation for more than one cycle of the field sweep. In
contrast, as in the usual hysteresis experiments, other
works calculate the complete loop in one cycle of the field
sweep and averaging is done over many cycles just to re-
move the fluctuations introduced in the measurement
process, etc. [3-8,13]. Therefore the comparison of Fig.
8 with the results of others is not reasonable. Even other-
wise we do not claim to reproduce even qualitatively all
the hysteresis behavior seen by others. For example, our
procedure does not allow us to see the dynamic phase
transition seen by all the workers in Ising-model systems
[3-8] and also indirectly by Gage and Mandel in the
two-mode (dye) ring laser [13]. Gage and Mandel per-
form their experiment at fixed frequency of the modula-
tion of the pump-parameter asymmetry at various mean
pump-parameter values. The mean pump-parameter
value determines the height of the potential barrier (of
the two-well potential), effectively changing the mean
FPT (7). If we think in terms of a fixed potential form
at given D, effectively they performed the experiment at a
different relative frequency . With this interpretation
their results show the same qualitative behavior of A4
versus w. Interestingly, Gage and Mandel’s results quali-
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tatively support the second of the rough hysteresis cri-
teria (2) given in the Introduction.

Gage and Mandel [13] observe that the study of the
hysteresis cycle is a convenient technique for exhibiting
stochastic resonance. This fact has been very clearly
brought out in our numerical experiment, which is very
similar to the theoretical and analog simulation results of
Zhou, Moss, and Jung [21]. Interestingly, the shift of the
p(7) peaks to the right of ¢ =(2n —1)T /2 in Fig. 12(a) for
small D is a similar effect shown in Fig. 2 of Ref. [13].
This shift is responsible for the hysteresis loop area being
small.

Recently a very ingenious experiment has been devised
by Simon and Libchaber to directly observe the Kramers
escape rate in a two-well potential system [25]. Our nu-
merical work is closest to what they study, namely, the
escape rate distribution p(7). In that experiment also
backward passage is not studied. They also seek to verify
the occurrence of stochastic resonance. They report that
they find no evidence of stochastic resonance in their ex-
periment. This is very surprising. The distribution p(7)
they observe is very similar to what we get. The present
authors contend that with a little careful analysis and a
further observation of p(7) with a wider range of noise
strength Simon and Libchaber’s experiment [25] will
yield stochastic resonance. Figures 10 and 11 provide an
important hint that to observe stochastic resonance at
low frequencies one needs to do the experiment at a low
noise strength. Figure 10 (fixed & /h, and variation of 4
in the space of D) indicates the limits of the range of A (or
the frequency in the case of the external sinusoidal field)
within which stochastic resonance can be observed for a
given range of D values. Our numerical work, however,
corroborates many aspects of the p(7) observed by Simon
and Libchaber.
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